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SOME FIXED POINT THEOREMS
Josef DANES, Praha

§ 1. Introduction. There is a number of interesting fi-
xed point theorems for multivalued mappings with applications
in functional analysis and the theory of games (see [1] =[3]).
The Glicksberg generalization [2] of the Kakutani theorem [3]
on fixed points is as follows:

Theoren (Glicksberg). Let X be a locally convex linear
topological space and C a compact convex subset of X .
Then every closed multivalued mepping f: C— 20 (X)
has a fixed point in C (i.e.x €f(X) for some x& C ),
(For the notations and definitions see § 2.)

Recently SadovskiJ [4] has proved the following

Theorem (Sadovskij). Every concentrative self-mapping. of
a convex closed bounded subset in a Banach space has at least
one fixed point.

Recall that the sum of a contraction and a completely
continuous mepping is concentrative.

This paper deals with some generalizations of the Glicks-
berg s and Sadovskij’s theorems (see § 4). The method of § 4
is derived from the Sadovskij'. proof of his theorem. This
method can be formulated for multivalued mappings between

sets (without topologies). We use a slight modification of
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& result of Michael [5]. Let us note that not all locally
convex spaces8 are paracompact. 1)

In § 5 we mention a fixed point theorem for onevalued
weakly continuous mappings in wveakly compact (non-convex)
subsets of a Banach space and a proposition generalizing
Problem 1 [ 7,p.262 ]«

§ 2. Notations apd definjtions. Let R , resp. € de=

note the fielid of real, resp. complex numbers.Let X be a
linear space (over R or € ) and M c X . Then co M
and sp M denote the convex and linear hull of M into X,
resp. If X 1is a linear topological space and M c X , then
COM and 8p M denote the closed convex and closed linear
hull of M in X , resps

Far every set C put 2°«{Meexp C:M =% F3 ( = the
system of all nonempty subsets of C ). Under a multivalued
mapping of a set C into another set D we mean a mapping
$: C— 2° .

Let X and Y be topological (Hausdorff) spaces and
#: X — 2”7 a oultivalued mapping of X into Y .Then
£ 1s called:

(1) Lower semi-coptipuous (l.s.c.) if the set {x e X :
fX)NY = 03 is open in X for every open set V
in Y. .

(2) Upper sepi-continuous (u.s.c.) if the set { x € X :
f£(xX) ¢ V} 1is open in X for every open set V in Y,

- e - e oo

1) Ccf.Stone A.H.,Paracompactness and product' spaces,Bull,
Amer.Math.Soc.54,1948,977-982,
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(3) Gloged if the graph Ga(f)={(x,y):xeX,y ef(x)f
of £ is closed in X =< 7 .
For Y a linear topological space denote:
YW(Y)={Ce2”: C convex §
F(y)=fCe2”: ¢ convex closed ? ,
C(Y)={C€2”;: ¢ convex compact 3 .
Let (M,d ) ©be a pseudometric space. Then a mapping f:
M —M is called a gopntractiop if there exists a constant
« €€0,1) such that

d(f(x), #y)) & xd(X,4) for any x, g€ M.

.

If C ¢ M, then we define

@(C)={€€R: £>0 and there is a finite € -net
for C}.
The number % (€)= onf G (C) (nff = + co ) 1is called the
measure of non-compactness of C . If (M,,d, ) is another
pseudometric space, then a mapping + : M — M, is cal~
led goncentrative if £ 1is continuous and for any bounded

non~-precompact subset C of K

21 (£(C) < A(CC) ( y, 4is the measure of non-
compactness in (M,, d,)) .

Let X be a locally convex linear topological space
and P a defining system of pseudonorms for X (i.e.
{p°7(<0,eM: neP, € €(0,1)3 is a base for neigbor-
hoods of o in X ).

Then a multivalued mapping f of a subset C of X
into X 4s said to satisfy the gondition (C) if for any boun-
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ded subset M of C and for every 42 € P such that M
is non - p = precompact there is
;Tm ¢+ (M) < An M) .

( x,., is the measure- of non-compactness of the pseudonor-
med space ( X, 12) ). If f 4s, in addition, one-valu-
ed and continuous, then it is called gongentrative ( P =-con-
centrative),

If X and Y are topological spaces and f: X — 2y
a multivalued mapping of X into ¥ then a continuous map~-
ping ¢o: X —> Y 1is called a gcontinuous gelectiop of f
if ¢(x)e f(X) for each x € X , If Y is a linear
topological space then £ is sald to have the glmost conti-
nuous gelection property if for every neighborhood V of o
in Y there exists a continuous mapping ¢, X = ¥ such
that ¢, (x) € (F(x) + V) Neo f£(X) for any X € X .

§ 3. Remerks. Let X, Y be topological spaces and
$:X— 2”7, The multivalued mapping £ is l.s.c if and
only if for each convergent net % — X in X and any
4 € £(x) there are o, € f(X,) such that 4 —> 14 in
Y . The mapping £ need not be closed (for example, let X=
=€0,1>, Y= X=X, £(x)=4(X,Y): 4 €<0,1>} for x €<0,1)
and £+ (M =903% ), If f is closed, then f(x) is closed
for any x € X , If Y is regular and f is u.s.c. and
£(x) 4is closed in Y for any X € X then £ 1is closed.
If £ 1is closed and f£(X) is relatively compact in Y
(1,e. £(X) is compact in Y ) then £ is u.s.c.



The following Proposition 1 is a slight modification of
Michael” 8 result [5].

Proposition l. If X 1is a paracompact space, ¥ a linear
topological space, £: X — X (¥Y) a l.8.¢. multivalued
mapping of X into Y , V a convex neighborhood of o in
Y , then there exists a continuous mapping ¢, : X — ¥ such
that ¢, (X) € (£(Xx)+ V) N eo £(X) for each x € X .

Therefore if Y is locally convex, then f has the al-
most continuous selection property.

Suppose (M, d) 1is a pseudometric space and J its .
measure of non-compactness, it is easy to prove the following
assertions:

(1) CcM 1s bounded iff X (C) < + 0,

(11) C e M i precompact (i.e. totally bounded) iff
20C)= 0.

Let (X, nn) be a pseudonormed space and 2 its mea-
sure of non-compactness. Then X (& C)= y (C) for every
subset C of X,

If £ and g are two multivalued mappings from some
subsets of a locally convex space X into X which satisfy
the condition (C) (with respect to a same defining system P
of pseudonorms for X ), then its composition £ o g also
satisfies the condition (C). Every precompact 2) multivalued
mapping in X satisfies the condition (C).

2) i.e. it maps bounded sets into precompact sets.
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§ 4. Theorem 1. Let X be a locally convex (Hausdorff)
linear topological space (over R or € ) amd C a non-
empty convex closed subset of X , Further, let f be a mul-
tivalued mapping of C into itself such that the following
conditions are satisfied:

(i) there exists a non-empty subset K of C such that
@ FCKYD K3

(i1) if Q is a convex closed subset of C such that
D) = then (L is compact;

(1ii) £ admite a continuous selection on any convex
compact subset of C .,
Then f has a fixed point in C , i.e. there is a point X €
e C such that x,.€ £(x,) .

Proof. Let
€={AcC: N=0LnN, Kec L, #(Q)c N3 .

This system @ has the following property:

(P) Ne€C=BF(N)EGC .
Indeed, let 2 € G  and N =8 £C0L) . Certain-
ly, 2, = c'5..Q_’ . By (1) we have K c é f(K) <

c @ f(L)= L1, . Since .Q1= GflL)ye N, we have
f(n,)c M, . Thus (P) is proved.

Let (, =NG . Then # #C € & since KcC, =
=c°50° and F(C)=F(NE)c N +$(G)c NG = ¢, . But
(P) implies & ¥ (C,) € G . Therefore (, = & f((C).

From (ii) it follows that C, 1s compact. Hence by (iii)
£ admits a continuous selection @ on C, . Then ¢ 1is a
continuous self-mapping of the compact convex subset C, of

locally convex space X , and by Tychonoff Fixed-Point Theo=-
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rem there exists a fixed point x, € C c C of ¢ ,
leee X, = ¢(X,). Hence X, = ¢p(Xx,)€ f(x,). This comple-
tes the proof. QeE.De

Repark. It is evident that the condition (i) in Theorem
1 is equivalent to the following (formally stronger) condi-
tion:

(1°) there exists a non-empty convex closed subset K
of C such that @ f(K)> K .

From the proof of Theorem 1 it is clear that the set K im
the condition (i) 1s relatively compact.

Lemma 1. Let X be a locally convex (Hausdorff) space
snd C a compact convex subaset of X . Then each closed ml-
tivalued mapping of C into itself which has the almost con-
tinuous selection property has a fixed point in C .

Proof. Let £ : C — 2°  be closed with the almost
continuous selection property. Then for any convex symmetric
neighborhood ¥ of o in X there exists a continuous map—-
ping ¢, : C — C such that ¢, (x) e #(x)+ V for
sby Xx € C . By Tychonoff Fixed Point Theorem g, has a

fixed point X, € C . Them x, € f(x,)+ V . Since

C is compact, the met {x, ¢ has a convergent subnet
i%y3.Let be x, — X, . The closedmess of f implies that
X, € #(x,). Indeed, since X, € £(X, )+ W  there are
Y, € f(xw) such that X, — 4, € W. Since X, —> X, ,
there 18 7, —» X, ., From the closedness of f we have

X, € ¥(x ), The lemma is proved. Q.E.D,
Theorem 2, Let C be a convex closed subset of a locally convex
(Hausdorff) space X (over R or C). Let £: C—» 26N (X) be 2

closed multivalued self-mapping of C which satisfies the condi -
tions (1) and (ii) of Theorem 1. Then ¢ has a fixed point in (,
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Praof - Let C, be as in the proof of Theorem l.
Since C, is compact convex and f, = £1C, 1s a clesed
vaelf-mapping of C, and all the sets £, (x) are convex
the Glickaberg'l Theorem can be applied. Hence there exists
a point X, € C, such that X, € £,(x,) =€ (X,). The
proof is complete. Q.E.D.

Remarke If the mapping f 1in Theorem 2 is in addition
l.s.c. with almost cont inuous selection property then the
Theorem 2 can be proved from the Lemma 1l.

It is clear that the mapping f in Theorem 2 is from C
to 2°N F(X) , in fact. Also £: C,— 25 0 € (X)
(since C, is compact).

Lempg 2. Let C be a convex closed subset of a linear

?

topological space X . Let f be a multivalued mapping of C
into itself. If there exists a point x, € C such that

X, €& Ur, ™ (X,) , them f satisfies the condition
(1) of Theorem 1.

?

Proof.Let K= UL ™ x, . Then #(K) u{X,3=K.
Since x, € € #(K) , there 18 K c & £(K). Q.E.D,
Lepms 3. Let C be a convex complete bounded subset of

& locally convex space X and f a multivalued self-mapping
of C which satisfies the condition (C). Then f satisfies
the condition (1i) of Theorem 1.

Proof. Let L < C be a set such that N = & £().
Then £l 1e bounded, and %, (F(ON=7, (BFf(QLN= 7, (1)
for each 42 € P ( P 1a a defining system of pseudonorms
for X with respect to which f satisfies the condition (C)).
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Hence {)l is precompact. Since C is complete (and 2
closed), the set {1 4s compact. Q.EJD.

Proposition 2. Let X be a locally convex linear to=-
pological (Hausdorff) space and C a complete bounded con-
vex subset of X ., If f is a lmultivalued precompact closed
self-mapping of C with the almost continuous selection pro-
perty on any compact convex subset of C , then it has a fi-
xed point in C .

Proof. From the precompactness of £ and the complete~-
ness and boundedness of C it follows that the convex set .
C,= & £(C) 1is compact. Since f, = f1C : C, —> 2%

0
satisfies the conditions of Lemma 1 the proposition follows.
Q.E.D.

Remerk. The mapping f in Prop. 2 is compact (i.e. it
maps bounded sets into relatively compact sets),in fact. .l=-
8o the mapping f in Prop.2 has the almost continuous sclec~-
tion property on any compact subset of C iff it has this
property on any compact convex subset of C .

Propogition 3. Let X be a locally convex linear topo~-
logical space and C a complete bounded convex subset of X .
I +: ¢ — 2.c is a precompact multivalued mapping which
has a continuous selection on any compact (convex) subset of
C +then it has a fixed point in C ,

Proof. et C, = é £(C), Then C, is compact,
£(C)c C, and £ has a continuous selection ¢ on GC,.
From the Tychonoff Fixed Point Theorem it follows the exis~-
tence of a fixed point'for P . This fixed point is a fixed
point of f , too. Q.E.De
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Froposjtiop 4. Let X be & locally convex linear topo-
logical (Hausdorff) space and C a convex closed subset of
X . Let £ be a closed multivalued mapping from C to
2c n¥xx) such that f (C) is relatively compact.
Then f has a fixed point in C .,

Progf. Let C, = ¢ f(C) and apply the Glicks-

berg Theorem to C, . Q.E.D,

Theorem 3. Let X be a locally convex linear topologi-
cal space and C a convex complete bounded subset of X such
that any precompact countably subset of C 1is relatively se-~
quentially compact. Then any concentrative self-mapping f
of C has a fixed point in C .

Proof. Let x € C and K = the set of all (sequential=-
ly) limit points of the sequence {+™(X): m =1,2,...% -
Since F({fMxX):m=1,2,..3) ULF(X)}=4+x): 7 =1,2,---F,
there 18 %, ({#™(Xx):m =1,2,...3)=0 for allpe P
( P is a defining system of pseudonorms for X with respect
to which f 1is concentrative). Hence this sequence is precom=
pacte Then K = & owing to the relative sequentially com-
pactness of the sequence. We shall show that +(K)= K .It
is clear that $(K)Yc K . Let 2 € K . Then
z = Jtom £ (X)) .

Since { 2™y ;o de = 1,2,...% ia relatively
sequentially compact, there is its convergent subsequence
‘Fm"_‘ (x) — oy e C ., It follows from the continuity of f
that X = f(2y), Therefore +(K)= K and the set K sa-
tisfies the condition (i) of the Theorem 1.

From Lemma 3 it follows that f satisfies the condi-

tion (ii) of Theorem 1l.
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The condition (iii) of Theorem 1 is satisfied trivially.

Hence we can apply Theorem 1. It follows that f has a
fixed point in C . Q.E.D.

§ 5. Theorem 4. Let X be a normed linear space, C a
weakly compact subset of X and f a self-mapping of C
such that
(K) 18 (x)-fyp)llc H x-ny |f for allx,ye(,x+y-

Suppose that one from the following two conditions is
satisfied:

(1) £ is weakly continuous (resp. sequentially weakly
continuous) on C ;

(2) the set C and the functional Hx -4 (X )l are
convex,

Then f has a unique fixed point in C .
Proof. Let g (x) = W x = $Cx) |l for x € C.
Let be satisfied the condition (1). Since i |l is
weakly lower-semicontinuous, (I -~ #) is weakly continuous
and ¢ = /-l . (I-#f) the functional ¢ is weakly
lower~semicontinuous,

Let be satisfied the condition (2). From the convexity
and continuity (cf. the condition (2)) of the functional
Y(X)= Ix— fCx)I it follows the weak lower-semi=-
continuity of & .

Also in each case ¢ is weakly lower-semicontinuous on

the weakly compact set C . Therefore there exists a point



X, € C such that ¢(x,) =min{p(x):x € C3 . From
the condition (K) it follows that
@ (X )= 0, ie. Xo=+(x,) .

(If in the case (1) the mapping f is sequentially
weakly continuous only it suffices to note that any weakly
compact subset of a normed space is sequentially weakly com=-
pact.) QeEeDs

Propogjtion 5. Let X be a compact topological space
and d a non-negstive lower=-semicontinuous function on X

> X such that d(Xx,4)=0 iff X=2 forx,y€ X.

Let be #: X — X continuous and such that
() ad (Fix), fly)) < d(x,n) for x,4 € X,
X =+ ’y-'

Then the mapping f has exactly one fixed point in X ,
Progf. Let be < (X) = d(X,Ff(x)) for allx € X.

Then the function ¢  is lower-semicontinuous on the compact

space X . Hence there is a point X, € X such that

@(x,) = min {¢gp(x): x€ X3 -
From (K) it follows that ¢p ()= 0 , d.e. X, = f(X,)
QeE.D.
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