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ON THE CONTINUITY AND DIFFERENTIABILITY PROPERTIES OF CONVEX
FUNCTIONALS

Josef DANES, Josef KOLOMY, Praha

Introduction. This paper is a continuation of our inves-
tigations [1,2] concerning the continuity and differentiabi-
lity properties of nonlinear functionals (in particular con-
vex functionals).

Section 2 concerns with the continuity and boundedness
property of such functionals, while § 3 is devoted to the dif-
ferentiability of convex functionals. Among others there is
shown that a convex functional f defined on a linear normed
space X possesses the Fréchet derivative frx,) at x, « X
if and only if f is smooth and continuous at x, . The case
of continuous Fréchet derivative is also considered.

+ Theorems 2,3,5,6 contain some answers to an open ques-
tion C) by M.Z. Nashed [3, p.75] concerning tha Giteaux and
Fréchet differentiability of canvex functionals. Some atten-
tion is also paid to study of critical points and the exis-
tence of the GAteaux derivative of directionally smooth func-
tionals. This paper concludes with some important examples
of convex functionals and their properties. For the recent

results in these topics see the bibliography cited in [1.2].
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1. Notations and definitiong. Let X be a real linear

normed space, X* its dual, E, the euclidean n-space,
{x, €* % the pairing between 2* e X* and x € X . A
functional f defined on a convex set M £ X 1is called
convex (strictly convex) if

(1) FAX+(1=-A)g) & AF(X)+ (1-2) £(g) for each
X, %€M and A €<0,1> (if the sign < holds in
(1) for each x, 4 €M anda A € (0,1) ), Ve shall

","¥5" to denote the strong and

use the symbols " —3
weak convergence in X . A functional f is said to be weak-

ly lower-semicontinuous at x, € X if X, 2, X, =—

£(x,) én&_;f:.ﬂz f (X, ) . We shall say that a functional
o

f possesses the Giteaux differential VF(x,, 4 ) atxeX
there exists

@) 1 LfCx+th)-F(x)] = VE(X,, b2)
for every A1 € X . Thus V4 (X, ) is in general non-
linear(and not continuous) mapping on X . If Yf(x,,A) is
linear in A € X , we denote this differential by Df(x, & ).
A functional f is said to have the GAteaux derivative +$/(x,)
at X, if there exists EY: (X, %) at x, and this mapp-
ing is bounded on X . The one-sided Gateaux derivative
V,#(x,, /) of £ at X, &€ X  is defined by (2) for t -
—» 0, .By df(x,, 4 ) we shall understand the Fréchet
differential of £ at X, € X (cf.[4],chapt.I). If

dt (Xoy ) is contimuous on X ,then we shall say that f
possesses the Fréchet derivative +/(X,) at X, .Through
this paper in theorems and propositions we shall assume that

functionals ¢, V. f (X, & ) are finite.
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2. Continuity properties of convex functionals

Theorem 1., Let X be a linear normed space, f a cpn-
vex functional on X . Suppose there exists a constant M >0
such that f(X,+h)+ £ (X,~-h)-24(x,) £ Ml &4 for
each o € X with lfll =R > 0, where X, is a fixed
element of X . If either a) V¥ f(X, ,#A ) 1s upper bounded
on some open convex subset B % £ of X (in particular
V+ £ (X, , ) is upper-semicontinuous at some A = £, €
€ X ) or b) X is complete and V1_¢(x,, 4 ) is lower-
semicontinuous on X , or c¢) f is continuous at X, , then
(3) [$(xo+H) = FCx ) & N 1A
for each 4 € X with &l & R
N > 0 does not depend on h .

Proof. Since f is convex, the one-sided GAteaux diffe-~

5 Where the constant

rential V+ 4’(0(,, £ ) exists, is positive homogeneous and

subadditive in /A € X [ 5]. Hence Ve €00, A)  is

convex on X . Assuring a) (b)) and using theorem 2 [6,II,

§ 5] (the Gelfand lemmal[7,chapt.I))we see that V, f (X., A )

is continuous (bounded) on X . But continuity of this mapping

at h =0 dimplies the boundedness of V, f(¥,, A4 ) in so-

me neighborhood of O . From the positive homogeneity of
V,#(x,, /) it follows that there exists a constant C >0

such that

(4) IV+-P(o<,,h7l £Cclhl.

Assume c¢), then (#) is satisfied by Theorem 8a) [1]. By lemma

2 [1) we have thet

(G) —ClhalléV, e, h)é fixth)-f(x).

On the other hand, let h be an arbitrary element of X

with 4l < R, Then f(x+h)+Ff(X-h)-24(x,)=

’ Al Rbv_y_
= #0x + LRI Rbey, {.x,-lrsm) 24(%,).




Bamploying convexity of f and aware that 1A R "< 1,

we obtain

h =
"TEI_ R1 R
f(d(,:p h)-!--&'(a(,—h)-Z-F’(X,_,)é 1~ ﬂh”k‘.’){'(‘x‘)_‘_lﬁ‘”Rﬂf(‘&_f

- (s . Rbs s
+%‘)+(1~Myﬂ&‘)-F[.x,,)-;-llhﬂg #x,- By 240

= Bl RC (X, + R NAN+£(X%~RE I A I~

- 28] & ML FE s Mk

by our assumption. Hence for each A € X withlh & R

there is

(6) F (e MY+ 8 (K- )=28(x)EMIAIN .

According to lemma 2 [1] and (6),(4),

fFix,+ )~ (X )= (Xt M) + £ (X p=-H ) =2 f (X))
+ L) -F(x,~0) &

£ Milhll+ V, #(x,,4) &

M+CIl Al = NILA)

N

for each h € X with b/l & R , vwhere N=M+(.
This inequality together with (5) give (3). This completes

the proof.

Corollary 1. Let X be & linear normed space, f a
convex functional on X . Suppose there exists a constant

M > 0 such that $(h)+£(-h)>~ 24(0) &€ M I h

for each he X with Al = R, Furthermore, let one of
the following three conditions be fulfilled: a) V, #(0,H)
is upper bounded on some open convex subset B # # of X
(in particular, V., $(0, h) is upper-semicontinuous at
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some h= h, € X ); b) X is complete and Y, £ (0, &)
is lower-semicontinuous on X ; ¢) f is lower-semicontinu-
ous at 0O,

Then £ is bounded on the closed ball Dy (41l & R ) .

Proof. This assertion follows at once from Theorem 1 and
Theorem 4 [2].

3. Differentiability of convex functiopalg. The follo-
wing assertion is true [ef.[1], Th.5 see also Correction ]:
If X is a linear normed space, Y a Banach space, F: X;>
= Y a demicontinuous mapping of X into Y, then the set 2
of all x € X  where the GAtesux-differential VF(x, &)
exists for any (but fixed) A € X is a Fyyp =set.In parti-
cular,if f 1is convex continuous functional on X, then the
set 2 of all X € X where the linear GAteaux differential
D#(x, ) exists for any (but fixed) h e X is a Fp r -
set. Moreover, the following result has been established in
[2]: Let X be a separable linear normed space, f a convex
finite functional on X . Suppose that there exists an open
convex subset U # J of X such that f is upper bounded
on U (in particular, assume that f is upper-semicontinu=-
ous at some point x, € X ). Then the set 2 of all X €
e X vhere the Gteaux derivative #/(x) of f exists is
a Gy -set.

Now we prove the following

Theorem 2. Suppose X 1is a linear separable normed spa-
ce, £ a convex continuous functional on X . Then the set 2
of all X € X  where the Gateaux derivative 4‘(x) of ¢
exists 1s a Fgr-set.
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Proof. According to lemma 2 [1] we have that
FX)-f(X=-BIEVP(X, ) € f(x+h)—-F(X)

for each x and 4 € X ., Since f is continuous on X ,
V4 # (X, 2 ) 1s continuous at h = O far each Xx € X .
Being V, #(x, &) subadditive in A € X and
V+4(u,0)=0 for each X € X, \{’, £4(x, &) is con~
tinuous in A € X for every X € X . Let A,, »hz,»--
be a countable and dense subset of X and denote by 2, the
set of all X € X where the GAteaux differential V4(x,#; )
exists for fixed &1, (m=1,2,...) ; i.e.
Z,=ixeX/V #Cx, )=~V £(x,-H, )}

According to above mentioned theorem [1,Th.5, 3, 2,
a F;,d,-set for each m (m =1,2,...), As X, € Z =
eV £(x,h,)=-V f0x-# ) in view or continuity of V f(x,,%)

in /€ X and separability of X, we have that X, € Z,,

is

(m=14,2,...) and Z = ”ﬁ Zm (ef.[81). Since Z 1is
, 2 1is al-
80 a Fé.d.«-set. By Proposition 6 [2] for each X € Z we hwe
Ve, h) = £/ (x)H , where f7(x) denotes the Ga-
teaux derivative of f at x . This concludes the proof.
Corollary 2. Suppose the assumptions of Theorem 2. are sa-
tisfied. Then the set P of all X &€ X where the Gtegux

an intersection of Ffgz - -sets Z, (m=1,2,...)

derivative of f does not exist is a Ga,or-set.

Similarly as previously we can improve the result of Theo=
rem 6 [1] as follows:

Theorem 3. Suppose X 1is a separable Banach space, f
a convex Lipschitzian functional on X . Then the set Z of
all X € X where the GAteaux derivative +/(x) of f ex-
ists is a F;,dr-set of the second category and hence it contains
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a G'a-—set which is dense in X .

Remark l. For each convex functional f we have that
(7) *% Lo+t +F(X,=th)-2F(x,)] = 0,
where ¥, , 4 are arbitrary (but fixed) elements of the con-
vex open domain of f . In fact from convexity of £

(0t & 1) we obtain at once that
0 & $(X+th)+£(x,-th)-2F(X,) &
(N=t) £ (X)) 4t (Xt M) + (12 ) 8 (X0) +

N

+te(x, - - 2F(x,) =

t LR (X + )+ F(X,-H)=2F(X)] .

U

As t — O+ , We have (7). To investigation of convex func-

tionals we introduce the following
Definition 1. Let X,Y be linear normed spaces. A map-

ping F: X =Y 1is said to be directionally smooth at X, €

¢ X if for each (fixed) H#h € X

(8) Lom | $LF(x+th) 4 Flop-th) =2 F(6)11 = 0 -

We shall say that F: X = ¥ is uniformly directionally
smooth at X, € X with reapecf to e X with &=
= 41 if (8) holds uniformly with respect tofr € X, lfll=1.
Remark 2. Smooth functions in E,, 5 i.e. functions
which satisfy #(x,+h)+£(X,~h)-2¢(X,) e O (R) have
been introduced by Riemann and have been largely studied by
A.Zygmund [9],[10] in connection with trigonometric series.
Analogously, a mapping F: X —» Y  1is said to be

smooth at x, € X if

W -TILL- NFCxy+ )+ Flxy-+h)-2 Flxo) = 0 .
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It is easily seen that if F : X — Y possesses the
GAteaux differential V F(X,,# ) (the Fréchet differential
AdF(x,, ) )at X, & X , then F is directionally

smooth (smooth) at .x, . The converse is not true in general.

Proposition l. Let £ be a convex functional defined on
a convex open subset M of X (X is a linear normed space).
Suppose that f is directionally smooth at X, € M . Then
f possesses a linear Gateaux differential Df(x,, #) at
X,. Moreover, if f is continuous at X, ,then Df(x,,%)=
= £/(x,) ;o , where £°(X,) denotes the Giteaux deriva-
tive of £ at X, -

Proof. Since

_::_ [ (x+th)+f(X-th)-248(X,)]— 0

whenever t ~ 0 , we have
(9) L r4exrth)-Flx,)]- £LF () —FCx,~tAII— 0

as t — O, . In view of convexity of f ,the one-sided Gateaux
aifferential V, ¥ (X, 4) existaat x, € M foar € X.
From (9) it follows that

Vot (x,, h)= =V, $(x,,-h) -
Hence f possesses the Gatesux differentisl V#(x,, £ ) at

X, , Convexity of f implies that VA(x,,h) = Df(x,, 4 ) .

°
Suppose f is continuous at X, . By lemma 2 [1] we see that
De(x,,#A ) 1s continuous at h = O and hence bounded in

h € X . This completes the proof.
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Corollary 3. Let X be a linear normed space, f a con=
vex functional defined on a convex open subset M of X . As-
sume f 1s directionally smooth and continuous at x, € M . If
X, 18 an extremal point of f , then X, is critical point
of £, deee £700¢G) = 0 -

Let E be a topological vector space over the real num-
bers E; with dual E* and suppese that £ 4is a proper
convex functional on E , i.e. f 18 an everywhere~defined
functional with values in ( —o00,+ 0 ) not 1denticalJ:y
+00 . A subgradient[11,12]J of f at x € £ is an x*e€
e E* such that

$ly) 2 $(xX) + Ly -, x*)>

for all 4 € E , where (-, x*) denotes the value
of X* at the point y - x . Denote by OFf(x) the set
of all subgradients of f at x . If Jf(x )+ & , £
is said to be subdifferentiable at x (see the above cited
papers). Thus &F is a multivalued mapping from E to
EX assigning to each X € E  all its subgradients.

Recently J.J.Moreau [11,13] has proved the following
assertion: If f 1s convex, finite continuous at X, € E anmd
the subdifferential O Ff(X,) of £ at x, consists
of a single point, then £ possesses the Gateaux differential
Ve (X, ) at X, + The subdifferential &f(x,) of
£ at X, consiasts of a single point if £ is strictly con-

veXe

It is easy to construct the functionals which are direc-

tionally smooth at X, and being not strictly convex.
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The existence of eubgradients has been investigated by
GeJ.Minty (121, J.J.Moreau [14], A.Bréndsted, R.T.Rockaffelar
(15). It is known [12]),[14) that a convex functional f is
subdifferentiable whenever it is finite and continuous. If E
is a Banach space and f is lower—semicontinuous on E , then
the set of points where f is subdifferentiable is dense in
fhe effective domain of f (which is the convex set of all x€
€ E such that #(x) < + o0 ) [15]. The relation be-
tween convex subdifferentiable functionals and supportably
convex ones has been obtained by M.Z.Nashed [161¢

Proposjtion 2. Let X be a linear normed space, f a
convex functional on X such that either a) V, f(¥X,, #1)
is upper bounded on some convex ‘ubset D #+ # of X (in
narticular, V_'_ $(x,, 4 ) is upper-semicontinuous at some
h= h, ¢ X ), where X, is a fixed element of X, or
b) X is complete, VY, f (X0, 2 ) is lower-semicontinuous

on X . Then f is subdifferentiable at X, .Moreover, if f

o
is strictly convex, then f possesses the linear Gdteaux dif-
ferential D4 (X,, h ) .

Proof. Assuming a) or b) V_ £ (x,,+ ) is continuous
on X (cf. the proof of Th.l). According to lemma 2 [1]
(10) —\{‘_#(.x,,-h)é \{'_C(x,,h) £ Ff(x,+h)=+(x,)
for each A € X . Since V,f(X,, /o) is continuous sub-
additive and positive homogeneous using the consequence of the
Hahn-Banach Theorem (17,Th.1°,§ 6,chapt.IV] we have that there
exists an element X* € X*  gsuch that
(1) -V, ¢ (x,,-h) & (h, x*) &V, f(x,h)
for every 4 € X . Hence the inequalities (10),(11) imply
F(x,+ ) -Ff(xe) 2 <, x* > for each fL e X,

i.e. f is subdifferentiable at X, . This result together
- 338 =



with the above mentioned Moreau s one give at once the second

assertion of our proposition.

Remark 3. The assertion that a convex functional f con-

tinuous at x, € X 1s subdiferentiable at x, we ob-
taion also at once as follows. By lemma 2 [11
F ) =F(X, =) & U £Cx,, )& £(x,+) = f(X)
for every 4 € X . In view of continuity of £ at X, it
follows that V, #(X,,# ) 1is continuous at h =0 .
V, # (X, , 4 ) Dbeing subadditive and positive homogeneous,
V, # (x,, 4 ) 1is convex and by Th,L[6,chapt.II,§ 5] it is
continuous on X . Now we proceed as above.

If the conditions a) or b) of Proposition are
satisfied at each point X € X , then f 1s subdifferen-
tiable everywhere on X .

Proposition 3. Let X be a Banach space, f a conti=-
nuous functional on X . Suppose that £ is directionally

is an extre=-

2
mal point of f , If Zhﬂth’ 4 (x,) = OCt)

for arbitrary 4,, 4, € X  where V,:,hz{’(.x,)- ot b +hy)+
+8(x- M )+ (X,-hy)=3 £(x, ), then £/(x,) = 0 , l.ee X,
is a critical point of f .

smooth at some point X, € X and that X,

Proof. Since f 1is directionally smooth at X, and
Xo 1s an extremal point of £ , the GAteaux differential

VF(x,, /) of f exists at x, . For arbitrary Ak € X,
h,, 4, € X we set

P(%,t, )= f(X,+th)+FX-th)-2¢ () >

Ai“hl'f'(Xp) = £ (x,+Mhy +»h«z) - 4(0(,4-}1.4)—{()('*};2);_
+ £0(x,) -
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Then
A;‘ﬂ%c(x,yg\z,:"hf(%)-gc.&,t,i,,,; g (X, t, Ry ) .
As f 1is directionally smooth at X, ,we have that
@ (Xopt, ;) mo(t), (i=q,2) and z,f"m‘ fix,) =
‘e 0(¢£) by our assumption. Hence Afﬂ"”‘z f(X,) = OCE)

- which implies that V4 (x,, %)= Df(x,, &) [ cf.e 4,
chapt.I,§ 3]. Since X is complete amd f 1is continuous on
X , using the Baire s theorers, we have that Df(x,, f)=
= /(X)) M, where f°(X,) denotes the Gateaux derivative

of £ at x,. As X, is an extremal point of £ , £7(x,)=

= 0 which concludes the proof.

Theorem 4. Let X be & linear normed space, f a convex
functional on X. Suppose there exiats the Gateaux differential
VY £(x ,h) of £ at x, &« X. Let one of the following three
conditions be fulfilled: a/ £ is continuous at x, ; b/ V; £(x,,h)
is upper bounded on some open convex subset M# €@ of X ; ¢/ X

J
is complete and V, f (x, , h) is lower-semicontinuous on X.

Then f poasesses the Gateaux derivative £¢x,) at x, .
Proof. The case &/ is the assertion of Proposition 6 [2J.
Assuming b/,c/ we have that V, £ (x, , h) is bounded on X .

By convexity of f

vVf£(x, ,h) = Vv _f£(x,,h)= Df(x,,b) .
Hence Df(x, ,h)= £'Cx,)h which concludes the proof.
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Remark 4. Theorem 4 and Proposition 1 imply the validity
of the following assertion: Let f be a convex functional
on X directionally smooth at x, ¢ X . Assume that one of
the three conditions a/,b/,¢/ of Th.4 is satisfied. Then f

possesses the Gateaux derivative f£fx,) at x,.

Now we shall study the Préchet differentiability of convex
functionals m linear normed spacea.Some general theorems
concerning the Gdteaux and Fréchet differentiability of ope-
rators have been obtained in[18,19,20] . '

Theorem 5, Let X be a linear normed space, £ a convex
functional on X. Then f possesses the FPréchet derivative
ftx,) at x_eX if and only if £ is smooth end continuous
at x,.

Proof. The first part of our Theorem is obvious. Suppose
f 1is smooth and continuous at x,. Then f is directionally
smooth at x, and hence by Proposition 1 there exists the
Gateaux differentiasl V f£(x_, h) . Using Proposition 6 [2]
we see that V £(x,,h) = fx,)h, where f’cx,) denotes
the Gateaux derivative of f at x, .

Set
12 u(x,, h) = £(x,+h) +f£(x, -h) -2£C(x).
Since £ is convex, .for an arbitrery heX we have
u(x, , ()R 0 and _
f(x, +h) - £(x,)~-£(x)h =w(x, , h) = 0,

f£(x, -h) - £(x,)* £(x)h =aw(x, , -h)2 0.



Hence (h#0)

- “
C&NRN'w(x, ,h) & Hhll(wix, n)+ w(x, , -n)=

-1
=hh fl u(xe ,h) .
Being f smooth at x, ,

-1
P hll wW(xq,h)—» 0
as §# hl—» O. Thus f has the Fréchet derivative f£’C xo)

at x, and this concludes the proof.

Theorem 5; Let X be a linear normed space / a Banach
space /, £ a convex functional on X . Then f possesses
the Fréchet derivative f£'(x,) at x, € X <> f is smooth
at x, and V, £f(x, , h) 1is upper bounded on some cpen
convex subset M # & of X / V, f (x,, h) is

lower-semicontinuous on X /.

Let X, Y be linear normed spaces, f : X—>Y a map-
ping of X into Y . For x,¢X, B (x,, r) will deno-
te the open spherical ball centered at x, with redius r
and u (x, , h) the expression given by (12) .

A mapping f 1is said to be locally uniformly smooth on
an open subset M < X if for each € > O and an arbit-
rary X, € M there exist positive numbers 5( X, 3 £)

and r(x, , &) such that

(13) lud¢x ,h)ll < €8 nll
if 0 «fhll<d and xe B(x,,r)N M.

Similarly , £ is said to be uniformly smooth on M if
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for any positive number & > C there exists 5> 0o
such that if G <l h < & , then(13) holds for each

x € M.

A mapping f is said to be locally uniformly differenti-
able / uniformly differentiable/ L[ 4,chapt.I.J on M
if f has the Fréchet derivative f’(x) everywhere on M

and the remainder
w(x,h) = f(x+h) =f(x)=-Ff(x)h

is locally uniformly bounded / uniformly bounded/: i.e. for
each €> C and an arbitrary x,e& M there exist

d(x, ,e)>0, rlx, , €)>0 such that
14 Bew ¢ x,ndll< €4 nil

if C < MhH<8 oand x €B(x, , TIN N [/ i.e.

for each €& > O there exists d > O such that if

0 < Hhll<d& , then (14 holds for each xeM /.
The following theorem explains the connections bet-

ween the above nctions.

Thecrem 6, Let X be a linear normed space, f a
convex functional on X , M<c X an open subset of X.
Then f is locally uniformly / uniformly / differentiable
on M if and only if f is continuous and locally uni-

formly / uniformly / swooth on M .

Theorems 2,3,5,6 contain some answers to an open

problem C/ by M.Z. Nashed [ 3,p.75 ] concerning the
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Gateaux and Fréchet differentiability of convex functio=-
nals.

Analysing the proof of Theorems 4.1, 4.2 [4] and
using the above result we obtain the following

Theorem 7, Let X be a linear normed space, £ a con-
vex functional on X . Then f has a continuous Fréchet
derivative f‘(x) on the open ball By (¢xd < R) if
and only if f is locally uniformly smooth and locally uni-
formly continuous on BR .

Theorem 8., Let X be a linear normed space, £ a convex
functional on X. Suppoae f is uniformly continuous on
the open ball B” a . Then f possesses an uniformly con-
tinuous Fréchet derivative f£’C(x) on By &> f 1is uni-

formly smooth on B, (rR>0, x>2¢C).

Remark 5. One mgy obtain analogous necessary and suffici-
ent conditions for continuity /uniform continuity/ of the
Gateaux differential D f£f(x, h) in variable x under an
arbitrary /but fixed/ direction heX of a convex functio-
nal f using the similar notions of locall uniform/uniform/
directionall smoothness and the results in [ 18,pp.324-328].
We leave the discussion of these facts to the reader. In
Theorems 7,8 one may replace the open ball B, by an open
convex bounded subset D of X.

Remark 6, Let f be a convex functional on X. Suppose
that £ is smooth at x, ¢ X. If x, is an extremal point of
f, then d £(x, , h) = O for every h € X. If a functional £



/ not necessary convex / defined on ‘X is smooth at an extre-

mal point x,& X and V;:,”u‘ £ (x,)= o(t) for arbitrary h ,

h e X,where

Vis, g £CX) = £(x+h +h ) +2(x, =h) +2(x-h,) -
-3rCx,),

then 4 f(i,, h) =0 for every he X.

Remark 7. A mapping f : X—»Y is smooth at x,eX (< for
each two sequences {.h“} eX with A h_ll=1/n=1,24ee0 /
and {t,} of positive numbers t_/n = 1,2,.../ with i:_.’m‘.t‘ =
= Q0 there is
s  im ) fu(x,, g a)l =o.

o=
Indeed, suppoae f is smooth at x,e€X and {t_} ,fh } be
arbitrary sequences with the above properties.Then t_ || h Il =
= t — 0 a8 n —>- and the condition of smoothness of f
at x, implies at once (15) . Conversely, assume (15) is sati-
sfied and £ is not smooth at x, .Then there exist €,> Q

and the sequence {‘ﬁu} & X such that | Em Il < o ena

(16) [] f%ﬂ-'lu(x, » 801 > €, .

Set

o= B N B0t = 1T

Thenh, = t, h, with t,—> 0 as n—»ec and Ih,l

/n=12,ee0s /o Hence by (16) we have that

=1

t ucx, , 4, b )0 > &

which contradicta to our hypothesis.
Another equivalent condition of smoothness is the following:
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a mapping f 1is smcoth at x, € X <> the limit

lin 0 t'ucx, , 20 = 0
t->0

is uniform with respect to heX , fhil = 1.

3. Examples of convex functionals.

Ao Let g(u,x) (w e (=00, +00), X € G , nere
G denotes a measurable subset of an euclidean n-space E, )
be a N-function [4,chapt.VI.], A («)=g U (x),x): Lo— L'Z
- -1
(7 + @ "= 1) an operator of Nemyckij from L, into Li-
Suppose g,(w, X ) is monotone function inu € (-a, + co)
for almost all X € &, Then the functional
«w(0
17 -rG/aL.x S v xddy
0

is convex, continuous, weakly lower-semicontinuous, bounded on
L.ﬂ and Lipschitzian on each bounded closed ball

D (hxl £ R) or L, . Moreover, f(w) satisfies the con-

dition of smoothness at every u & La.

Proof. Since 4 («) is the Frichet gradient [21] of
'F(M), £ 1is continuous on Lf., , In view of monotonicity
of g (u,x) in we€(-a, + o0 )  for almost all X &
€ G, M () is a monotone operator on L,., and hénce £
is convex [22]. Then for each real constant c¢ the set E(e)=
={x 6 X| f(x) & ¢ ? is convex clcsed set and hence it
i8 weakly closed. By Proposition 1 [11 £ is weakly lower-
semicontinuous on Lﬂ . According to mean-value theorem

()= 1$ ) -0 =I{f (B at)=I(h (Bs), )] &
P llh(Qu)lle . IlullLﬂ y Bel(0,1).

Since # i L, — L, , h is bounded and continuous [21,

I J. The boundedness of f on L” follows at once from
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this fact and the above inequality. Again, using the mean-va-
lue theorem and employing boundedness of h , we sce that f
is Lipschitzian on each closed bounded ball D of L, .
Since f is Fréchet-differentiable on L, , £ satisfies
the condition of smoothness at every u e L,.,.

Remark. The fact that the functional + (&) defined by
(1?) 1is weakly lower-semicontinuous has been firstly observed
by M.M.Vajnberg [23]. But his proof depends on another argu-
nents. .
Be. Under the assumptions of the example A suppose that K
is a linear continuous operator from Lg' into Lﬂ which
admits a splitting K = A A* | where A: L, — Lp is
linear and continuous (so that A* s L£ - L, )e Further-
more, assume h is such that

(thg,-hg,,%=-R) & 14-% I
for every &,, &, € L, . Then the functional

(18) G (w)= fluwl?-$(An),

where f is defined by (9#), is con’ex,continuous, weakly lo=-

wer-semicontinuous, bounded on L2 and Lipschitzian on each

closed bounded ball D (Nl ll & R) of L, -
Indeed, @ («) has the Giteaux derivative P”’(«) on
L’_ and
P(u) = &~ A¥h (A)
Since

() = bty ), a4y ) = W dley = iy 1= CA%R (Adty ) -A*R AL,

Mg = Ady > = Wik = Ay 12 (e CALLy ) - 1 (AL, )y Addy - Ady 7
for every Ay, 4, € L, , using our hypothesis
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(Au,, Au, € L, ) we have that
< ¢’(u1)" ¢’(“"z )’ u,‘uz > % 0 .
Thus ¢ is convex on L, . In view of continuity of A on

L, and £ on L, ,$ is continuous and hence weakly lower-

semicontinuous on L, . The boundedness of ¢ follows at
and A . The property that ¢
of L, is

once from the boundedness of f
is Lipschitzian on each closed bounded ball ‘DR,
obvious.
The functionals defined by (7#) and (18) play an important
r8le in variational methods of solutions of nonlinear equations.
" Suppose the assumptions of the example B are fulfilled.

Consider the equation

(19) g-Khg =0

in the space L, . Then this equation investigated in L, is

equivalent to the one
(20) w-A*h(Aun)= 0

in L, in the following sense: If 4, is a solution of (20)

in L, , then @ =A4«, is a solution of (79) in L, . Con-
versely: if ¢, is a solution of (79) in L, , then «, =
= A*# (¢g,) 1s a solution of (20) in L, , For solving the
equation (20) it is sufficient to assume for instance that the
functional ¢ (4) is such that ) — + c© as

laell— +00 , Then ¢ has at least one critical point in

L'2
w, € Lz . Hence ¢, = Aw, 1s a solutien of (79).

and thqs the equation (20) has at least one solution
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