Commentationes Mathematicae Universitatis Caroline

Jaroslav Ježek
 Reduced dimension of primitive classes of universal algebras

Commentationes Mathematicae Universitatis Carolinae, Vol. 9 (1968), No. 1, 103--108

Persistent URL: http://dml.cz/dmlcz/105160

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1968

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

$$
9,1 \text { (1968) }
$$

REDUCED DIMENSION OF PRIMITIVE CLASSES OF UNIVERSAL ALGEBRAS Jaroslav JEŽEK, Praha

This paper is a continuation of my paper [1]. Let us define the reduced dimension of a primitive class: $C \mathscr{C}$ of algebras of (an infinitary) type τ as the least regular number \mathscr{V}^{*} such that el is equivalent to a primitive class of algebras of dimension Q^{*}. In this paper we shall find a necessary and sufficient condition for a primitive class to be of a reduced dimension $\leq \vartheta^{*}$ weere ϑ^{*} is a given regular number; see Theorem 1 below. If
$\vartheta^{*}=\mathcal{N}_{0}$, then this result can be strengthened; see The rem 2.

Theorem 2 follows easily from Theorem 1 and "Hauptsatz über algebräische Hüllensysteme" (J. Schmidt [2], p. 25). How ever, we shall give an independent proof of Theorem 2, not requiring any of the two theorems.

Lemma. Let \mathbb{A} be an algebra of type τ (dimension ϑ) with an independent set of generators X cardinality $\geq \vartheta$. Let \mathbb{A}^{*} be an algebra of type τ^{*} (dimansion v^{*}) such that $A=A^{*}$. Let each fundamental operation of A^{*} be algebraic in A and
(1) $\quad C_{A}(M)=C_{A^{*}}(M)$ for all $M \subseteq X$.

Then the algebras \mathbb{A}, A^{*} are equivalent.

Proof. It is sufficient to prove that each fundamental operation of \mathbb{A} is algebraic in $\left.A\right|^{*}$ (see [1], theorem 3). Let $i \in I$. There exists an injection \boldsymbol{a} of K_{i} into X. Put $a=f_{i}(a)$. By (1) we get $a \in C_{A *}(W(\mathbf{a}))$. By Corollary 1 of Theorem 5 of [31 there exists an algebraic operation $h \in H^{K_{i}}\left(A \|^{*}\right)$ such that $a=h(a)$. By our assumption, $h \in H^{k_{i}}(A)$. Hence, both f_{i} and h are algebraic in $A \|$ and $f_{i}(\mathbb{Q})=h(\boldsymbol{a})$; as the set $W(\boldsymbol{2})$ is independent in
Al, we get $f_{i}=h \quad$ by Corollary 1 of Theorem 11 of [3]. As h is algebraic, f_{i} is algabraic in A^{*},too. Let λ be an infinite cardinal number. A set M of sets is called λ-directed if for all $N \subseteq M$ such that Card $N<\lambda$ there exists an $A \in M$ with $B \subseteq A$ for all $B \in N$. (Every λ-directed set is evidently non-empty.) A set is called directed if it is $火_{0}$-directed. Every non-empty chain of sets is directed.

Theorem 1. Let er be a non-trivial primitive class of algebras of type τ (dimension ϑ). Let ϑ^{*} be a regular number. Let X be a set of cardinality $\geq \max \left(\vartheta, \vartheta^{*}\right)$ and \mathbb{C} an $\varphi \ell$-free algebra with $\varphi \mathcal{C}$ basis X. The following conditions are equivalent:
(i) C C is equivalent to a primitive class of algebras of dimension ϑ^{*}.
(ii) If $A \in \mathscr{C}$, then the union of any ϑ^{*}-directed set of sets closed in \mathbb{A} is also closed in \mathbb{A}. (iii) The union of any ϑ^{*}-directed set of sets closed in \mathbb{C} is also closed in \mathbb{C}.

Proof. (i) \Rightarrow (ii): well-known and easy. (ii) \Longrightarrow \Longrightarrow (iii): evident. (iii) \Longrightarrow (1): Let us define a type τ^{*} in this way: its domain I^{*} is the set of all ordered pairs $\langle M, c\rangle$ such that $M \subset X$, Card $M<\vartheta^{*}$ and $c \in C_{\mathbb{C}}(M)$; if $i=\langle M, c\rangle \in I^{*}$, then put $K_{i}^{*}=M$. Evidently, ϑ^{*} is the dimension of τ^{*}. Let us define an algebra \mathbb{C}^{*} of type τ^{*} with $C^{*}=\mathcal{C}$ in this way: if $i=\langle M, c\rangle \in I^{*}$, then there exists (by [3], Corollary 1 of Theorem 5 and Corollary 1 of Theorem 11) exactly one algebraic operation $h \in H^{k_{i}^{*}}(\mathbb{C})=H^{M}(\mathbb{C})$ such that $h\left(i d_{M}\right)=c \quad$ (where $i d_{M}$ denotes the identical mapping of M onto itself); put $h_{i}^{*}=h$ (the isth fundamental operation of \mathbb{C}^{*}).

Hence, each fundamental operation of \mathbb{C}^{*} is algebraic in \mathbb{C}.

Let $M \subseteq X$. Put
(2) $D=\left\{N ; N \subseteq M \&\right.$ Card $\left.N<v^{*}\right\}$
and
(3) $E=\left\{C_{C}(N) ; N \in D\right\}$.

If $N \in D$, then it follows easily from the independence of X that $X \cap \mathcal{C}_{\mathcal{C}}(N)=N$. Hence, the mapping \mathscr{P} defined by $\varphi(N)=C_{\mathbb{C}}(N)$ is a one-to-one mapping of D onto E and it is an order-isomorphism if we consider D. and E as partially ordered by the set-theoretic inclusion. The set D is ϑ^{*}-directed because v^{*} is regular; hence, a' ${ }^{-\rho}$ the set E is ϑ^{*}-directed. By our assumption (iii) we get that the union $Y_{6} C_{-}(N)$ is ell ed in \mathbb{C}. As M is evidently contained in t'.is union, we get (4) $\quad C_{C}(M)=\bigcup_{N \in D} C_{C}(N)$.

Let us prove
(5)

$$
C_{c}(M)=C_{c^{*}}(M)
$$

The inclusion " \geq " is trivial. Let $a \in C_{C}(M)$. By (4) there exists an $N \in D$ such that $a \in C_{C}(N)$. Put $i=\langle N, a\rangle$. As $N \subset X$ and Card $N<v^{*}$, we get $i \in I^{*}$. By the construction of h_{i}^{*} we get $a=$ $=h_{i}^{*}\left(i d_{N}\right)$. Hence, $a \in C_{C^{*}}(N) \leq C_{C^{*}}(M)$. We have proved (5).

Conditions of the lemma are thus satisfied and we infer that the algebras $\mathbb{C}, \mathbb{C}^{*}$ are equivalent. Hence, X is also an independent set of generators of \mathbb{C}^{*}. There exists exactly one primitive class \mathscr{Z} such that \mathbb{C}^{*} is \mathscr{L}-free with $\mathscr{\mathscr { L }}$-basis X. By Theorem 6 of [1] the classes \mathscr{C}, \mathscr{Z} are equivalent.

Theorem 2. Let er be a nontrivial primitive class of algebras of type τ (dimension \Re). Let X be a set of cardinally $\geq \vartheta$ and \mathbb{C} an eh free algebra with CK-basis X. The following conditions are equivalent:
(i) Cr is equivalent to a primitive class of finitary algebras.
(ii) If $\mathbb{A} \in \mathscr{C}$, then the union of any none tupty wellordered chain of sets closed in \mathbb{A} is also closed in \mathbb{A}. (iii) The union of any non-empty well-ordered chain of sets closed in \mathbb{C} is also closed in \mathbb{C}.

Proof. (i) \Rightarrow (ii) and (ii) \Longrightarrow (iii) is easy. (iii) \Longrightarrow (ii): Construct τ^{*} and \mathbb{C}^{*} as in the proof of Theorem l. Let us prove by transfinite induction that
for each cardinal number or the following holds:
(6) If $M \subseteq X$ and C ard $M=\alpha$, then $C_{\mathbb{C}}(M)=$ $=C_{\mathbb{C}}(M)$.
If α is finite, we can repeat the proof of (5) if we put there $N=M$. Let α be infinite and let (6) hold for all cardinal numbers less than α. As Card $M=\alpha$, there exists a one-tomone mapping η of α onto M (recall that α is the set of all ordinal numbers less than α). Evidently,

$$
\begin{equation*}
C_{\mathbb{C}}(M)=C_{\mathbb{C}}\left(\bigcup_{\gamma<\alpha} \eta^{\prime \prime} \gamma\right) \tag{7}
\end{equation*}
$$

(where $\eta^{\prime \prime} \gamma$ denotes the range of $\eta \wedge \gamma \gamma$). The set of all $C_{c}\left(\eta^{\prime \prime} \gamma^{\prime}\right)$ for $\gamma^{\gamma}<\alpha$ is evidently a nonempty well-ordered chain of sets closed in \mathbb{C}; hence, its union is closed in \mathbb{C} and thus evidently
(8)

$$
C_{c}\left(\bigcup_{\gamma<\alpha} \eta^{\prime \prime} \gamma\right)=\bigcup_{\gamma<\alpha} C_{c}\left(\eta^{\prime \prime} \gamma\right)
$$

If $\gamma<\alpha$, then Card $\left(\eta^{\prime \prime} \gamma\right)=\operatorname{Cand} \gamma<\alpha \quad$ because \propto is a cardinal number; by the inductional assumption we have $C_{c}\left(\eta^{\prime \prime} \gamma\right)=C_{C^{*}}\left(\eta^{\prime \prime} \gamma\right)$. Hence,
(9) $\quad \underset{\alpha}{ } C_{c}\left(\eta^{\prime \prime} \gamma^{\prime}\right)=\bigcup_{\gamma<\alpha} C_{c^{*}}\left(\eta^{\prime \prime} \gamma\right)$.

As \mathbb{C}^{*} is finitary, we get
(10) $\underset{\gamma<\alpha}{\bigcup} C_{C^{*}}\left(\eta^{\prime \prime} \gamma\right)=C_{\mathbb{C}^{*}}\left(\gamma_{\gamma<a} \eta^{\prime \prime} \gamma\right)=C_{\mathbb{C}^{*}}$ (M).

By (7), (8), (9) and (10) we get (6). The proof of (iii) \Rightarrow \Rightarrow (i) can be finished similarly as in Theorem 1 .
References
[1] J. JEZ̆EK: On the equivalence between primitive classes of universal algebras. (To appear in Z.Math.Logik Grundlagen Math.).
[2] J. SCHMIII: Einige grundlegende Begriffe und Sätze aus der Theorie der Hüllenoperatoren. Ber. Math.Tag.Berlin 1953,21-48.
[3] J. SCHMIII: Algebraic operations and algebraic independence in algebras with infinitary operations. Mathematica Japonicap 6(1960),77-112.
(Received December 27,1967)

