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Comment at iones Mathematicae Universitatis Carolinae 

9,1 (1968) 

REDUCED DIMENSION OP PRIMITIVE CIASSES OP UNIVERSAL ALGEBRAS 

Jaroslav JE2EK, Praha 

This paper is a continuation of my paper [1J # 

Let us define the reduced dimension of a primitive 

class ^Vi of algebras of (an inf initary) type f as the 

least regular number 1$ such that C€K is equivalent to 

a primitive class of algebras of dimension *2# . In this 

paper we shall find a necessary and sufficient condition for 

a primitive class to be of a reduced dimension & i&* whe

re &* is a given regular number; see Theorem 1 below. If 

<&* 9 R 0 ? then this result can be strengthened; see Theo

rem Z. 

Theorem 2 follows easily from Theorem 1 and "Hauptsatz 

uber algebraische Hullensysteme" (J. Schmidt r23,p#25). How

ever, we shall give an independent proof of Theorem 2, not 

requiring any of the two theorems. 

a. Let A be an algebra of type tf (dimension 

& ) with an independent set of generators X of cardi

nality 2: & „ Let A * be an algebra of type tr* (di

mension 1** ) such that A =- A * . Let each fundamental 

operation of A * be algebraic in A and 

(1) CA (M) « CA, ( M ) for all M £ X . 

Then the algebras: A , A * are equivalent. 
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Proof. I t i s su f f i c i en t to prove that each fundamen

t a l operation of A i s algebraic in AY* (see [ U , 

theorem 3 ) . Let i e I , There e x i s t s an i n j e c t i o n Si 

of K ; into X . Put a. * -^ C 3L ) . By ( l ) we get 

a e CAJk CW CSi )) . By Corollary 1 of Theorem 15 of f31 
K* 

there e x i s t s an algebraic operation J% € H * C A\* ) such 
tc' 

that a, ss M, C A ) . By our assumption, J% 6 H * ( A ) . 

Hence, both -F̂  and ^ are algebraic in A and 

-f. C&) ss i t ( c t ) ; as the set W C SSL ) i s independent in 

A\ , we get -r\ -=- ^t by Corollary 1 of Theorem 11 of 

[3J. As Jh, i s algebraic,, ft* i s algebraic i n A * , t o o . 

Let A be an i n f i n i t e card inal number, A set M of 

s e t s i s ca l l ed X -d i rec ted i f for a l l N -» M such that 

Ccvcd N < X there e x i s t s an A e M with B £ A 

for a l l B € N , (Every C\ -d i rec ted se t i s evident ly 

non-empty.) A se t i s ca l led d i rected i f i t i s H0 - d i r e c t e d . 

.Every non-empty chain of s e t s i s d i rected . 

Theorem JL. Let ^ t be a non-tr iv ia l primitive c la s s 

of algebras of type t : (dimension ^ ) . Let n$* be a 

regular number. Let X be a set of card ina l i ty 

t>nmax, Ci?>, t # * ) and € an <€% - f ree algebra with C€/C -

bas i s X . The fol lowing cond it ions are equivalent: 

( i ) ^Vi i s equivalent to a primitive c lass of algebras of 

dimension 1? • 

( i i ) If A e WL 9 then the union of any <&* -d i rec ted se t 

of s e t s c losed in A i s a lso closed in A . 

( i i i ) The union of any $ -d i rec ted set of s e t s closed 

in C i s a lso closed in C • 
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Proof. Ci) -=» ( i i ) : well-known and easy, ( i i ) *—«* 

« > ( i i i ) : ev iden t , ( i i i ) —-> ( i ) : Let us define a type 

i r * i n t h i s way: i t s domain I * i s the se t of a l l ordered 

p a i r s < M , C > such t h a t M c X , Ca/cd M < n9> * and 

c e £ c < : M ) ; i f i * ^ M , f i > € I * ; then put 

Kf * M . Ev iden t ly , l£ * i s the dimension of tr* . Let 

us define an a lgebra C * of type t r * with C* « C i n 

t h i s way: i f i » < M ; C > € I * ; then t h e r e e x i s t s 

(by £3J ,Corol la ry 1 of Theorem 5 and Corol la ry 1 of Theorem 

11) exac t ly one a lgeb ra i c opera t ion Jhe H * (C) ** H (<E ) 

such t h a t M, C*CdM ) m c (where tdM denotes the i -

d e n t i c a l mapping of M onto i t s e l f ) ; put Jhj, - &** ( the 

i - t h fundamental opera t ion of C * ) . 

Hence, each fundamental opera t ion of C i s a l g e 

b r a i c in C * 

Let M -» X . Put 

(2) ] ) r { N ) N £ M & Ca^cL N < <&*$ 

and 

(3) E - ^ W j W « J > ? • 

I f H e D y then i t fol lows e a s i l y from the independence of 

X t h a t Xr\C^(N)srN . Hence, the mapping g> d e 

f ined by Cf CN) SF C~ (N) i s a one-to-one mapping of D 

onto E and i t i s an order-isomorphism i f we consider D 

and E. ae per t ia l ly ordered by the s e t - t h e o r e t i c inc lus ion* 

The s e t D i s 1?»* - d i r e c t e d because i>* i s r e g u l a r ; hen

ce , a ^ o the s e t £ i s i # * - d i r e c t e d . By our assumption 

( i i i ) we get t h a t the union N U C C N ) i s cl< ed in 

C • As M i s ev iden t ly contained in t M s union, we get 

(4) C€ C M ) - „# Cc <N> . 
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Let us prove 

(5) Cc CM) * Cc+ CM) . 

The inclusion " St " is t r i v i a l . Let a e C€ CM) .By 

(4) there exists an N € P such that a, € C^ C N ) . 

Put i * <N7 a > . As N c X and Ca*d£ N < t £ * , we 

get i € I . B y the construction of «>tĥ  we get a -

* Jh,*(idN ) . Hence, ^ e C ^ (N) £ C^ f M ) . 

We have proved (5). 

Conditions of the lemma are thus sat isf ied and we in

fer that the algebras C, C* are equivalent. Hence, X 

i s also an independent set of generators of C . There 

exists exactly one primitive class *tr such that £* i s 

& -free with J^ -basis X . By Theorem 6 of flJ the 

classes *&Cf & are equivalent. 

Theorem 2. Let <&l be a non-trivial primitive class 

of algebras of type ^ (dimension l9* ) . Let X be a set 

of cardinal it y & <fr and C an ^ -free algebra 

with *% -basis X . The following conditions are equiva

lent : 

( i ) C&C is equivalent to a primitive class of f in i tary 

algebras. 

( i i ) If /\ € c6/t , then the union of any non-empty well-

ordered chain of sets closed in A is also closed in A • 

( i i i ) The union of any non-empty well-ordered chain of sets 

closed in C i s also closed in C . 

Proof, ( i ) -*-=> ( i i ) and ( i i ) ===-» ( i i i ) is easy. 

( i i i ) *=$ ( i i ) : Construct /cr* and <C * as in the proof 

of Theorem 1. Let us prove by t ransf ini te induction that 
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for each card inal number oc the following holds: 

(6) I f M £ X and CcucdL M ** cc y then Cc CM)* 

= C c , C M ) . 

If <3t i s f in i t e ,we can repeat the proof of (5) i f we put 

there N * M . Let cc be i n f i n i t e and l e t (6) hold for 

a l l cardinal numbers l e s s than <?C . A s Co/ccL M -= cc , t h e 

re e x i s t s a one-to-one mapping 1£ of cc onto M ( r e 

c a l l that cc i s the set of a l l ordinal numbers l e s s than 

CC )» Evidently, 

IT) CCCM>- c c c r u ^ " r ) 
(where n!' V denotes the range of ^ r j ^ ) • The se t 

of a l l Cc C^l" y ) for <f < ot, i s evidently a non

empty well-ordered chain of se t s closed in (C ;hence, i t s 

union i s closed in C and thus evidently 

^ c^Mnur^ru cc cn"r > • 
I f f < < t , then CaxU C^i , r y ) - (Uvul y < at because 

cc i s a cardinal number; by the inductional assumption we 

have Cc Cni " r ) « Cc* C n, " T > • Hence, 

(9) Mcc(nW)'ru
c^ ^ " ^ ' 

As C * i s f i n i t a r y , we get 

do) y u ^ ( V r ) - ^ ( ^ » T ) * c^cM). 
By ( 7 ) , ( 8 ) , ( 9 ) and (10) we get ( 6 ) . The proof of ( i i i ) —-> 

-==--> ( i ) can be f in ished s imi lar ly as in Theorem 1. 
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