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Commentationes Mathematicae Universitatis Carolinae 

9, 3 (1968) 

CONTINUITY PRQPERri.ES OF NONLINEAR MAPPINGS 

Josef DANES, Praha 

!• Introduction. In the present paper we give some 

x) 
"general* counterexamples and assertions in the theory of 

continuity properties of nonlinear mappings between linear 

topological spaces* The starting point is Lemma 1. The proofs 

are constructive and are based on the existence of a noncon-

vergent but weakly convergent sequence in the range space* 

I am Indebted to J.Kolomy for the suggestion of these 

problems* 

2. pofat j.pns a.pq flaf jnitjons. The convergence in the 

original and the weak topology of a local ly convex linear 

topological space i s denoted by " —• w and " —*- w , r e s ­

pectively* < 0, oo > denotes the one-point compactifica-

tion of the set of a l l nonnegative real numbers* The symbols 

9M and int M denote the boundary and the interior 

of the subset M of a topological space* < xf<y*> i s the 

closed line-segment between two points in a linear space* 

411 topological spaces are supposed to be separated (with 

exception of the space X in Theorem 8 ) . 

Let X. be a linear topological space and X a loca l-

x) For some special examples see Vajnberg [4] and Petryshyn 
15] • 
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ly convex linear topological space. Then a mapping f of 

a subset M of X into X is called demicontinuous if 

f is continuous from M with the topology induced by the 

topology of X into (Y, w ) (the space X with the 

weak topology). If X is locally convex, then the mapping 

f is called weakly continuous if f is continuous from 

( M, *ur ) ( M with the topology induced by the weak topo­

logy of X ) into ( y, w ) f and strongly continuous if 

f is continuous from the weak topology on M to the ori­

ginal topology of X # 

3* Results. We prove the following basic 

Lemma 1. Let X be a locally convex linear topologi­

cal space. Let there exist a sequence ^n, i*i* t in * 

such that we have -€^ —* o but not -C^ —-* o . Then 

there exists a continuous mapping h from the compa ct apa­

ce < 0, oo > to the space X with the weak topology 

which is continuous from < 0, oo ) to X (with the ori­

ginal topology) but it is not continuous at the point H, m 

* oo • 

Proof. Select a strictly increasing sequence $%,}**^ 

of nonnegative real numbers such that ^ m 0 and 
n 

%T* °° • L e , t {•*** ? m, m A be a sequence in X with 

^ —*. o and -e^, - A * o We define a mapping 

h\ < Q1 ao)-~+ y in the following way: 

fO i f H, m oo , 

&U)* I 

m,* ift,->. . 



Suppose that x^ -—> .x is a net in < 07 oo > 

converging to an element x in K 0f oo ) • Then the­

re are cC0 and n such that 

oc h oo0 —»» x * * <-%>, "-«,+%. > • 

Since h is continuous from ( K^, K^+z ^ to X , 

we have Jh, C*K ) —y Jh, (*) (and Jh, C*^ ) —* 4iCx), 

of course). Hence the mapping h is continuous from 

< 07 oo) to Y (and to ( y, tir ) too). 

Let iX^ — > oo . It follows that, if V is a 

convex neighborhood of o in X with the weak topology, 

there is an integer ne such that •^ € V for all 

/n & #l » Then there exists an index oC0 such that 

*-r > ^ f0T a 1 1 <*C *- *L . The definition of h 

and the fact that Jru (< K^ 7 CO ) ) is contained in the 

convex hull of the sequence -f•e,^ } ^ m ^ imply that 

^tdX^) e V for each oc ^ ocfl , Hence ^C.^)~»-o 

and h is continuous from < 0, oo > to the weak topo­

logy of X o 

Now, since K^ —-» Oo and >*i, £/£ ) m -e "-/"* O > 

v/e have that h i3 not continuous at the point to — oO . 

Q.Z.J). 

Theorem 1. Let X and X be locally convex linear 

topological spaces. Let there exist a sequence i"^L}^m^ 

in X such that -€^ — * o but not «€^ — ^ o . If 

dim ,X & 1 there exists a weakly continuous map -

ping 4 : X —f y whose set of points of nonconti-

nuity is a closed hyperplane in X • 

(This closed hyperplane can be given before.) 
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Proof. Let u be a nontrivial element in X* • De­

note H - uT* (0) . We define a mapping 0, ; X - > <0,co>> 

as follows: 

f •• J ••• if X C X \ H , 

I o o i f X 6 H . 

Since u i s a weakly continuous functional on X , the 

mapping fy : X — * < 0 , oo > i s continuous from the weak 

topology in X to < 0, co > . Let -Jv ; < 0, oo > -> V 

be the mapping from the proof of Lemma 1. Let 4 •» M, * <^ • 

Then f i s the composition of two continuous mappings g 

and h (with the weak topologies in X and X ) and hen­

ce f i s weakly continuous. Since A%l<09 oo) and g are 

continuous (with original topologies in X and Y )4\K\H 

i s continuous* 

Let x c AJC* (1) and X * —— • X ("i - i9 &,».). 

Then •'**>-* fc^,)- ^ <**,,„ > - <*•« - ^ ° ' 

Hence f is noncontinuous at each point of the hyperplone 

H . Q.E.D* 

Theorem 2. Let X and X be as in the preceding Theo­

rem. Further, let D be a convex closed body in X (i.e. 

Ami D is non-empty). Then there exists a deiuicontinuous 

mapping -f « X —* y whose set of points of noncontinui-

ty is the boundary d D of the set D • 

Proof. Clearly, we can suppose that O € int J) , Let 

d be the Minkowski functional of the convex body D • Sin­

ce d : X — f <09 oo > is continuous, the mapping 

q, t X — • <01 oo > defined by $>(*) - cL(*)\ 1 - dCx)f* 
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for x e X s dJ> and by Q,(X) ~ oo for x e dJ> , 

Is continuous. Let h be the mapping from Lemma 1. Then 

4 m M, • £, i X —y y i s demicontinuous 33 the composi­

t ion of the continuous mapping g and the demicontinuous 

mapping h • Further , the r e s t r i c t i o n of f to the set X \ 

\ <9 P is continuous, since t h i s r e s t r i c t i o n i s the compo­

s i t i o n of two continuous mappings: g :md M, \ i 0 , 00 ) * 

Let x be a point of dD .Since h i s non~continu­

ous at the point K m 00 f there exis ts 9 sequence -fr^i^,^ 

in < 0, OO) such that >* ,̂—y OO and JvC/c^) -v*+ Jv(eo). 

If v/e set # m K C1 + K ) -* . <x for /n, ~ 4 , 2 , . * * / 

then X^C int J> (since ct C^) * H,^ C1 4- n^ T1 < A ) 

ana*(x^)mJh,(<$(x„))mJh(cLC^)\l-cLC^ 

This completes the proof that f is noncontinuous at euch 

point x of dD • Q.2.D. 

Theorem 3* Let X and X be !*s in Theorem 1. Let D 

be a convex closed w-body in X ( i . e . the i n t e r i o r of J) 

in the weak topology of X is non-empty). Then there exis t s 

a weakly continuous mapping f ; X —y Y whose set of 

points of non-continuity is the boundary of D in the veax 

topology of X • 

Proof of t h i s Theorem i s very similar to that of the Theo­

rem 2 ( d i s now the Minkowski functional of the convex w-bo­

dy D ) and i t can be omitted. Q.E.D. 

Theorem 4. Let X be a nont r iv ia l metrizable l i nea r t o ­

pological space, X a local ly convex space and M a non-emp­

t y subset of X such that M » B M ( i . e . M i s 

closed "boundary" set in X ) . Suppose that there ex i s t s 
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a sequence <«L J ~ in X such that the set 

jfci* ^ "3» * ^»+<r > l i e s in the exter ior of a neighbor­

hood of o in X and -c^ — * o , - ^ -i*-» o . Then 

there ex is t s a demicontinuous mapping f t X —* y who­

se set of points of non-continuity is the set M . 

Proof• Let a be an invariant metric for the met r i -

zable l inear topological space X . Define 

I ^ i f *x € M . 

Since dL s X — • (0}OO) is continuous the mapping 

a: X—» <0fCo) is continuous. 

Come back to the pi'oof of Lemma 1. For the sequence 

{'€in}*0
 4 in the proof of Lemma 1 we take a sequence 

££ p in X satisfying the condition U"m^ K^-O^^c 

C Y \ V where V is a neighborhood of o in X . Now 

v;e construct the mopping h as in the proof of Lemma 1. 

It is easily to prove that the mapping h has the follo­

wing property: 

(p) {cuJZ^ <0too)} a,„~+oo —• HCaj-i^HGoo). 

In the sequel we deal with this mapping h • 

Let i m H, # a, . Then f t X —* V is demiconti-

nuous and the restriction of f to the exterior of M in 

X is continuous* 

Let x be a point in M and {X^l!?., a sequen-

ce in X \ M with M^ — • X m Then £- Cx^ )-foo 

and, by the property (p) f we have: 
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* f x ^ ) « A (g, (x„,))-fa, jh, (<*>)- *(*). 

Hence the mopping f i s non-continuous at each point 

x in M . Q.E.D. 

.Remark, It i s clear that the preceding Theorem csn 

be formulated with X from a class of Die trie spaces. 

Theorem 5« Let X be a nontrivial metrisable l i n e ­

ar topological space and X a locally convex sp3i.ee• Sup­

pose thlt there exists a sequence "f "**»*? J!f» f *ft * % 

with -e^—k o .and - ^ — > O . Let U be a non­

empty subset of X such that M * dM snd each 

point x in M is "attainable" from the exterior of the 

set M , i->e» for each point x in II there exists a 

continuous injective mapping cfM: < 0 , 4 > —¥ X with 

% C< 0, A)) c X N M and Cfa (1) - X . Then the­

re exists a denicontinuous mapping 4 s X —> Y with 

If as the set of points of non-continuity» 

Proof* Let d be an invariant metric for X and 

define 

frx). / azhv far * * * ^ M > 
^ OO f or x € M • 

Let 4 » 4% • <fr ( h i s as in the proof of Lemma 1) # 

Then f i s denicontinuous on X and continuous o n X \ M . 

Let x € M and let <y> be a continuous in j ec t i ­

ve mapping from < 0 , 4 > to X with cfH «0, < ) ) c X \ M 

aid <f (1) m X . Since g^ i s a homeomorphism from 

< 0 f 4 > onto <fM (< 0, A >) f there are an integer /»t# 

- ЭГ9 



and a sequence {*^J&«, , i n 9* (< °> * ^ *™h t h a t 

d(x^,M)m n^ , and *£ *% cL(Cf„ (0)fM) ?or a l l 

/)% & m . Then x^—* »x and ^(x^ ) m A%> (q, (**, » -» 

- A ( A ^ ) - ? 4 * Aft*?) - At(<£,(*))*f(x).Hence the mapping f 

i3 non-continucus at each point x in M# Q..£•!)• 

Remarks^ The hypothesis on the local ly convex space 

I in Lemma 1 and Theorems 1,2,3 and 5 s a t i s f i e s , for ex­

ample, each normed linear space X in whioh there ex i s t s 

(strongly) non-convergent, weakly convergent sequence* In 

f a c t , l e t i^^i^mi be a sequence in Y with <^—* O 

and / ^ - / - > o , Clearly, we can assume that nfa ^ o 

for each n • Since i4faJ%wi i s bounded, i t suffices 

to take <& * I tu> IT* 01, • 

But there are normed linear spaces in which the conver­

gence of sequences coincide with the weak convergence of s e ­

quences. The case of f in i te dimensional normed linear spa­

ces i s not interesting since in these spaces the strong and 

weak topologies are the same. The simplest nontrivial examp­

le of a space of this type i s the space JL of sequences 

* « CMi}0(t9 *•» ) with II x I m JE£ I ̂  - f inite? 

more generally, to this class of spaces belong the spacea 

L^ C S 7 2 * (U, ) , where ( S , £. 9 (& ) i s a measure 

space with positive measure ja such that every point 

of S has a positive measure. (See Banach £11 and Dunford-

Schwarta £2j*) 



The hypotheses on M in Theorem 5 s a t i s f i e s , for ex­

ample, each non-empty closed subset of X v;ith Ul 

discrete for 3ome denucierable ordinal eo where UCtC* 

and Mw) i s the derivation of M(K~i} aid M , respec­

t ive ly , i f <*- - 1 ex i s t s , and M^mH M (fl* o t -

herwise, or each closed 3ubset of- the boundary of a convex 

subset of X , Special ly , each convex compact subset of a 

metrizable l inear topological space of inf ini te dimension 

i s the set of points of non-continuity of some detaicontinu-

ous mapping (for example, with Y m £^ ) since the c lo ­

sed linear hull of th i s set i s not a l l of the space. 

During the writing of the present p^per the following 

two theorems have been obtained. Ihey can be used to the 

study of continuity properties of mappings. 

Theorem 6. Let X » ( X , I * R ) be a 3anach space such 

that the dual space X* is separable. Then there exis ts a 

norm III • 11 on X such that for each bounded subset M 

of X we have: 

(M , i4 r ) - CM, III- I I ) , 

i . e . the weak topology of X and the J| • fl -topology 

of X coincide on bounded subsets of X • 

Theorem 7. Let X be a separable Banaoh space. Then 

there exis ts a norm 1 * 1 on X such that for each 

bounded subset M of X the identity mapping id *CMfvr)+ 

—» (M, HI • II) Is continuous, i . e . the Uf * III - topolo­

gy of X i s on bounded subsets of X coarser than the 

weak topology of X , 



The (simple) proofs are omitted* (Hint: It suf f i ­

ces to take a dense, respectively weakly dense, sequen­

ce i^k. \T * of the unit ball of the dual space 

X* jnd set Wxlll - £ r * - /-tC^C-*)!-) 

Example* Let X and X be normed linear spaces 

such that there are sequences i%^J^9i and i€inJ^9^ 

in X and X 9 respectively, such that ĉ —-* o, C^,-/-* o 

and - ^ — * o 7 ««3n, / > o . We can assume that 

II CL I » 4 * II «€L II for each integer n and that 4t4 

and •€- are linearly independent* Let h be the map­

ping from the proof of Lemma 1 constructed for our se ­

quence {-e^liT-r <t • Define 

1 OO if # » O • 

Let -f * A * Cfr . Then f : X ~> y Is demicontinuous 

on X , continuous on X \ (OJ , m*-QQa%Am>VII* and 

weakly non-continuous at the point X -* 0 . The proof 

of the f i r s t three assertions is similar to the proofs 

of preceding Lemma and Theorems* It remains to prove the 

weak non-continuity of f at the point x • 0 . We ha-

ve + r c , - > Jh($,(Cj)mJhC4)~ ("*-*)£+** m * +o 

(since the elements -e^ and -e are l inearly indepen­

dent ) , and hence * (e^) - -e - / -^ o -* -f (o) , but e^ —-»- o ; 

which proves the weak non-continuity of f at x -» 0 • 

fiejjajj^ For linear mappings between normed lihear 

spaces the continuity, demicontinuity and weak continui­

ty coincide (the proof i s easy)* (For more general re -
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su i t s see Bourbaki, Espaces vectoriela, Actua l i ty Sci. 

Ind.,Hermann,Pari3,No.l229,1955#) 

Now, we give some "positive" result9 for continuity 

properties of mappings which are t r iv ia l consequences of 

Nanioka's result ([3] ,Cor.1.3) . 

Theorem 8. Let X be a pseudometrizable separable 

local ly convex linear topological space, K a weakly 

compact subset X and Y a local ly convex space. Then 

there exists a weak dense and weak Gfr> subset Kp of 

K such that for each continuous mapping -f s K —* Y 

and for each demicontinuous mapping 9-; K —> y the set 

of points of the strong continuity of the mapping f and 

the set of points of the weak continuity of the mapping 

g contain the set Ke • 

Corollary. The same conclusipn as in Theorem 8 but 

with X a separable reflexive Banach space and K a boun­

ded weakly closed subset of X i s valid. 
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