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Commentationea Mathematicae Universitatis Carolinae 

9, 4 (1968) 

PRINCIPAL DUAL IDEALS IN LATTICES OF PRIMITIVE CLASSES 

Jaroslav JE2EK, Praha 

Consider a type A of universal algebras and the 

lattice o^j of all primitive classes of algebras of 

type A • J« Rebane £2J has shown that if A con

tains at least one at least unary operation, then each 

proper principal dual ideal J of ^ is infinite* 

It will be shown in the present paper that if A con

tains either at least two unary operations or at least 

one at least binary operation, then each J is uncoun

table. Clt will follow that if, ia addition, A is fi-

nite, then each J has exactly 2 ° elements; the 

continuum hypothesis is not used here.) Let us remark that 

if A consists of one unary and a finite number of 

miliary operations, then (as it is shown in £1.3) £^ 

and hence each J is countable; if A consists of 

one unary and an infinite number of miliary operations, 

then it is easy to prove that 06^ contains both 

countable and uncountable proper principal dual ideals. 

Some terminology will be given in § 1. However, the 

reader is supposed to know the.definitions and fundamen-
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t * l properties of absolutely free algebras and primitive 

c l a s s e s . See Slominski [3]# 

§ ! • I*tU9W Qt Prtffl^t?? $1$§9PM 

By a type we mean an arbitrary family A -» (#1*4) ± e 1 

of non-negative integers* Let us make a convention: i f 

a type i s denoted by A t then i t s def init ion set i s 

denoted by I and the integer corresponding to t € 1 

by m. • 

Algebra of type A i s a set A together with 

a family C -f^ ) ± fc x where \ i s an /rv^ -ary 

operation in A .We ca l l f± the ' t - th fundamental 

operation of this algebra. If rft^ -* 0 then f̂  i s 

simply an element of A • 

Let us f i x an in f in i t e ly countable set X 5 ittf e-

lements are called variables. For each type A l e t us 

f i x an absolutely free algebra W^ of type A free

ly generated by X • If i# e I , then the -t - th 

fundamental operation of W^ i s denoted by f̂  • 

Let us define a set S(w) for each ur e Vv̂ j ; 

i f vr e X , then S ( i ^ ) = {wj • i f i e I / 

w - \ (uK,,*.., *%,,. ) , then $>(<w)~ {W1 U S (^ )u ... 

*..u SOzc^..), The elements of S (<iw ) are called 

subwords of 'Mr .It is easy to prove that if 11/^ 

is a subword of 10^ , then ^ ( ^ ) is a subword of 
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Cf C^% ) for any endomorphism <p of WA • 

Let us define a non-negative integer KCW) 

for each ur e. W^ : i f <ur e X or <w « f̂  for 

some -i & L y <TL^ -* 0 then /£ CICA* ) « 0 J it i e 

6 1 , / r t j - r 0 , < u ^ ^ <*«*:- — ;*&. ) , then >tC<ur)~ <]+K(-U%)-*-... 

.-'-*-/tCn{^)# It is easy to prove/tr-u/) ^ /t C<5PCi^)) 

for any endomorphism <?> of H^ * 

By a 4 -equation we mean an ordered pair 

< -uKf ^ "UT^ > of elements of W^ . By m A -theory we 

mean any set of A -equations, i.e. any binary relation 

in W& • A A -equation e is identified with the 

A -theory ie i • A A -equation <<u^, urz > is 

called trivial if <u^ « *c£ • 

By a fully invariant congruence relation (shortly: 

Fl-congruence relation) of W^ we mean a congruence 

relation E such that < ̂  , <ur% > c E implies 

<<?Curi) ,g>C*U£) > c E f0r a n y endomorphism y> of 

wA -

Lennff \- Let m, be a non-negative integer* The 

set of a l l A -equations < w^ , -«/£ > such that e i 

ther -ur^ m <ur% or /c Ctir^ ) z, m, <ft n(w^) >. m, i s 

• FI-congruence re lat ion of W^ • 

The proof i s evident. 

For any A -theory E ,the least Fl-congruence 
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re la t ion of Vŝ  containing E i s denoted by 

CixCE) . 

We shall write E r- E instead of Ea £ 

s On, CÊ  ) • 

The set of a l l Fl-congruence relations of W^ ia 

a complete l a t t i c e with respect to the set-theoretic in 

c lus ion. The dual of this l a t t i c e i s denoted by OCA # 

This i s the set of a l l Fl-congruence relations of W^ 

with the re lat ion £ A defined by E, -£A E„ i f 

and only i f E^ £ E . 

A ^ -equation < 14J 7 ^ > i s called valid in 

an algebra A of type Zl i f S ^ ^ ' ) -** S 7 ^ ^ ) f o r 

a l l homomorphisms 9? of W^ into A . If £ 

i s • A -theory* then Wl&eL C E) denotes the primi

t ive clas3 of a l l algebras of type A in which a l l e-

quations from E are valid* If *OL i s a c lass of 

algebras of type A , then £c£ C<VC ) denotes the 

set of a l l A -equations that are valid in each A e S#£ . 

The following three properties are well-known: 

i ) If E1 and E^ are two different element* 

of eU£ , then the primitive classes OTLycL CE1 ) and 

lYlxydL CE%) are different, too . 

i i ) Any primitive class of algebras of type A 

can be expressed as WxrcL C £ ) for some E e cC^ • 

i i i ) If E1 , E 4 e £A , then Ei ±A E 2 

i f and only i f TTUKL C E^\ £ W&vL C E± ) . 
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This shows that the name " la t t i ce of primitive clas

ses;" for ot/£ is available. 

*>* 
Let us denote by LA the greatest element of 

If E e &£ 7 then the set of a l l H e *&A such 

that £ —A H is called the principal dual ideal 

(of &£ ) generated by E • I t i s called proper 

i f E 4* LA . 

§ 2. The uncountability of proper principal dual 

Mstite Qt ^A for XWCM %x^w A 

Let us cal l a type A large if either 

(1) rflj^ -» 4 for a l l i e I ; there exist two 

different elements iM m i„ of I such that fij — 
•* * 2 *f 

* ^ s 1 or 

(2) there exists an i € I such that '7L- -̂  -2 • 
1 +1 

In my paper tlj it is shown that for each finite 

type A , the lattice «£̂ j is uncountable if and on

ly if A is large. Here we shall prove this 

Theorem. Let A be a large type. Then each pro** 

per principal dual ideal of aC^ is uncountable. More

over! it contains a subset which (considered as partial

ly ordered by -̂ ^ ) is isomorphic to the lattice of 

all subsets of an infinite set. 

First a definition. A A -theory E is called 
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separated i f i t i s inf in i te and CTVCE1) =. Cn CEX) 

implies E1 =- Ez for a l l Ef , E± £ E . 

It i s easy to prove that i f E i s separated, 

then the mapping & defined by &>CE^ ) == CmCE - Ê  ) 

i s an order-isomorphism of the la t t i ce of a l l subsets of 

E onto a subset of the principal dual ideal of «*6̂  

generated by Cn% C E ) . 

We have further evidently: i f H € &A f H =£ LA 7 

then there ex i s t s in H at least one non-trivial e~ 

quation C fand i t i s H H- e . 

Hence, to prove the Theorem, i t i s enough to prove 

that for each non-trivial A -equation e there exis ts 

a separated A -theory E such that e l - E , This 

w i l l be proved in the following two lemmas. 

Lemma 2 . If a type A s a t i s f i e s (1 ) , then for 

each non-trivial A ^equation e there exis ts a se

parated A -theory E such that e t— E- . 

Proof» The element* -i e I such that m^ » 4 

are called unary symbols. If A> =- /i>̂  <4>z... A>^ i s a 

f i n i t e (not necessarily non-empty) sequence of unary 

symbols and liT e W^ , then vr i s defined in 

this way: i f /o i s empty, then <ur* - <ur ; further, 

i t r 1 - ^C-ur ) . The special una-
'ПV+Ą 

ry symbols i. and -t^ (see ( l ) ) are denoted by | 
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and + t respectively. We shall denote by -f the 

sequence consisting of i-v symbols -f-

Let H be the set of all positive integers. 

Put a ~ <AC? v > , so that w 4* if . For each 
i t - /ft. 

. , , .4-. J + J 

<rv e N put e ^ » < ^ , v > - For each M £ 

c N l e t E M be the set of a l l e ^ with m e 
e M . put E c EN , We have evidently e h- E . 

Put H =- C'n. Ce ) . Let us define a re la t ion RM 

in WA for each M S N in th is way: <MXi 9iv: > e 

6 RM i f and only i f either ur ** W% or there ex

i s t s an equation i AL^ 7 u>% > € H , a number /m e M 

and a f in i t e (not necessarily non-empty) sequence A> of 

unary symbols such that -u^ * ^'hi4> and 'UJ » 

-» ^ . Let us prove that R ^ i s a Fl-congruen-

ce re lat ion of WA - It i s evidently enough to prove 

t r a n s i t i v i t y . Let < w,, W2 > e R M and < i ^ , ^ > e 

e R M . If 1 ^ r litj or <u£ -» -U£ , t h e n < ^ ? ^ > 6 

C RM evidently. In the opposite case there ex

i s t equations < x>6f7 ^ 2 L > € H , < i £ , t ^ > e H ? 

numbers /nt, /rt e M and sequences /fc, .5 such 

that ^ - ^ l ? \ « 5 - < ' * - v&*. «* - n ' * * . 
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It follows from the expression of vTz that either 

li-|A> i s an end of \ - H / b or l-H 4> i s an 

fft\* 

end of 1 4- 1 fo . We shall consider the f i r s t case; 

the second could be handled similarly. There ex i s t s a 

sequence T such that \+ I A> i s equal to 

t \T\*> . Clearly <ir* , i r / > € H and 1 ^ ~ ^ j 

we get < > ^ , ^ > e H . As ^ » ^ r + , / S and 

^ » t ^ t , + '* , we get <mr^ 9 %tr9 > e RM . The asser

t ion on R^ i s thus proved. We have evidently 

R 2 EM and hence RKA 2 Cm C £ M ) • 

To prove the Lemma, i t i s evidently enough to 

prove that If tn e N - M 7 then e ^ ^ C ^ C E^ ) . 

Suppose on the contrary that ^ ^ e C^ C E M ) • we 

get e ^ £ R-w . There ex i s t s an equation (ic^ , 1/j > € 

£ H , * number mv € ,M and a sequence 4) 

such that x t ^ ' = « , ' * ' * M d ^ ' . * ^ . 

We shaJLl go on under the assumption /t <*^ > t6 /C Ct^ ) ; 

i n the contrary case the proof would be analogous* Evi

dently ftCAJU) 4z K Ctr) , too . km <4X,i9ir •> 6 

e C<rv <A*7V > and -a„ ** a/J , we get n, (^ ) > 
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>. ftC*^ ) evidently applying Lemma 1. From this and 

from A*,1* I =* AA}+{* i t follows eas i ly that 4> 
7 

i s empty, fft ** /ttt and 4C ** 4A*>^ * 

But m, 9 /m, i s i n a contradiction with the assump

t ion m* £ M * 

Lentil V If s type A s a t i s f i e s (2) 9 then for 

each non-trivial A "-equation e there e x i s t s a 

separated A -theory E such that e f— £ • 

Bgoof. Let us f i x an t> e I with /KI^ «2- 2. 

and put <n± *z Jk . If i^f 1 vJ^ e Vv̂  ,' then 

put ^ • 1 ^ - f t < ^ , *<>*, — , **i *> . K 

^ ? ' " ? / M ^ e K i > then the product ^ . . . t ^ i a 

defined in th i s way: i f rrt - 4 ; i t i s equal to 14% ; 

i f /rt > -1 , then 1 ^ . . . ^ ~ f*^ . . . - z ^ , , ) - ^ . 

/TV 

If K ^ as . . . -• lt%^ ss tc/% we write t*r instead 

of ^ . . . 14^ . 

Put e « <f^? i/- > y so that -a* -^ V". Let N 

be the set of a l l Integers /n, • ̂ s 2 . Let us f i x a 

variable X . For each m e N put e ^ *• 

es ^/Mx-x^., V - «x^> . For each M £ N l e t EM be 

the set of a l l e , ^ with ntt e M . Put E =• E N . 
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We have evidently e f— E . 

Let a set M £ N be given. A finite sequen

ce eCf>-. **. 7e
r of zl -equations is called proof 

(with respect to M ) if for each -̂ » 4,.. * 7 A, 

one of the following cases takes place: 

i) e C^ ) is trivial; 

i i ) there ex i s t s an /ra* e M and an endomorph-

ism <?? of WA such that either e^-= <<j> Cu. - X™), 

c ? ( V - v X ^ ) > or e ^ ^ ^ ^ ) ; ? ^ ' ^ ^ ; 

i i i ) there ex i s t s an i e I and a sequence 

iuZtjUft > ; ' " < ^ C , ^ , > of A -equations such that a l l 

these equations occur among e>c 1
 7 " * ? e *~~ and 

iv) there ex is t two equations < Wj «£ > and 

(v/l7^ > among e ^ , . . , , e # " * ; such that e ^ » 

= < 4 ^ 7 ^ > . 

I-et R w be the set of a l l those A -equations 

that occur as the las t member of a proof (with respect 

to M )• It i s easy to see that R^ i s a FI-

congruence re lat ion of W^ ; so that evidently 
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RM -<*<£„>' 

To prove the Lemma, i t i s evidently enough to pro

ve that i f /ne N - M , then e ^ # Cn,(EM > - Sup

pose on the contrary that e^ e f?M , so that e ^ 

i s the las t member of a proof (with respect to M )* 

e'Y>, , , * , ecM . We may suppose /vC^u,) £ K, (tr) ; 

i n the contrary case the proof would be analogous. We 

can not receive e ^ * applying only the rules i ) and 

i v ) ; hence, there ex is ts a g~ £ M, and m W e W& 

such that atr jt* AA, - tx'n' and e^}» <AA.^X^1 i4T > 

and such that &&* can be got applying i i ) or i i i ) . 

(In the case /c (*&>) £ /c (tr) we would seek ec^> in 

the form < <UT7 tr • X** > . ) Suppose that e>c*} can be 

got by i i i ) . There ex is t elements ^ ? <ur2 ,,„7 to^ e WA 

such that W =* fy (<uri7 vrZ7*.* , 1*^ ) and 

<AL7 tc^ > e RM - <*", <urz > e RM , »• 

Let us c a l l an element t e W^ special i f i t has 

a subword f̂  Cti7 ..* ? t ^ ? where t ^ i s not a 

variable. Evident.!v. we «et a Fl-congruence relat ion i f 
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we take the set of all those A -equations ( t, i > 

such that either t =? t or t and t* are 

both special. As £ ^ and hence R^ =- C'rL C £ M ) 

is contained in this Fl-congruence relation and as 

x *- r̂  (x ., x...... 7 x > , x » 

= "£* rx"1"* 7 x 7 . * , 7 x )7 — 7 
*f 

x2 » f̂  C x , x , .,• , x > , 

we get X"* -» ̂  -=. .,* =- ^ . As K (44,) & tc C<w), 

/c (4A. < x w ) > K~(4A,) for all an. e M and 

^ ^ . , 4 ^ > e R^ 9 we get .^ s» ̂ -t̂  easily by Lemma 1. 

We get '«/"-=* /(̂  * x"1,
 7 a contradiction. Hence, ec^} 

is as in ii). We have either At* x"*W <p£«. * x""') -=» 

« 97 6a* > • <><rx»'m' or 

>a - x ^ » y C ^ * x^) - 9>(V) * c^C* »',r,' ; 

in both these cases x ^ - s fgp f x »*"' . As m 9 

<m -£ 2 7 we have ^ f x'n~% x , - • , x > -

« ^ ( C y ( x « ^ , g ? C x ) / . . . , 9><Tx)) 
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and hence .* * 9? (x ) - From ex"** *> x/tn' we get 

evidently r̂t & rm- € M , a contradiction* 

The Theorem i s thus proved* 
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