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Commentationes Mathematicae U n i v e r s i t a t i s Carolinae 

9,2 (1968) 

ON mMIGOmXWmX AND HEMOONTINUITX OF NONLINEAR INTEGRAL 

OPERATORS 

JIM DDRDIL, Praha 

! • Introduct ion. The notions demioontinuity and hemi-

cont inui ty of nonlinear operators have been introduced and 

l a r g e l y studied by F.E. Browder i n connection with the theo-* 

ry of monotone operators i n s e r i e s of h i s papers. Recently 

W.V. Petryshyn (c f .173) has discovered a two-nray connection 

between the range and demioontinuity of nonlinear operators 

and T. Kato [53 has shown that every hemicontinuous monoto

ne operator defined on an open subset of Banach space X 

t o i t s dual X* i s always demicontlnuous. 

The purpose of t h i s note i s to give some condit ions for 

demioontinuity and hemicontinuity of two main types of non

l inear operators i n the spaces of integrable func t ions . The 

f i r s t type (Urysohn's operators) i s studied in the s e c t i o n 

2 t while the second one, the operators of Nemyckij, i s i n v e s 

t i g a t e d i n the s e c t i o n 3 . These operators are d i scussed here 

without the assumption of monotonicity. 

F i r s t of a l l we introduce some notat ions and r e c a l l s o 

me known f a c t s . 

The symbol E^ (r * 1 , 2 , . . . ) denotes the Euclidean 

r~space# A funct ion f ? C x , 4 f 3 —y f ( x . - y . ) ., where x 

i s f ixed and y i s v a r i a b l e , i s denoted by f ( x t • ) • 
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Let G be a bounded measurable subset of E^ , g be a 

function of two variables defined on G x £1 . Let g.(*4t>) 

be a measurable function on G for every (fixed) AA, e £., , 

9-^i, • ) be a continuous function on Ê  for almost every 

(fixed) t e G . Then g is called the N-function on G x Ê  

(see £8J). 

Let G be a bounded closed subset of Ê  , K be a func

tion of three variables defined on G x Cx x E^ . Let 

K(# ,t?>u,) be a measurable function on G for almost every 

£ 6 G and every AM C £1 , K (4>} *, • ) be an N-f unction on 

& x E1 for almost every /& £ (r • Then K is called the 

UL-function on G- x G JK E1 (3 ee t2J)# 

Lemma 1 (see C6],§ 2 ) . Let g be an N-function on QrxE^ 

where G i s a bounded measurable subset of Ê  , l e t j^% a •& 4 . 

Suppose there exist an integer n fnumbers j? * ^ C*-* 4,-..,/n.).> 

.^ -> 0 and functions X e L ^ , C G ) C-t * "/,."> ^ > 
<*-«, 7!Г 

such that 0 -* <j£ < ft (i* ̂ ;**'? ̂  ) and 

|g,Ct,*c)l £ .£ i; Ct)|^l^+ -fr-l-aJ* 

for almost every t £ G and every AA, e £,, . Then the o-

perator of Nemyckij generated by the function g is a conti

nuous bounded mapping from the space L ^ (&) into L- CG) . 

Lemma 2. (see [1] ,th.39(9.2)). Let K be a UL-function 

on & x Qr x £t , where G is a bounded closed subset of 

1^ tlet P be the operator of Urysohn generated by the func

tion K , let -fz, q^ ̂  1 . Suppose there exist an integer n, 

- 206 



numbers A^ € < 0, -f* ) C -t< -* 4,*"> >n, ) and functions 

M € L^ C&) M. Ci-H,"*,**) on G * & such that 

[ / | M i ( * , t ) ^ * e t i . r ^ r * « t-̂ Cfr) Ci=1,.:,™-> 
Cv 

and ,««> ,jt • >* 

I K U , t , ^ ) l ^ M^C^i)/^! % M#C*)U*I 

for almost every /t>, t € (J and every .-x 6 £1 , Then F 

i s a continuous bounded mapping from L^CG-) into L-C60 • 

2. Operators of Urvsohn* Throughout this section we as

sume that G i s a bounded closed subset of Ê  , K i s a VL-

function on G x & *- E i and that F i s the operator 

of Urysohn generated by this function K • Furthermore, we 

assume that p, q are arbitrary real numbers without any rela

tion among them, j%> > 1 , % ^ 1 . We denote %'& ^ > • 

for g, > 4 j in the case %* 1, we mean by q' the symbol 

oo . 

£iieo^ffil> Let D c L^, C£ ) , suppose there exist 

an integer n^ , numbers A£ e <Of ft,) C-i ** 1,...tm^) md 

functions Mf € LCG-), M? on G- ~ & (i * 4f...7m^) 

for. every cp € .D &uch that eitJier 

_ f » _ - » - ^ - : ; 

(1) C / l M ? C . , t ) ^ r f i ) * e U W t t - V A ^ 

0Г 

(2) / M f C*,-)cí* € L^ C6) Cг- V . . , ^ ) 
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and 

for almost every x>, t € (r and every u e E^ 0 Then the 

following assertions are valid: 

(a) If V » L£, CG ) 9 then F is a demicontinuous 

operation from L ^ C G ) into L»CG) • 

(b) Let the linear hull of D be dense in L^CG-) > let 
x « € *-1* ̂ "̂̂  • Assume there exist a constant C and a 

neighbourhood U of the point xo in the space L^ CO-) 

such that 

(3) f\fKU,t,xO;))<Lt\*'d+ ** C 

whenever X e (1 , Then P maps U into L CG) and 

is demicontinuous at the point x0 • 

Proof Let cp be an arbitrary element of D ; we shall 

prove that 

(4) < F*^,9>> -* < F ^ , y > 

whenever X^ —» X0 in L^CGO, If jD» L£, CO) (the 

case (a) of Theorem), then (4) gives demicontinuity of F 

at x0 and the proof i s f inished. Assuming (b),according 

to well-known theorem C4;chapt.VIII,§ 2] and ( 3 ) f U ) f i t f o l 

lows that the r e l a t ion (4) holds for every cp e L. CG) and 

hence the demicontinuity of F at x0 wil l be proved, too . 

1. Suppose the condition (1) i s fu l f i l l ed ; we sha l l 

prove (4) . Set 
R xC*) m fKC/S>,t,jxCt))cpC/b>cit C* € G) 

V 6 
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tap x e L^(G-), cp 6 J> . According to ta-ma 2, Hg, ia« 

continuous mapping from L-, C&) into LC6-) , i . e . 

Furthermore, 

2:\ftfK(A>ftfx^Ci))dt^U)-fK(^t^Ct))dig>C4>)3d^l ** 

& 6 fr 

- r l / F ^ C ^ J c f C ^ d ^ - fFxmCA)<fC*)cl*i « 

- K P * * , * > - < F ^ ^ > I 

and hence 

< Fx*,9>~> <F*.f ?> 

for every <g € V whenever x<n, ~~+ **« l n --fa. C(5"> • 

I I . Conaider the condition (2), l e t JC € L (GO, cf £ J). 

The integral / / / M* C^i) \ *(t) 1**1 dt d* exiata 

and ao 

ffiMlc*tt)l*Ct)i**idtd* 6 
4V 6 

?-"-£ 

& 6 * 

for Í » 1 , M I , n by Theorema of Fubini and Holder;aimi-

larly 

//i*Čc*)\xCt)f\d*d* * C/M?C*)ld*h (flx(t)ťdt ) 4i oo 
& $ Gr 6 

Hence, 
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fflKU,t,xCt))cf>U>)\dtd* £ 

*Hffm?C*ft)\xCt)\ *\dtd^^ffm%)lxCt)\fpidtd^< co 

which implies 

(5) \ffKU>i,xCt))cfU)dtd4>\ < co . 
<r a 

Put 
H ? C t , ^ ) * fKC*>,t,u,)qC*)d*, 

N** fM*C*)d*, N*Ct)mfM*C+,t)d* t+*1f~>'n*'> ' 
• «: • * & 

Then according to Holder's inequality 
*V a* f* 

iKLCt.At,)! * . Z N/ f t )UI V N / l ^ l 
5r ' v * «f * 

for almost every t € Cr and every <LC e Li and according 

to (2) 

N*€ £,,, Nf« L ^ Cft) C<t- * , - . . , ^ ) , 
*-A? 

simultaneously* Lemma 1 implies that the operator of Nemyckij 

Ry generated by the function H^ is a continuous mapping 

from L^CG) into LJCG-) . Hence IR^-,- R^^^-^0 

whenever IIX^- *• ̂ L^-"* 0* Xm,>x, 6 L^CG) and so 

fc^iX^)Ct)cLt -+ fc%xo)(t)dt . 

In view of (5) , using Theorem of Fubini,we obtain 

/ O ^ x H t M i - fCfKU9t,xCt))<fU)d4>)dt -
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vfcfK(s9t,^Ct))cpC4>)dt)dA>*fcfKC^tpl><Ct))di)cfC^)di> m 
fir 0 & Or 

--* /c^x)C^)cfCs)d^ <* < Rx, cf > 

for * 6 L.̂  CG-) . Hence 

<- FXn*> ~* <Fx0,9> 

for every g» € J> whenever -K̂ , —+ «x0 in L-^ C<-f), 

The formula (4) la proved and the whole proof la concluded* 

The assumptions of Theorem 1 can be made more easi ly ve

ri f iab l e by a definite choice of the set D • In thia way, 

we can obtain a series of further theorems* Theorem 2 i s one 

of such theorems; i t la presented in the local form* 

Theorem 2, Let x0 be an element of L^CCr) , Suppoae 

there exist a constant C and a neighbourhood U of the 

point x0 in L^CCr) such that 

(6) f\fKC*,t,*Ct»dtl*>d* * C 
Gr Of 

for a l l «X € 11 . Let there exist an integer n , numbers 

X. e < 0t sps) Ci, 9 /l9...P'n ) and functiona M* e LCG)? 

M± on O- x <x C-i a 'f.,,,.,'^) such that either 

( / jM^. C*, i ) | n ~ * * <** ) " ^ ^ e LCfr) C^-*,"->'n ' ' 

and that 

I KC6,t,^)l * J £ M4 ^ i ) U l ^ + M0C*)l<«,lp' 

for almost every <*•> t € G and every At € E^ , Then F 

is an operation from U into I— C(r) demicontinuous at 

the point at * 
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Proof. Let f G^ : oC c A ? be a measurable disjoint 

subdivision of the set G , ^ be the characteristic func

tion of Q^ Coc € A) . Denote by M the linear hull of 

the set { C j j / a c e A j , i « e . M i s the set of a l l simple-

functions on G . If we put N̂ « {* € ly, CG) : \x (t)\ * A, 

for t € (J I ( k i s natural number), then M i s dense in 

M^ for every k under the topology of equiconvergence Ccf. 

3 fth.39j and hence, U i s dense in every ||^ even under 

the topology which i s generated on 11^ by topology of the 

space L , CG) . Hence M is dense in „LJ MA % the set 

00 

j^i ^«v i s d<*nse in L^, CG) and ao Iff i s den3e in 

L CG) . 

v 
For every co e A 0 

| KC^>pt1M,)cfaC (*>>...= | < C** ,t ,^)l 

for almost every /t>7 t € G and a l l AA, e Ê  . Setting D » 

M c ^ c ' ^ e A? and o^mm,, M f - M , , M * . M. ft:* 4,. . , , /*,) , 

^ » a. C*'-*/f,.#-,'n,) for a l l Cf e T) 9 the assertion of our 

theorem follows at once from (b) of Theorem 1* 

Remark 1> Urysohn's operator F satisfying the condi

tions of Theorem 2 maps L^ CG) into L^ CG) and i t i s 

continuous at the point x0 «Hence this Theorem does not 

any new results when q =» 1. 

Remark 2 . The assertion in Remark 1 i s consequence of 

the special choice of the set B (the part (b) of Theorem 

l ) . Under another choice of D , any similar assertion has 

not to be valid and so we can obtain more general theorem 

than Theorem 2; for example, i f G * <a,7 £y >} a,, tr € E1 , 
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then we can set D « {4, *9 /S , * , . . . ? (for /b e <<&., -0*> )• 

Remark 3 . Let H be an open subset of L^ C<x). Let 

there exist a constart C such that the formula (6) holds 

for a l l X 6 H and letv^ther assumptions of Theorem 2 be 

fu l f i l l ed . Then P i s a demicontinuous operation from H 

into L-^CG"^ * 

Theorem j . Let Xc e L^CO). Assume P maps a neigh

bourhood U of the point x0 in L^ CG) onto m set 

M c. L^CO) ; le t B e L ^ CG- ) . Suppose there exist 

a number °C .*, > 0 a»d a function N ^ ^ on Cr x C5-

for every cp e J> , -*v e L^CG-) with I 4t, 11̂  - 4 

such that 

(7) / ' W < - > * ) « i t € LC<W 

and 

(8) i K(^>,tfX0(t)ir^^(t))cp(^>\^tyA(^t) 

for almost every A>7 t 6 G and every v 6 C 0̂  °^?^ ) • 

Furthermore, assume one of the following two conditions is 

fulfilled: 

(a) P - L CCr) . 

(b) The linear hull of D is dense in L CCj) and 

M is bounded in L CG) . Then P i s an operation from U 

into L C G) hemicontinuous at the point x0 -

Proof* Let cy <s J) and to> e L^CG), \\h,\\L = 1 f be 

arbitrary elements. Continuity of the function K (<*7t, • ) 

on G for almost every &f t e G implies 
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(9) KU,t,xoCt>+vJfaCt))y>CA>)^KU,t,X0Ct))<fCA>) 

for almost every &9 t € G whenever tf -~*> 0 . According 

to Theorem on continuous dependence of integral by parame

ter, the formulas (7),(8),(9) imply 

(10) / / C C ^ t , X / t ^ r A C i ) ) y C ^ > ^ ^ / K C ^ , t ^ C i ) ) ^ ^ ) ^ 

for almost every t € <J whenever r - > 0 , Furthermore» 

(7) and (8) give 
/\KC^,t9x0Ct)^^JhCt))^C+)\dt^/\KC^i)dt 

for a l l f € CO, <C ^ ) * using the last inequality and the 

relations (7 ) f (9 ) , we have that 
fcfK(*>ft,X0C*) + tfJhC't))<?(*)d<b)dt -+ 

~* / C / K C*,t, X0Cir))cf C*)d*)dt 
e & 

j£ tf ~jf 0 m As in the part II of the proof of Theorem 1, we 

can prove now (according to the theorem of Fubini) that 

fC/KCA,t,xCt))<?MdA)dt* <?*,<?> Cxe L^CCr), ope J> ) 
Or Or 

and hence 
<FCx<, + <vJh,),y> - * < £r<X,,<2> 

for f --> 09 <f m J> . Under each of the conditions (a) and 

(b) of Theorem, th is relation means hemic on tinuity of P at 

the point x0 . 

In the same way as we have derived Theorem 2 from 

Theorem 1, we can obtain the next theorem from Theorem 3 now. 

Theorem A. Let x0 be an element of L^CCr). Suppose 

there exist a neighbourhood U of the point x0 in L^CG-) 
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and a constant C such that 
f\ fKC*,t,xCt))dt\%d* * C 

for a i l * c U . Let there exist a number c£ > 0 and m 

function N^ on <J X G for every M, e L^ CO-) with 

JOi/ll^ * 1 such that 

/ N (- , t>c*t' € LC<x> 

and 
I K ( ^ 7 t , ^ C t ) 4 ' r ^ C t > l 6 Nj^C^t) 

for almost every /t>, t e (£ and every 'T eC09cfc ) . Then P 

is an operation from U into L CG-> hemicontinuous at the 

point x0 . 

Theorem 5# Let H be an open subset of L^CG-) } suppo-* 

se there i s a constant C such that 
f \fKC*7t,xCt))di\zd4> * C 

Gr* O 

for a l l * e H • Let there be such a number cQ ̂  > 0 and a 

function N ^ ^ on <r x. Cf for every -x e H and 

A 6 L^CG), HJil\L*<1 , that 

/ .> / N ^ O, t>c*t € L CGУ 

and that 
IK(*-t , .x Ct) + r A C t » ! * N ^ 6 * , t ) 

for almost every /t>, t e G and every f e CO, o£ ^ ) . Then 

P i s a hemicontinuous operation from H into L^ C<5-> # 

Proo^« It i s evident the operator P satisfying the con

ditions of th i s theorem f u l f i l s the conditions of Theorem 4 for 

each point *xo e H - Hence P i s hemicontinuous at a l l points 

of H . 
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3* Operators of Neavcki.i> We turn our a t tent ion to de-

micontinuity and hemicontinuity of operators of Nemyckij now. 

In the following a l l theorems, we shal l assume that G i s a 

bounded measurable subset of E^ , g i s an N-function on 

(r x E 1 and that h i s the operator of Nemyckij genera

ted by th i s function g • The assumptions concerning p, q 

and q are the same as formerly. 

Theorem 6„ Let xc € L^CCr) , l e t D be a subset of 

L , CGr) the l inear hull of which is dense in L , C<x) . 

Suppose there are an integer n^ , numbers ^ € < 07 ih ) 

( . i s 1 .., <n) a constant M;f and functions M?€ L^ CO-) 
7 w ° % £-5f 

(•!« "J,,..,1V ) for every cf e V such that 

J^Ct , AA,)cfCt)\ ^ ^ M f C i ) | ^ | A % M f l ^ r 

for almost every t e <x and every 4t e £ » If there exist 

a constant C and a neighbourhood U of the point x0 in 

L.. CGr) such that 

/l^Ci, * Cf >; I di & C 

whenever »x € 1.1 , then h is an operation from U into 

L~ CGr) demicontinuous at the point x0 . 

Proof * Let cp be an arbi t rary element of D* Set 

Jh^Ct^AA.) - 9 , C t , ^ > q p C t ; 5 

k i s also N-function on <x x £ 7 and so i t i s possible t o 

introduce the operator of Nemyckij generated by the function 

k - denote i t by R ,̂ • According to Lemma 1, i t follows 

from the assumptions of our theorem tha t R^ i s a continuous 
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operation from L^ (&) into L CCr) 9 i . e . 

/ I C R - x ^ K t ) - CRx0)(t)\di -» 0 

whenever » ^ ~ *<, «Lfv-> 0 , x^, * 0 e L^ CG) , g?hls relar-

t ion i s equivalent to 

/Hx (t)Ut -V fHx0(t)cf(t)Ut . 
& *** Or » 

We have proved that < £"•**.> 9> > —*• < F*x̂  •> V > for eve

ry cy e D whenever l\ x^ - -*., (u —* 0 . but the linear 

hull of D is dense in L,, CG-) II F# B ^ C f or x e U 

and so F i s demicontinuous at the point x 0 £ cf. 4,chapt. 

VIII,§ 2 ] . The proof is complete. 

Theorem 7. Let x0 be an element of L^(Cr) , Let the

re exist a constant C and a neighbourhood U of the point 

xp in L^ (G ) such that 

( U ) f\fy(i,x(t))\*'cLt * C 
Gr 

for a l l X e IX . Assume there are an integer n , numbers 

%. e < 0? fi, ) C-t sr f̂? ..„, >n, ) ? a constant M0 and functions 

I t 6 L f» -C g^ («i ~ "/ , . . . , n̂, ) such that 

la,Ct,<ct)l 6 .£ . M.ttX-ctl V M0 U*!* 

for almost every t e (J and every ^ e £ •- Then h i s an 

operation from U into L (Gr) demicontinuous at the 

point x0 » 

Hemark 4. The operator h satisfying the conditions 

of Theorem 7 i s a continuous mapping from tf into L (&) 

(see Remarks 1,2) . 
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Remark 5. Suppose the assumptions of Theorem 7 are fu l 

f i l l e d , l e t H be an open subset of L^ C(r) . If there Is 

a constant C such that the inequality ( l l ) holds for a l l 

X e H ? then h is a de mi continuous operation from H in

to the space L~ C(r) • 

Theorem 8. Let X0 € L^CCr), B e L%, CCr) , l e t the l i 

near hull of the set B be dense in the space L CCr) . Sup

pose h maps certain neighbourhood U of the point x0 in 

L^CCr) onto a set M which i s bounded in L^CCr). Let the

re exist a number aT c > 0 and a function N& e
 € L C6-) 

for every Cf e D and f e L^ CQ-) with I f Hu » A such 

that 

(12) t«j.Ct,X0Ct) + '*SCt))cpCt)l * Ny>f Ct) 

for almost every t e G- and every f € ( O - ^ c ) • Then h 

i s an operation from U into L ,̂ CQ-) which is hemiconti-

nuous at the point x 0 . 

iroof. Let <$ e J>, f e L^CCr), l| f llL » 4 # i t f o l -

lows from continuity of the function c^Ct? * ) on E1 that 

^ C t , * 0 c t ) + t r f CtJ) —y g . C t ^ c t ) ) 

for almost every t e & whenever f -~* 0 . Prom (12) and 

according to Theorem on continuous dependence of integral by 

parameter, we have that 
/ f t ,C# , * . ' *$ • )Ct)-«3rCt)rft ~+ /Jh,XpCt)-CfCt)cLi 

Qr t> 

for 'TT ~-* 0 . This relation means that 

<Jh,C«x<,4.'* f ) f<-p>—• < ^ X ^ , 9 ? > 

whenever r ~* 0 for all f e L^CG-) with II f H, * A 

and for every Cf e T> . Since the linear hull of D is dense 
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in \~„,CQr) and M is bounded, the mapping h is he mi-

continuous at the point x0 • 

The following two theorems are implied by the preceding 

theorem and we present them without the proofs (compare Theo

rems 4,5)« 

Theorem ?« Let -X0 e L^CC?) } suppose there are such m 

constant C and a neighbourhood U of the point x0 in 

L ^ C<y) such that 

f\<j,Ct, xCt))\%dt * C 

for a l l *x e U. . Let there exist a number oC > 0 and a 

function Nj e L C(r) for every f € L^ C<r) with 

II f llu * 1 such that 

l^Cf,**Ct>«**v | C t ) ) I £ Nf Ci) 

for almost every f 6 G- and every tr e CO, cC ) • Then h 

is an operation from U into L^CG-) hemicontinuous at 

the point xo . 

Theorem 10, Let H be an open set in the space L ^ C O ) , 

suppose h maps H onto a bounded subset of L^CCr). Let 

there exist a number o£* > 0 and a function N^f 6 LCG-) 

for every x € H and f 6 L ^ C<r> with II f H|. * 4 

such that 

lg^Ct, <*Ct>*'Vf Ct» i * N^ f Ct) 

for almost every t € G and all T 6 CO,^- ), Then h ia 

a hemicontinuous operation from the set H into the space 
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