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Commentationes Mathematicae Universitatis Carolinae 

9,3 (1968) 

ON THE BIFFERENTIABILITX (F OPERATOBS AND CONV̂EX FUNCTIO-

NALS 

Josef KOLOMf, Prafaa 

Introduction* This paper i s a continuation of our con

siderations [ 1 - 4 ] concerning the di f ferent iabi l i ty of ope

rators and convex functionals* 

Theorem 1 establishes sufficient conditions under which 

the G&teaux derivative F'(0) of a mapping F at 0 i s 

the Fr^chet derivative* This result can be useful for instan

ce in branching theory* It i s shown (Th*2) that for convex 

subadditive functional f (under some further assumptions) 

the existence of the Fre'chet differential d f ( 0 9<h>) at 

0 and the G§te«ux differential V-f £ x , ^v ) in some 0-

pen convex neighbourhood U ( 0 ) of 0 imply the existen

ce of the Freshet derivative f ' (X ) on U ( 0 ) • 

Theorem 3: concerns with so-called weak one-sided Lips chit z 

condition9 while Theorem 4 gives some sufficient conditions 

for continuity of a l inear functional f by means of proper

t i e s of a convex functional g • For the recent results in 

these topics see the bibliography cited in Cl - 42* 

1. No^atjLona and definitions* Let X ft be real l inear 

normed spaces, X * * Y* their duals, F J X - ^ V a 
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mapping of X into X • We shall use the symbols * — • *, 
n , 1r > * -to denote the strong and weak convergence in 

X, X . Then 

a) F i s said to be strongly continuous at x , i f -X ,^ 

i £ > * 0 implies F CX^ > —» F C * , > • 

b) a functional f i s said to be weakly continuous at X* 

i f y ^ -2£> X0 implies <f f*^> —-• 4 Cx, > * 

cJ F* X —* y ia called compact on a set M S X i f 

for every bounded subset N c M the set FCN) i s 

compact in X . 

d) A functional f defined on a convex open subset: M & 

S X i s called convex if 

f r a * + C l - t U ^ £ A-fV*) -hd-Xl-fCty) 

for each •*, ty € M and A e < 0, 4 > • 

For the Gateaux and Fr^chet differentials and derivati

ves we shall use the notions and notations given in [5, 

chapt.IJ. By V̂, 4 C*, , h, ) we mean the one-sided Ga

teaux differential of a real function f at X0 • Through 

th i s paper We shall assume that functionals f,V+f dx7A) 

are f i n i t e . J) (Q,R) denotes the closed ball with the 

radius R > 0 and the center 0 * 

2. We shall prove the following 

Theorem 1. Let XtX be linear normed spaces, X re f l e 

xive , F .* X —• Y a mapping of X into X having at 

0 the Gateaux derivative F'CO) * Assume that F'CO) i 3 

compact. If either a) F i s strongly continuous on DC071> 

and for each - 4 4 , , V € J > ( 0 ; 4 ) and real A 
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I F f A i * ) - F ( A v ) l » I A I I I F t e J - FC<r)W 

or b) F is bounded on J) (0, 1) and for each 41, , 

ir e J) C07 1 ) and r ea l -A 

II F C A ^ ) - F ( A i r - ) / l - lA-l* IFCu)-F(<r)ll 

with op, > i y then F possesses the Frechet der ivat ive 

F'CO) at 0 . 

Proof• Let h be an a rb i t ra ry (but fixed) element of 

X # By our hypothesis for given £ i> 0 there exis t s a 

number cC, C B, A> ) > 0 such that 

(1) II \ 0) (0, t4v) fl <r 6 

whenever 0 <z (t \ < d^ ? where 

o> C0, fr-ft,)* FCtJh) - FCO) ~F'(0)ttv . 

To prove our theorem we need to show that the numbers 

C% CtyJv) have a posi t ive lower bound cfCe) for a-

ny Jh, e X with JH Ju i m 1 and tha t ( l ) is valid for 

these h • Suppose contrary, there exis t a posi t ive number 

g0 and sequences {A^j e X with II -h^ II ** 4 

( * * » * , 2 , * • • ) , * **, / w i t h 0 * ' *** ' * m, 

such t h a t 

(2) II f ^ r < 7 > ** * % ) " > ** ' 

Since X i s ref lexive and i^V^ $ i s bounded, passing 

t o 9 subsequence {f%,§. ' we n a v e "tka* "̂ WA —"* ^ t ' 

Being 3) ( 0 , 1 ) weakly closed, " ^ € ]) ( 0 , 4.) , For 

given fc*, ^ 6 X there ex is t s a posi t ive constant 

<% (B9 , \ ) such that if 0 * It I < c£ , then 
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C3) | j co (0,ih, )/J < - § - * 

Since i -fc. J is a subsequence of {^H^i then the-

re exists t^. with 0 < 1t,. | Jr -I- such that 

U) J f- <yf0, * * 4 ^ > « > K ' 

We shall show that this conclusion leads to a contradic

t ion. By our hypothesis 

(5) ?Ci^4^)-FC0)*F'C0)t^*^+c»C0,1*H^ > , 

K \ * l > - FCO)« F'CO) t^Jh, + & CO,t^ A , ) . 

Hence 

(6) <i> C0,UAA,^) * FCt*H A ^ J - F f t - ^ A , ) --

+ t ,^ F'lOUb.' A,**) +6}C0,t1K4k*>,') . 

Assuming a) we have that 

(7) u t - ^ 0 f * * * A t a * ) l * « F t A - , * ) - F r A , > l l +-

+ \\F'(o)(K- K+)l+ ItZ*^ co'u*> A*n ' 
Since 4t -SL^ Ji,, as, Jk, -+ < e , 4 b 4 . A e 2>(0f 1) 

and P is strongly continuous on 2> (07 4), F£A*4 ) ""-* 

—f F(4tp ) as /fe —f co . Furthermore, F'(O) am a l i 

near continuous operator from X into X i s weakly conti

nuous, i . e . F'(0)4t J2^L¥ F'(O) <h, . But 

F'(0) D (P, 4 ) is compact set in X and weak conver

gence in compact set gives a strong one (see C5J, Lemma' 

4.X,p»68). Hence F'(0) C h0 ~ ^ 4 , ' - * 0 •« <hi~* °o . 

The third term on the right aide of (7) tends to zero for 

**,A —f 0 as 4 t —* oo and P has the Gateaux 
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derivative F" CO) at 0 . Hence 

as <M> ~~*T OO and this is a contradiction with (4)« Assu

ming b) i according to (6) i t is sufficient to show that 

-£-- « F«-* ̂ ) - Fc-^A, > ff - * 0 

whenever A - i » ^ i But the desired conclusion follows at 

once from the following relations: 

iuurUFct^A^)~ Fctn^ \ n & 

± \**(k}*C\lFCb^)\\+ \\FC*,,)\\) *2Clt^l*-+ 0 

as 4-><V for * —* 0 as Jh -* oo 9 <*> > 0 

mid C i s a constant from the boundedness of F on 

D (0^1) * Now proceeding as above, we obtain a contradic

t ion with (4)» This concludes the proof. 

Corollary 1. Let X be m reflexive linear normed spa

ce i f a functional on X having at 0 the Gateaux deri

vative 4'(0) * I f either a) f i s wakly continuous on 

J> (0,1) » d for each 4t € J> (0, 1) and real X 

4( A-fv)-* I A, I -f Ch ) , o r b ) , f i s bounded on T> (OjD 

and for real A 4C&Jh) ** {&[** 4 CH) with ^>1, 

then f possesses at 0 the Frdchet derivative 4'(0). 

Corollary 1 follows immediately from Theorem 1 if 

*c aware that the Gateaux derivative 4'CO) as an e l e 

ment of X i s weakly continuous. Theorem 1 can be use

ful for instance in branching theory* I t i& well-known £5J 

that the points of bifurcation of completely continuous o-

perator F (under further special conditions on F) may 
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be only the eigenvalues of the Frgchet derivative F'(D) 

of F at 0 * 

Let XfX be linear normed spaces, Fi X —? Y a 

mapping of X into X • The following result i s due to 

M.M# Vajnberg t5fTh<»3*3J: If there exis ts the Gateaux de

rivative F'CM) of F in some neighbourhood UCx0) of 

Xfi e X and th i s derivative i s continuous at x0 in 

the norm of the apace ( X —* V) of a l l linear continuous 

operations from X into Y , then F possesses the Fr6-

chet derivative F Y * # ) at *X<- * 

Now we shall prove that for convex subadditive func

t ional f (with some further properties) the existence of 

the Gateaux differential V 4 C*x, 4v ) in some neighbour

hood U(0) of 0 and the Freshet d i f f e r e n t i a l ^ ^ , h ) 

at 0 imply the existence of the Frdchet derivative fY«x) 

on U10) 0 More exactly we have the following 

Theorem Z. Let X be a reflexive linear normed spa-

ce f f a convex subadditive functional on X such that f 

i s upper~bounded on some convex open subset M * 0 of X 

and 4 CO) s& 0 . Assume f possesses the Gateaux d i f fe 

rential V4 (oc, <H ) for each tf , *x «4» 0 of some o-

pen convex neighbourhood U CO) of 0 and that there 

e x i s t s the Frdehet differential i f C0} H ) of f at 

0 • Then f possesses the Fr£chet derivative 4'Cx) on 

UCO). 

Fyoof. Continuilfcy of f follows at once from Theo

rem 2 t 6 f I I f § 51. Convexity of f implies that V* CdcfA)s 

« D 4 Cx, 4u ) for each # e UCO) and every H € X . 
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According t o Proposit ion 6 C7J 2-fCx7<fi) » -f'CiX, <h ) 

for each X 6 UCO) and every 4v C X , where f'Cx) 

denotes the Gateaux der ivat ive of f at x • By our hypo

t h e s i s , oLfC07 Jfa,) ex is t s and hence f possesses the 

Pr^chet der ivat ive 4'CO) at 0 • Suppose there does not 

exis t the Freshet der ivat ive 4 'Cx ) at some x € U CO), 

X -£ 0 * We proceed as in the proof of Theorem 1. In r e 

l a t i ons ( l ) , ( 2 ) l ( 3 ) > ( 4 ) write x for 0 , f for F and 

the remainder in ( l ) replace by 

co Cx, th) **fC* +t*,)~-fCx)~4'(*)***- -

Since the one-sided Gateaux derivat ive Y+ -f Cxy A ) i s 

equal t o f'CX^Jv and f i s convex, we deal here only 

with a sequence { t ^ J of posi t ive numbers. The elements 

4l0 , {<fo>*,}£?-i and the sequeneeYfiave there the same 

meaning as in proof of Theorem 1« Instead (5) we have 

( 8 K t o + t ^ A ^ ) - f ^ > 

fca + t * * ^ ) -ICxlmf'Cx)^*,. + &>Cx,t*A&, ) . 

By convexity of f and in view of Lemma 2 C3J 

(9) coCXyt^h,^^) £ 0} aCXtt^^Jv,) & 0 

for each Jk, C4t m 4 , r2,.„, ) . Again in view of subaddi t i -

v i t y and convexity of f we have that 

(10) *CX + t^AAv„M)-+(x) £ * « * * ' * * , * , > 

and 

(11) 4Cxl-*(*+t*h4i,) 6 <fCx-U^*i.0)~fCX) 4 

4 4 C-t^ A, ) . 

Hence from (8),(9),(10),(ll) one obtains that 
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(i2) o .i uCxj^k^-) fe fctn^M,^4t)+-ec-t^H\ ) + 

+ 4'Cx)t«,k f A » - K 4 ) + a> CM, i ^ ^ ) -

Since -f CO) & 0 and f i s Fr4chet-diff erentiable 

at C , 

(13) 4 Ctnft to.^)~-t'CO)UkK^ + co CO,t„u 4v^A ) , 

f C- t*^<k0) * - -f 'CO) KA K + o) CO, - * » A .#!» ) • 

From (12) and (13) i t follows that 

ok -f- co(x.t^-K*) £ rconJk^—KA + 

+ 4>C*)C*i.- KM) * T~ co(*,UH>k*>+-fca,(0>t<iS*!+ 

+ JL a>COt-t^Ap) . 

Since -h"*^ ^~+ **-* an(* 4'CO) , -f'C* ) are 

weakly continuous ( V CO) , 4'Cx ) belong to X* )f 

•f'MChni- K )-+ 0, -TC* ) C*i„- ̂ ^ ) -* 0 as A ~* ̂  • 

By our hypothesis f has the G&teaux derivative -f'fx) 

on U(0) (see the first part of this proof) and thus 

J-v(x9*%M**)-*0, 4- o>COrt^.Atp) -+0 

whenever At ~*r CO m for t^m —* 0 . The term 

^— CO C09tm^ ^^jft ^ tends to zero as At —¥ CO 

in view of the existence of the Pr^chet der ivat ive 4'CO) 

of f at 0 and the fact that tm —> 0 as M, -* oo 

and II - * ^ H -* 4 • Hence 

-^~ c*)Cx,t„H<kmA ) -+ 0 

as Jk -*r OO . We have obtained a contradiction^ Thus t 

possesses the Fre*chet derivat ive 4'Cx > on £/f0) • 
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This concludes the proof* 

Corollary 2. Let X be a ref lexive l inear normed 

space, f a subadditive posi t ive homogeneous ( i . e . f f A , * ) * 

» X4CX) for any A ^ 0 and X e X ) functional on 

X such that f i s upper bounded on some open convex sub

set M -4* 0 of X • .Moreover, suppose f possesses the 

Gateaux d i f f e r en t i a l Vf (X 7 Jh> ) for each * , X 4* 0 

of some open convex neighbourhood U (0) of 0 and It he 

Frgchet d i f f e ren t i a l (if (07 4% ) at 0 • Thai f has 

the Pr^chet der ivat ive 4 '(X) on UCO) • 

He mark 1. If a funct ional f defined on a Banach spa?" 

ce X i s e i the r a) upper-semicontinuous at some point 

X# e X or b) lower-semicontinuous on X , then there e-

x i s t s an open ba l l D and a constant N such tha t f i s 

upper bounded on D by the number N • The asse r t ion a) 

follows at once from def in i t ion of upper-semicontinuity of 

f at X, f while b) follows immediately from Theorem C8, 

p . 313. Recall tha t m ref lexive l inea r normed space i s a 

Banach (reflexive) space. 

Now we sha l l deal with so-cal led weak one sided Lip-

schi tz condition (compare £51,chapt*I). We make f i r s t 

.Definition. We sha l l say tha t a convex functional f 

defined on a l inea r normed space X s a t i s f i e s the condi

t i on (A) at X0 e K i f for each Jk € X with I I A I » 

m 4 there ex is t s a number (f (4%) > 0 such tha t 

tCx, + t4i) + *Cx,»th) - 2 ^ * , ) .£ Ct UAH 

whenever 0 < t < cT(4% ) 9 where the constant C does 

nob depend on 4v e X C II -fv II « A ) • 
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A functional f i s said t o sa t i s fy a weak one-s i 

ded Lipschitz condition at x , € X if for each H € 

6 X with H Jh II m 4 there ex i s t s a number oTC4% ) > 

> 0 such tha t if 0 < t < <TCH ) there ds 

If (*p + th)-f(o<.>\ & Nt l<hl\ 7 

where the constant N > 0 does not depend on 4i 6 X 

(ll-Ml • 4 ) -

Theorem 3» Let X be a l inear normed space, f a 

convex functional on X sat isfying the condition (A) 

at Xp e X • Let one of the following three conditions 

be f u l f i l l e d : m) f i s continuous at x # ; b) 

V+-f(x0iJh) i s upper bounded on some open convex sub

set M*0 of X ; c) X i s complete and V̂  4 (x* ,H ) 

i s lower-semicontinuous on X • Then f s a t i s f i e s a weak 

one-sided Lipschitz condition at x0 . 

Proof • Since f i s convex, V+ 4 (** 94% ) i s sub

addit ive and posi t ive homogeneous 192 and hence convex on 

X . Assuming b) and using Theorem 2 C6,II ,§ 5 J we see that 

V+ 4 ( O<0 j 4H* ) i s continuous on X . But continuity of 

t h i s mapping inpl ies the boundednesa of ^ (X* , 4%, ) 

in some neighbourhood of 0 • Now the posi t ive homogenei

t y of V+ 4 (X, , 4l> > implies that there ex is t s a con

s tant C, > 0 such tha t 

(14) \V+4(xPJJh,)\ * C, llk>\l . 

The case c) we t ransfer to b ) , see remark !• Assume a ) , 

Vf 4 (** y fo ) s a t i s f i e s (14) by Theorem 8a) £3j . Set 

Cf(X0>t,<h)~4 (x,+t4t) + 4 (#,-th ) - If (**) 

for t > 0 and M, 6 X . Then 
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(15) 4(#p+tH)-4(<x,)*Cf(x09t,4i) + f(0<0)-'t(Mp-tA)' 

By our hypothesis for each <h € X with l\Jh,t* 1 

there ex is t s a number <T(h) > 0 such tha t if 0 < 

< i <d~CA) , then 

(16) Cf (*<„*, H) & Ct llhll * 

By (15) ,(16) and (14) and according to lemma 2 C3J 

4(x0+th)--MM,)* CtlSHll+l^tCx^th)! k 

.4 Ntllhll > A/ - C + Ci 

i f 0 <t < CT(h ) and h is an a rb i t r a ry (but fixed) 

element of X with Hhll*4 . On the other hand, by 

lemma 2 [3J and (14) 

4(¥.+tM,)-4(x.)m\ V+4(x,,th) & ~efttthl . 

Hence 
\4(*,+ tJK)-4(*,)\ t Nt llhll 

whenever 0 < i < <T(4v) and IIh II ~ 4 * This concludes 

the proof. 

Remark- 2o We sha l l say that a functional f has one

sided symmetric d i f f e ren t i a l V5 4 (o(Pj Jh ) at *£ € X 

3f there ex is t s for a rb i t ra ry (but fixed) h, e X the 

l imit 

AJ&» 4 U(*.+ih)-4(*9-tK)l* V*4 (*„h) . 

For convex functional f the one-sided symmetric d i f f e 

r e n t i a l V+ 4 (*7h) always ex i s t s for every X€ X * 

Moreover, if V+ 4(x<,y M ) m V+ 4 (X*, 4% ) f o r e -

very Jv € X f where f is a convex funct ional , then 

f possesses a l inea r Gateaux d i f f e ren t i a l J> f (*p* h ) 

at X, . Thus, i f Vf4(*0,Jh) • Y4.4(x4>, <h ) for 
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every H e X and f i s for instance continuous at xp, 

then f possesses the Gateaux derivat ive i'(x^) at dt . 

Theorem 4« Let X be a l inear normed space, f a 

l inea r functional on X • Suppose there ex is t s a convex 

functional g such that for some &0 € X 4 (X0) m 

x £ (*0 ) and 4 (x ) & 9* (X ) for every x€ X . 

Then f i s continuous on X if one of the following three 

conditions is f u l f i l l e d : a) g is continuous at x, ; b) 

V+^r^^of'H) 33 upper bounded on some convex open 

subset M s* 0 o f X ; c ) X i s complete and 

V+ CL ( X9 7 H ) i s lower-semicontinuous on X 9 

Proof» Let H « X and t > 0 . Then 

^p)¥t^{H)'^(x0)+i4(H)m^(^^tH)^<^(^0^^^ ' 

Hence 

(17) i(<H} k VJh<fr(*„H) , HeX . 

Furthermore , 

(18) f CH) m - « P f - * , ) & - V+<frCx*9-H) 

for every -It € X # The inequal i t ies (17), (18) and lemma 2 

£3J give 

£6y<0-<|,f**--*!,) 4 - V+q,(x,iH) &f(H) h 

£ V+fr(X„4v) £ q.(X,+Jv) -<j~C*o ) 

for every H € X * Assuaing a) the continuity of g a t 

X# implies continuity of f at 4v m 0 * Being f l i 

near, f is continuous on X • For the cases b ) , c ) we p ro 

ceed as in the beginning of the proof of Theorem 3« This 

complete* the proof* 
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Rgmark 3 . Prom the assumptions of Theorem 4 C7J i t 

follows that f i s continuous everywhere in X (and not 

only on the open bal l B~ ) . The same asser t ion follows 

at once from the conclusion of Corollary 1 C 4J. The resul t 

of Proposition 1 f4J one may rewrite as follows: i f f i s 

a convex functional on a l inea r normed space X , then f 

possesses a l inea r Gateaux d i f f e ren t i a l J) 4 (xa , <h ) at 

y0 e X if md only if f is d i rec t iona l ly smooth at 

&0 (see C4J). Hence Theorems 2,3 C4J and the r e su l t of 

Ivanov ClOJ imply the following asse r t ions : 

(aJ If X i s a l inear separable normed space, f a 

convex functional on X such that f i s upper bounded on 

some open convex subset M •*• 0 of X , then the set 

P of. a l l X e X where f is d i rec t iona l ly smooth is 

a F^,^- - s e t . The same conclusion is valid i f X i s a 

separable Banach space and f a convex lower-s&micontinu-

oua functional on X . 

(b) I f f i s convex and Lipschitzian in a separable 

Banach space, then the set P of a l l x € X where f i s 

d i rec t iona l ly amooth ia a fV^~ - se t of the second ca t e 

gory in X • 

(c) Let X be a l inear normed space with dUm X •* oo f 

t a convex functional on X such that f ia d i rec t iona l ly 

amooth at X# # X and Lipschi tz ian in some convex 

neighbourhood of 3<# Then f has the FrSehet der ivat ive 

•f 'CX, > at x„ • 
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