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Commentationes Mathematicae Universitatis Carolinae
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CONT'INUITY PROPERTIES OF NONLINEAR MAPPINGS
Josef DANES, Praha

1. Introduction. In the present paper we give some
"general” counterexamples x) and assertions in the theory of

continuity properties of nonlinear mappings between linear
topological spaces. The starting point is Lemma l. The proofs
are constructive and are based on the existence of a noncon-
vergent but weakly convergent sequence in the range space.

I am indebted to J.Kolomy for the suggestion of these

proﬁlems.

2. Notations and definitions. The convergence in the
original 'and the weak topology of a locally convex linear

topological space is denoted by * — " and " — ", res-

pectively., < 0, co ) denotes the one-point compactifica-
tion of the set of all nonnegative real numbers. The symbols

DM and int M denote fhe boundary and the interior
of the subset M of a topological spaces (Xx,a> 1is the
closed line=-segment between two points in a linear space.
All topological spaces are supposed to be separated (with
exception of the space X in Theorem 8).

Let X be a linear topological space-and Y a local=-

x) For some special examples see Vajnberg [4] and Petryshyn
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1y convex linear topological space. Then a mapping f of
a subset M of X into Y is called demicontinuous if
f 1is continuous from M with the topology induced by the
topology of X into (Y, w ) (the space Y with the
weak topology)e If X 1is locally convex, then the mapping
f 1is called weakly continuous if f i1is continuous from
(M,w) (M with the.topology induced by the weak topo-
logy of X ) into (Y, w ) , and strongly continuous if
f 1is continuous from the weak topology on M +to the ori-
ginal topology of Y o

3. Resultg. We prove the following basic

Lemma l. Let Y be a locally convex linear topologi-
cal space., Let there exist a sequence {¢_ }:_4 in ¥
such that we have e, -0 but not €, — o . Then
there exists a continuous mapping h from the comm ct spa=-
ce (0, c0o > to the space Y with the weak topology
which is continuous from <0, 00) to Y (with the ori-
ginal topology) bﬁt it is not continuous at the point £ =

= 00 .
[
me1

Proof. Select a strictly increasing sequence i, 1

of nonnegative real numbers such that ",

# oo . Let {-, ?f, -4 be a sequence in Y with

%, — 0 and <€, > o We define a mapping
4:< 0,005~ ¥ in the following way:

= 0 -and

4 if &~ = o0 ,
A ()=

(Bpeg=2)C, +(R-4)6,,,

Moee = 4,

it neln i >,
m s 4, 2.,-:. .
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Suppose that X, —> X is a net in <0, co >
converging to an element x in < 0,00) . Then the-

re are o, and n such that
oK F ox, == X, € (’L.”t Kpra ).
Since h 1is contimuous from < X, , A, ., ” to¥ ,

we have A (X ) — A (X) (and h (X ) — h(x),
of course). Hence the mapping h is continuouws from
(0,00) to X (and to (Y, w) to0). .
Let X, —> oco . It follows that, if V is a
convex neighborhood of o in Y with the weak topology,
there is an integer n, such that <€, € V  for all
m z2m., Then there exists an index o, such that
Xy > I‘L@o for all o & of . The definition of h
and the fact that A (<%, ,00)) is contained in the
convex hull of the sequence {-e_ 250 _ imply that
hix ) eV for each o« & ot . Hence A (X )—o
and h is continuous from < 0, co > to the weak topo=
logy of Y .
Now, since s, —» CO and M(x, )= ¢ F>0,
we have that h is not continuous at the point A& = ©O.

QOE.DO

Theorem 1. Let X and Y be locally convex linear
topological spaces. Let there exist a sequence {€, 3:_4
in Y such that -, — o but not €, —> o . If

dm X 2 1 there exists a weakly continuous map -
ping £: X =Y whose set of points of nonconti-
nuity is a closed hyperplane in X .

(This closed hyperplane can be given before.)
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Proof. Let u be a nontrivial element in X* , De-
note H = 4«7 (0). We define a mapping ¢ : X—><0,00)>

as follows:

1 \
go0 - [ T e XNt
©o

if x eH .

Since u 1s a weakly continuous functional on X , the
mapping @ ¢ X — <0, co > 1is continuous from the weak
topology in X to <0, 00 > . Let h:<0,c0>— VY
be the mapping from the proof of Lenma l. Let f = h ¢ g .
Then f 1ie the composition of two continuous mappings g
and h (with the weak topologies in X and Y ) and hen-
ce f is weakly continuous. Since A (<0, ) and g are
continuous (with original topologies in X and Y )¢#IX\H
is continuous.

Let x € " 1) and X = A . X (m=1,2,..).

MM1

1
Then F(X”)-h(w)- A (Kpyy) ™ €ppg > 0

Hence f 1s noncontinuous at each point of the hyperplane
H. Q.E.D»

Theorem 2. Let X and Y be as in the preceding Theo-
rem. Further, let D be a convex closed body in X (i.e.
wmt D is non-empty). Then there exists a dewmicontinuous
mapping £:. X —» Y whose set of points of noncontinui-
ty is the boundary 8D of the set D .

Broof. Clearly, we can suppose that © € int D , Let
d be the Minkowski functional of the convex body D . Sin-
ce d: X — <0, c0o » is continuous, the mapping
g :X—><0,00 ) defined by @ (x) = a(x)1-dcx)"
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for x € X \N 8D and by g ()= co for xedd,
is continuous. Let h be the napping from Lemma 1, Then
f=heg: X — Y is demicontinuows as the composi-
tion of the continuous mapping g and the demicontinuous
mapping h . Further, the restriction o f to the set X\
\ éD is continuous, since this restriction is the compo-
sition of two continuous ma.ppings: g md Mh1<(0,00) .
Let x be n point of @D .Since h is non-continu~

ous at the point X = 0o, there cxists a sequence {x, i,:,

’
in {0,c0) such that a4, —» o0 and h(xn,) > h(c0)
If vie set X = M (1+ 7, )»1.x for m=41,2,...,
then % € int D (since d(x, )=/, 1+ )" <4 )

and § (x,, )= M (G(x, Ne b (d(x)11-d (X)) = b (5, )—+>h (cO).
This completes the proof that f is noncontinucus at euch
point x of &D . Qe TeDe

Theorem 3. Let X and Y be as in Theoren 1. Let D
be a convex closed  w-body in X (i.e. the interior of D
in the weak topology of X is non-empty). Then there exists
a weakly continuous mapping € : X — VY  whose set of
points of non-continuity is the toundary of D in the ‘egk
topology of X .

Proof of this Theorem is very similar to that of the Theo-
rem 2 ( 4 is now the Minkowski functional of the convex w=bo=
dy D ) and it can be omitted. GeEeDe

Theorem 4. Let X be a nonirivial metrizable linear to-
pological space, ¥ a locally convex space and M a non=-emp=-
ty subset of X such that M = M (i.ee M is
closed "boundary” set in X ). Suppose that there exists
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a sequence (cﬂz;"’" in Y such that the set

L4

Ny $€s1€,,, > lies in the exterior of a neighbor-

heod of o in Y ang <,

— 0, ¢, >0 . Then
there exists a demicontinuous mapping f: X — ¥  who-
se set of points of non-continuity is the set M .

Broof. Let d be on invariant metric for the metri-

zatle linear topological space X . Define

1
G(x) = {d‘_ﬂ’(.x, 5 I xeX\M,
) if xe M .

Since ds X—p <0,00) 1is continuous the mapping
g: X—» <0,00) is continuous,

Comeg back to the proof of Lemma 1., For the sequence
{e,,,;:” in the proof of Lemma 1 we take a sequence
(€32, in Y satisfying the condition U, <e,,e,,,0c
cY\NV vhere V is a neighborhood of o in Y ., Now
we construct the mopping h as in the proof of Lemma l.
It is easily to prove that the mapping h has the follo-
ving property:

(P {a,}® c<0,00), a,—s0c0 = h@&,)F<heo).

ned
In the sequel we deal with thig mapping h .

Let £ = h o g . Then f: X — Y 1is demiconti-
nuous and the restriction of £ to the exterior of M in
X is continuous.

Let x be a point in M and (X, }7.,
cein X NM with X, —p x, Then @ (X,)—F co

a sequen-

md, by the property (P), we have:
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$lx, )= h (@(Xy))4>h(c0)a £(X).

Hence the mapping f 1s non-continuous at each point
x in W, Q.E.D.

Remark. It is clear that the preceding Theorem can
be formulated with X from a class of metric spaces.

Theorem 5. Let X be a nontrivinl metrizable line=-
ar topological space and Y a locally convex spacee. Sup-
pose thit there exists a sequence {-e,";:f” in ¥
with €, — 0 and €. —> 0. Let M be a non~-
empty subset of X such that M = M md each
point x in M is "attainable” from the exterior of the
get M, i.e. for each point x in M there exists a
continuous injective mapping ¢p,: <0,1> — X with
G €0,1) c X\M and ¢p, (1) = X . Then the-
re exists a demicontinuous mapping €3 X— VY with
M as the set of points of non-continuitye.

Broof. Let d be an invariant nmetric for X and
define

g(x)-{m%ﬁy. for X € X\ M,
©o

for x e M .

let £ = e g (h is as in the proof of Lemmo 1),
Then f 1is demicontinuous on X and continuous on X \ M,
Let X € M and let % be a continuous injecti=
ve mapping from <0,1) to X with ¢, (<0,1)c X\M
@md % (1) = X, Since S is a homeomorphism fronm
<0,1Y onto ¢, (<0,1)), there are an integer m,
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and a sequence {.x“ 3::"% in ¢, (<0,17) such that

dx,,M) = "5;4 and ' & dlg, (0),M) for all

’ "
m > m, Then X — x and f(x, )= A (G (Xp ) =
=h (8, )+ b (c0) = A (g (X )= f(X), Hence the mapping f
is non~-continucus at each point x in M QeEeDe

Remarks. The hypothesis on the locally convex space
Y in Lemma 1 and Theorems 1,2,3 and 5 satisfies, for ex-
ample, each normed linear space Y in whigh there exists
(strongly) non-convergent, weakly convergent sequence. In
fact,let {nag }o ., be a sequence in Y with 44, — 0
and a4y —~> © . Clearly, we can assume that 7, w o
for each n . Since {ag, 37, , is bounded, it suffices
to take €, = by I77n .

But there are normed linear spaces in which the conver-
gence of sequences coincide with the weak convergence of se-
quences. The case of finite dimensional normed linear spa=-
ces is not interesting since in these spaces the strong and
weak topologies are- the same. The simplest nontrivial examp-
le of a space of this type is the space l, of sequenczes
X = (X, Xy, 000 ) with Ix U ZZ 1| finite;

more generally, to this class of spaces belong the spaces
L, (S,Z, ), where (S,Z, «) 1is a measure
space with positive measure « such that every point

of $ has a positive measure. (See Banach [1] and Dunford=-

Schwartz [ 2].)



The hypotheses on M in Theorem 5 satisfies, for ex=
ample, each non-empty closed subset of X with N«
discrete for some denurerable ordinal o¢ vhere M)
and M’ is the derivation of M®-?’  mda M, resrec-
tively, if o - 1 exists, and M""-’Q‘ M® ot~
herwise, or each closed subset of the boundary of a convex
subset of X , Specially, each convex compzact subset of a
metrizable linear topological space of infinite dimension
is the set of points of non-continuity of some demicontinu-
ous mipping (for example, with Y = 4, ) since the clo-
sed linear hull of this set is not all of the space.

During the writing of the present paper the following
two theorems have been obtained. They can be used to the
study of continuity proporties of moppingse.

Theorep 6. Let X = (X, 0+ 1) be a Ban:ch space such
that the dual spnce x* is separable. Then there exists a
norm Wl - M on X such that for each bounded subset M

of X we have:
(M, w) = (M, M),

i.e. the weak topology of X and the Il - M -topology
of X coincide on bounded subsets of X .

Theorem 7. Let X be a separable Banach space. Then
there exists a norm W« W on X euch that for each
bounded subset M of X <the identity mapping t& + (M, w)+»
~» (M, Ml : M) 1ie continuous, i.e. the [ - Jil ~topolo=
8y of X 1is on bounded subsets of X coarser than the
weak topology of X .



The (simple) proofs are omitted. (HBint: It suffi=-
ces to take a dense, respectively weakly dense, sequen=
ce {w, 3:_1 of the unit ball of the dual space
X* and set Wx il = & 2™ latn (x)10)

Exgpples Let X and Y be normed linear spaces
such that there are sequences {c”]:', and {e”;:,,,

in X and Y, respectively, such that ¢ —o0, ¢ 4> 0
and €,—> O, -¢,—7> O . We can assume that

fle, "= 1= e, ll for each integer n and that ¢,
and ~¢2 are linearly independent. Let h be the map-
ping from the proof of Lemma 1 constructed for our se-

quence {e,im., - Define

o0 {l’il ifxe X, X #$0,
q-.x:
o0 if xX=o0 .

Let £~ Ao g . Then f: X— Y 1is demicontinuous
on X , continuous on X \ {0} , non-continyous and
weakly non-continuoug at the point X = 0 . The proof
of the first three assertions is similar to the proofs
of meceding Lemma and Theorems. It remains to prove the

weak non-continuity of f at the point X = 0 . We ha-

ve £(¢,)x h(g(c V= h(1)= _Q‘;_-_"_)%Li_‘z - e %o

(since the elements 2,
dent), and hence (¢, )= € -4~>0=f(0), but ¢, — 0,

and €, are linearly indepen=

which proves the weak non-continuity of £ at x =0,
Remark. For linear .nappings between normed lihear
spaces the continuity, demicontinuity and weak continui-

ty coincide (the proof is easy). (For more general re-
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sults see Bourbaki, Espaces vectoriels, Actualités Sci.
Ind. ,Hermann,Paris,N0.1229,1955.)

Now, we give some "positive" results for continuity
properties of nappings which are trivial consequences of
Nanioka's result ([3),Cor.l.3).

Theorem 8. Let X be a pseudometrizable separable
locally convex linear topological space, K a weakly
compet subset X and Y a locally convex space. Then
there cxists a weak dense and weak G subset K, of
K such that for each continuous mapping +: K — VY
and for each demicontinuous mapping @ : K — Y the set
of points of the strong continuity of the mapping f and
the set of points of the weak continuity of the mapping
g ocontain the set K, .

Corollary. The same conclusion as in Theorem 8 but
with X a separable reflexive Banach space and K a boun-
ded weakly closed subset of X is valid.
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