Commentationes Mathematicae Universitatis Carolinae

Svatopluk Fucik
Fixed point theorems for sum of nonlinear mappings

Commentationes Mathematicae Universitatis Carolinae, Vol. 9 (1968), No. 1, 133--143

Persistent URL: http://dml.cz/dmlcz/105163

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1968

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/105163
http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

9, 1 (1968)

FIXED POINI THEOREMS FOR SUM OF NONLINEAR MAPPINGS
Svatopluk FUS{K, Praha

I.Introduction. Let H be a real Hilbert space , K a
clmed bounded convex subset of H . The following theorem
has been obtained by R.I. Kalurovskij, M.A. Krasnoselskij and
P,P, Zabrejko [9]:

Theorem 1. Let T(KYc K and T= B+ C , where
IBx-By &g lix-4 | for all x,24 € K . Let one of the
following conditions be fulfilled:

a) 0= g <1, C completely continuous,

b) ¢ = 1, C strongly continuous.

Then T has a fixed point in K (i.e. there exists at least
one point X, 6 € K . such that Tx,= X, ).

Using the results of F.E. Browder and G.D. de Figueiredo
concerning G-operators ([41,(61,[7],(8]) we can state the last
Thearem in a more general setting. The extensions of Theorem
1 that we give below follow two directions (see Theorem 5,6
and 7). In the first place, we assume special Banach spaces
(not only a Hilbert space) and the second direction of gene~
ralization is the weakening of the assumption T (K) c K.

In Section V there are given some examples of operators,
which are the sum of two mappings, which map the unit ball in-
to itself and have no fixed point property.
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II. Terminology, notations and definitions.

Let X be a real Banach space with the norm Il - || , @
its zero element; X* denotes the adjoint (dual) space of
all bounded linear functionals on X . The pairing between
x*e X* and x € X is denoted by (x, X*) . We shall use
the gymbols " — " ,*—" 0 denote the strong convergence
in X (or in X* ) and weak convergence in X (or in X*),
respectively.

Definjtion 1: Let F be a mapping with domain D c X
and values in X (or X*). Then
(1) F 1is said to be strongly continuous if X, — X, in D
implies FX, — Fx, -

(2) F 4is said to be weakly continuous if X, —* X, in D
implies FXx, — FXx, .

(3) F is said to be continuous if X, — X, in D im=
plies Fx, — Fx, .

(4) F is said to be completely continuous on D if for each
bounded subset Mc D , F(M) is compact and F 1is continuous
on D.

(5) F is said to be nonexpansive mapping on D if for eve-
ry X,y €D there is I Fx - Fyyll & Ix- a4 I .

(6) F is said to be contractive mapping on D if there ex~-

ists q (0 £ g <1) such that for every .><,rg,éD we

have ﬂFx~F@.'|éq,ﬂx—ry,ﬂ-

(7) F is said to be hemicontinuousmapping on D if F is

contimuous from each segment in D to weak topology in X .
Definition 2. A Banach space X 1is said to be strictly

convex if IAX + (1-A)y ll< 1 forall A, 0<A < 1,
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and all X, Y% € X with Ix Il = gl = 1.

Definition 3 ((61,071,[8]): A Banach space X is said
to have Property (7, ) if there exists a collection of finite
dimensional subspaces F, F &€ A, such that:

(8) The collection { F; F e A 7 is directed by inclusion.
That is, given any two elements F. , F, € A , there exists
a third one which contains both.

(9) The union of all F , Fe A is dense in X .

(10) Each F, F e A is the range of a continuous linear
projection PF of norm £ 1 .

Remark 1: Hilbert space (separable or not), Banach space
with monotone Schauder basis and C [ 0,1] have Property
(). (see [6],07],[81).

Definition 4 ([6],{7],[8]) a) A gauge function is a real-
valued continuous function “ defined in the interval
<{0,00) such that
(11) «(0) =0
(12) t% @ (t)= co
(13) @ is strictly increasing.

b) The duality mapping in X with a gauge function &
is a mapping J from X into the set 2X* o all subsets
of X* such that

% x=06
(14) 3x =<{
{x% ke X* (x,x*)= Ix1l- IXRR, X o e (WX} x40 -
Remark 2 ([6),[8]) a) The set Jx is non-empty.
b) Let X be a Banéch space with a strictly convex
dual space X* . Let J be the duality mapping in X with



& gauge runction «¢ . Then the set Jx consists of preci-

sely one point. ¢) Let X be a Banach space with strictly

convex dual space X*, Let Js X — X* be the duality

mapping with a gauge function (¢¢ and % > 0 . Then

J(tw)= 3(t)IJw , where /3 1is positive function of 7 .
Definition 3: A Banach space X 1is said to have Proper=-

ty (.ﬂ’,)* if

(15) X 1is reflexive.

(16) x* is strictly convex.

(17) X has Property (o7,).

(18) The duality mapping J in X with gauge function “ is

weakly continuous.

Remark 3 ([41,081): A Hilbert space, £, (1< f1 < 00)
have Property (77:,)* .The Banach space L, [0,1], 1< n<oc0,
#r #+ 2 has not Property ( o7, )* .

Definition 6: Let K be a closed bounded convex subset
of a Banach space X with Property (J7;). An operator T: K-
~% X is said to be Galerkin approximable (or for short a G-
operator) if
(19) F: T: KAF — F is continuous for all but a fi-
nite number of F e A .

(20) T has a fixed point in K whenever there exists .x'__ €
€ F  for all but & finite number of F € A  such that
F", T'.xF = X

Remark 4 ([65,(7),[8]) Let K be a convex closed boun-
ded subset of a Banach space X with Property (7 )*. Let
T : K= X be strongly (or weakly or completely) continu=-

ous, Then T is G-operator.



III._G=-ogperators.

Lemmg 1. Let X be a Banach space with X* strictly con-
vex. Let J be a duality mapping with a gauge function ©@
Suppose that T 1is a hemicontinuous mapping of an open set
M of X into X ., Let «, e M and 2, € X  be such ele-
ments of X that for each 4 € M  there is

(21) (T —w;, Juw=-4¢,)) 2 0.
Then W, = TA44, -

Proof: (The proof is similar to that of Lemma 1 [21). For
t >0, set sy= a4, + t (wp—-Ta,) (t is sufficiently
small). Replacing in (21) u by 4, ,we obtain according to
property ¢) of Remark 2 that ( T, - W, Jwy-Tu,N=>0,
tees (Teg - T+ T~y JCw- Tag, » 20
(T =Taty, J (g - T, ) 2 (w; - TU,, Jw, - T, H =

=luwp~Ta, Il e Ny ~ T, 1) .

By hemicontinuity of T the left-hand side goes to O as
t — 0 . The right~hand side is independent of t . Hence
w = Tiy, . QuE.D.

Thegrem 2. Let X be a Banach space with Property (37; e,
K a closed bounded convex subset of X , M > K an open
subset of X, A: K — X a completely continuous (resp.
strongly continuous) operator and B : M — X a contractive
(resp. nonexpansive) mapping.

Then T = A+ B is G-operator.

Proof: Condition (19) is clear. ,
a) Let A be completely continuous, B contractive mapping
and PTx = BAX. + B Bx, = X for all Fe A
For each X, i € M and Fe€ A there is
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(C1-PBIX= (1-R By, Jx-yN>(1-@Mx-g Nt (Ax-a4 1) .

Let be ye M arbitrary but fixed. Using & standard argu-
ment (see the proof of Proposition 1 [ 7] or Theorem IV.3 (&81)
we can prove that there exists the sequence {X,k 4 X,k € E ic
c {X ,F€ A} such that

Xp— X,y AX,—> ;P,”Ao(,;-—yu, E.” By — By -
For all natural number n and for each X € M we have

-P - (1~ - >
(22) ((CI ,:.”B).x (l %‘B)@, J(x-y))
>-g@MMx-gll (Mx-y ) .

Replacing in (22) x by x, , we obtain (F - £ )
«i-e B).X“- a-e B)ry,, J (Xp-yg)) 2 o .

Because (|- R B)x —u, (I-F By —(1-B)y and
J(%,-y)— J(x - ) we obtain(u- (I~ By, Jix,~4)=0
for each 4 € M .
Using Lemma 1 we have, that
(23) (1=-B)x, = « .
From (22) it follows that

0% mmf'l-g)ﬂ.xﬂ—‘xoﬂ ( NX,-x, 1) <

€ Lim (1= BY%, = (1P BIX,, Jlox=%, N = 0,

iee.y X, —> X, . Since A is continuous and (23) holds,

we have that ( |=B)X, = Ax, .

This completes the proof of a).

b) Let A be strongly continuous and B nonexpansive mapping.
The proof of this part is analogous to that of a).

By strongly continuity of A we have 44 = AX, and by (23)

we obtain (| - B)X, = AX, . Q.E.D.



IV. Fixed Point Theoremg _
The following two theorems are due to D.G, de Figu-

eirero [6],I[71,[8]:

Theorem 3: Let K be a closed bounded convex subset of
a Banach space X with Property (a7, ). Let T: K— X be
a G-operator defined in K . Assume that
(24) 6 9belongs to the interior of K A F , for all but
a finite number f F € A
(25) For all but a finite number of F € A  we have
R(Tx - AXx) =+ 8, forall A > 1 and all x € 9KN
A F (8K is boundary of K ).
Then T has a fixed point.

Theorem 4: Let K be a closed bounded convex subset of
a Banach space X with Property (). Let T: K-> X be a
G-operator defined in K . Assume that (24) is fulfilled and
(26) (T, Jx) € Jxll e (Nx 1), far all x € oK .

Then T has a fixed point in KX .

Applying Theorem 3 and 4 to our results (Section III)
we obtain immediately the following fixed=-point theorems.

Theorem 5: Let X ©be a Banach space with Property
(@ ¥ , X a closed bounded convex subset of X , M2 K
an open subset of X , A: K —= X @ completely continuous
(resp. strongly continuous) operator and B: M— X a con-
tractive (resp. nonexpansive) mapping. Set T= A+ B . Assu-
me that (24) and (25) (or (24) and (26)) are fulfilled.
Then T has a fixed point in K .

Lemma 2 ([3]): Let K be a closed convex bounded sub-

set of a Hilbert space H . Then there exists an operator

L: H— K such that
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27) Lx = x for each X € K

(28) HL‘X-L’I’/”‘ ”X—y;" for each.x’ly,e H.
Theorem 6: Let K be a closed bounded convex subset

of a Hilbert space H, A: K— H a completely con=

tinuous (resp. strongly continuous) operator and B: K— H
a contractive (resp. nonexpansive) mapping.

Set T = A+ B . Assume that (24) and (25)(or (24) and

(26)) are fulfilled with J = I ( I 4is identity opera-

tor).
Then T has a fixed point in K .

Progf: For x € H, set Bx = BLx .
rem 5 we have M = H and B is contractive (resp.

npnexpansive) mapping. Theorem 5 and Lemma 2 proved Theorem

Using Theo~

6o
Theorem 7: Let A , B and T have the same properties
as in Theorem 6. Assume that T (JK) c K . Suppose that

(24) holds.
Then T has a fixed poimt in K .

Another fixed-peint theorem for sum of operators has
been proved by W.V. Petryshyn [12]:

Theorem 8: Let H be a complex Hilbert space, F a he~-
micontinuous mapping from H to H such that
(29) I(Fx=Fy;x-m)l>plx-g %

holds for every x and 44 € H and some constant 2> 0.

Let S be a completely continuous mapping such that
( /3){Sx-FB} maps the ball B = {xX;xe€ H,Ixli<x?
into B,, Set T= |- F+ 5.

Then T has a fixed point in B, .
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Remerk 5 ¢ M, Altman [1] has proved the following

Theorem 9: Let H be a separable Hilbert space, F
weakly closed (i.e. if X, = X, F'-X,‘_ — then y =
= FX, ) and maps unit ball into bounded subset of H .
I1fr

(Fx,X )€ (X, X ) for each x with Ixll=1,

then F has a fixed point.

Tt was shown [11], that weakly commct and weakly clo-
sed mapping is weakly continuous. Hence the assumptions of

Altman’s Theorem say that F 1is weakly continuous.

V. Examples
Let H be a Hilbert space, K unit ball, T : K= K
such that T= A+ B .

The author investigated the question concerning the fi-
xed point of T , when A and B are from the class of map~-
pings which contains strongly continuous, completel y continu-
ous, weakly continuous, nonexpansive and contractive opers-
tors. From next examples it follows that T has fixed point
property only if A is completely continuous (resp. strongly
continuous) and B is contractive (resp. nonexpansive).

Exgmple 1 (see [5],[10]):

Let H be a separable Hilbert space,{ay, ;jm«0,¥1,%2,.}
be an orthonormsl basis for H and define the transformations

A and B as follows:

+o0 + 00
X =“__§:_ua.ﬂry.ﬂ » B =M2_'_’ Qp Yoy >

Ax= (1=lxMag, -
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Set T= A+ B . TKc K and T has no fixed point in
K « A is nonexpansive, completely continuous and B is
weakly continuous and nonexpansive.

Examle 2: Set Ax= 4 (1-1x1) 4, and B as
in Example 1. Then T = A+ B transforms K into K and
has no fixed point in K . A 1is completely continuous and
contractive and B 1is weakly continuous and nonexpansive.

Examk 3: Set A x= § (1-IxMDy, + 4 Bx
(B 4is from Example 1) and B, x = %BX .

This example shows that A, is contraction and B, is con-
traction and weakly continuous, T= A, + BH maps K in-

to K and has no fixed point in KX .
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