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Commentationes Mathematicae Universitatie Carolinae 

9,4 (1968) 

A REMARK ON THE THEORX OF LATTICE POINTS IN ELLIPSOI.DS II 

Bfetislav NOV^K, Praha 

The aim of this remark is to refer to the use of 

a certain "dual" relation in the the cry of lattice points 

in ellipsoids* Combining the basic identity (see Theorem 

l) with some author's previous results it is possible to 

deduce a number of Interesting O-estimations. In this pa

per there are made use of certain ideas, which can be ori

ginally found in Landau [2J# 

In the following let r be a natural number, r £ 2 . 

Q let be a positive definite quadratic form in r variab

le® whose determinant is denoted by D » Q be the form 

conjugated with Q • Let further oe..-, ot2, ... , ach and 

b^ t b, ,•••• b^ be systems of real numbers and H, • Ma,..# 

• ••fM^ a system of positive real numbers. For x £ 0 let 

us define the function A(x) as follows 

where the summation runs over all systems u^u^,..., u^ 

of real numbers, which satisfy the relations Q C<Uj,) « 

--aCa^^j,,^^)^ X atidA^s^CmodM^), £* I,*,-*,*" 

l) As part I of the presented work (which is independent) 

is considered the paper C53« 
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If we put as usual 

( cT s i if a n numbers ac^M^ , <K2 M±,..., OC^ M^ are 

integers, cT * 0 otherwise) then for the function 

P(x) *A(x) - V(x) 

hold as known (see £2Jpp.ll and 71) the estimates 

(1) PC*)* OCx*"^*1) arri P C X ) » i l C X ^ ) ^ 

(we shall exclude from our considerations the case where 

A(x) = 0 identically). 

Let further 0 < -\1 < ^1 < •. . be the se

quence of all values of the form A Cari^ M^ + Jfy ) > 0 

with integer ^ , a 2 »•••» »/» » **-© * ° » and f o r inte

ger n £ 0 let 

«* - ACA 0 ) , - o ^ - A a f t + 1 ) - Aca^) . 
Thus _ 

. *<*> =*jL *~ • 
For fp complex, Re <p > 0 let us put 

* . ' * > - r 4v / < A r t K ' * - ' t > S D " v " t 

? PC<p) o 

and analogously let us define the functions ¥p (x) and 

P? (x) . If we put AJx) = A(x), \t.<x)~ VCx), PQ ex) - PCx) 

then for nonnegative rD obviously 

etc« 
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Let the letter c denote (generally various) posi

tive constants, which depend at most on Q f oc* , b ' f 

M ^ (J a l,2f... f r ) • The relation A « B means that 

| A I £ c B . The symbols 0f cr and SL are meant in 

the usual sense. For s complex, Re s > 0 put 

As known, the function © (s) is a holomorphic func

tion in the half plane Re s ;> 0 . 

In the introduced way the functions A(x), V(x)f 

P(x) f kp (x) , © (s) etc. and the numbers cT f 21^ f 

a ^ (n =-=0,1,2,...) correspond to the farm Q. and to 

the systems of numbers oc- , b; , M ̂  (j * lf2f...f r) 

(in this order). The functions A(x) , V(x) , P(x) f 

A^ (x)f © (s) etc. and the numbers cf f X ^ % at-* 

(n = 0,lf2f...) we shall design for the form % and sys

tems of numbers b^ f - oc^ f V M ^ (j =- lf2f...fr ) (in 

this order) analogously- If we choose for s complex, 

Re s > 0 the branch 8 in such a way that it will 

be positive for positive values of 5 f then as known (see 
[13 po108) for the s considered holds 

(2) 9Cs) « * 1— v r ~ 0(f ; . 

Let us note, that obviously a> = <f ai = cT and 

- 549 -



The dual relation referred to in the introduction is 

given in the following theorem. 

Theorem 1. For (D complex, Re p > #/£ x > 0 

holds 

(з) 

/^чj-Srf̂ -ь 
where J»(x) i s the Bessel function of the 1st kind and 

in the integrand we put a/z^x » ^ ^ f ==* 0 • 

Proofs If jo i s complex, Re p > 0 t m > 0 then 

obviously 

A л C x ) = „4гг / - - Ц - í s ) c í s 

where the integration is to be taken over the line Re p = 

> s » If we now use the relation (2) we find that for 

Re p > ^/l we can according to the trivial estimate 

interchange the summation and integration. For A > 0 f 

B s£ 0 however 

~ ~ A B - | V(V2+p+1) f O T B S ° 
2srK.L ^ ^ r d s " 

C f )%+%a + ? > ^ ^ ) for B > 0 . 

For © complex. Be p > */fc we thus obtain a general 
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form of Landau's relation, as deduced in [5] 

a-'Kiy.'tr MT «&-I ~ 3: v**<% 

Now let us consider that for an arbitrary function 

g with a continuous derivation on the interval ( A ^ T ) 

(T > A 1 ) holds 

X~ K<*&^~ (ACT)-a;0)fr(T)-

-jf (ACf)-o,.)q:(f)cLf . 

If we choose 

9 < f > « f ^ + j p ^ ^ 

and consider that X Cf )-ao « 0 for f e < 0 , A fJ ; 

A cf ) - ̂  « f V* we get, using the limit for T-*+co 

and substituting in (4) immediately 

( 5 )
 p ^ " f ^ ^ M * * 

If oc i s rea l , oc > — i ? then for p complex, 

Ha 50 > 2 oc - ^ / 2 following well known relat ion for 

the Hankel transform holds (see C6]p#435) 
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^•F-a-*-* V-*-*-̂ --* P Cot + 4 ) 
* *• * rrV2f-p.oD-i.4> 

Using this relation for at =. */2 we obtain 

jr^yjy . f tMi . •/ v f )
 f <*+*** d f - r ^ + « a ° 

3-*f » •* 

and thus from (5) immediately follows (3). Using (6) for 

oo a 0 f we can rewrite (5) in the form 

> - ) 
ApCx) = 

Using Theorem 1 we can now deduce a basic re lat ion 

for the O-estimates: 

BKfftpi 2« Let c T - 4 , * > 5 2 ) and 

(7) P ( ^ ) = OCX*) 3 ) 

then 

(8) Pc\x)=- O C * V 2 M + £ ^ ) for o o V - V - V f , 

2) Let us note that , tor Z £ r £ A and for <*. & \-j[b\ i 

T ** 5 , 6 , . . . , we cannot obtain on the base of t h i s method 

any better result than Landau's estimation OCx a~ **1 ) . 

3) According to ( l ) i s at & V 4 - V - * - as A(x)sj5 0 and 

thus according to (6') also A(x)=fe 0 • Obviously (see ( l ) ) 
we can assume that oc £. *-/l -*-/*,+ 4 . 
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(9) PCx) « 0(xA+*Alg.x) for oc.-*%-'/* . 

If (7) holds with symbol 0" * , also (8) holds with the 

symbol cf • 

Proof. We shall use the usual Landau's procedure (see 

L2]tpp#25-29). Let x > c and P(x.) << x^cpCx) , where 

we consider the following cases: 

a> cf(x) s 1 (if (7) holds and oo > V-> - Vt- ), 

b) Cf(x) 5 1 ( i f (7) holds with <x. =- V4 - %• ) , 

c) cpCiX) i s a pos i t ive function, cp(x ) - <r(1) 

( i f (7) holds with symbol <X - l e t us note, that we can 

assume that the function Cf (x) i s defined for x > c 

and i s continuous and decreasing)* 

Let <p « C 2oo + 4/21 + 1 and l e t z » z(x) be a 

posi t ive function defined for x > c , z £ v^x (for 

x > c ) and z(x) =* <r ( V~x ) . Thus, p > ^/z , oc -

- % ~ 3 4 - % < - f and (for x > c ) 0 < p z < x t 

lijn t (x ) • • oo , where t * t (x ) * \fx/ocz . We put 

Axi(x)*.Zd(-1)9'* (l)f(x+£ic) . 
X-У + OÛ 

It is easy to ascertain that for y > 0 holds 

%+*£ *£ P/ 

(see [2],p,25)« From (3) we now obtain 

A P Cx)-a^<</ftf )-a.l ***?Z%£l£f) df « 

4) According to ( l ) then oc > *.4 - V* • 

- 553 -



. df <- < 
<< / ' . . . df +f...df + f... df+f-

0 \ t t1 

« *%*>/% %-%df + x V / f%-V* *f + 

•**-vt > / r *- v+*%»»?ff ~4' *'*« 
t *a 

{.far 0 < f < ^-| we used the estimate P * 

- a , < < f , for f 4 A. the estimate r l r 

~ dLe << f c p C f ) ) # Thus, we can write 

(10) 
(o » -îГj.*f*- v** y*'Л ť t ) 

where 

a) A ( t ) « 1 , b) 3LU) m t^t » o) * < * > 

i s a posit ive continuous and decreasing function, ^ *tJ 

• <r ( l ) for t —* -v- o o . 
For a suitable f e C x , ^ + f - t > holds 

A x x ^ * f c f + p > C | ^ H ) . ^ 

•••(f-i-«x*+0(x*"x^^ 

+ O C x ^ V * 4 * ) 
and thus 

A* Vf Cx) « *<*VCxJ 4- 0 < x * A ~ ' * f 4 M ) 

At v f<*> * ^ f VCX + P ^ - H O C X 4 ^ " V f * * ) • 

The function ^ A(x) i s nonnegative and nonde-

creasing (i? sr ^ a«* * * ) . 
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For ^ £ < T X ? W X - < - J D Z > thus holds 

n A C:x ) £ n A Cx © ) as ^ A (oc + p ^ ) 

and as well 

fc^A(x)* A ^ Af <*) -
(12) 

• / - A - / **AfxjD)«i^J<-V"J^*<z * + p * ; ' " "1 y.t 

If we now use ClO) and ( l l ) we obtain from the relat ion (12) 

(13) yA(*)*nV(x)+0(o<!A~z) + 0(x**\'*-*'t~A<i/s7Zi » 

ani 

Put *=*•****>(-*>, Wim trC*).-.. a * ^ * ^ " * > • 

According to remark 3) is for x > c cer

tainly 0 <: X £ / x , -fcC*)--.- crCvQ) (^oo + 3 - H, > 0 , 

n»3» doc Ai . 
^ - 3 - 4-cc < '-w* p s r »iaplicitw t le t us write y » y(x) «* 

« x • £> a . Fro* (13) and (14) we obtain 

^ A C * ) £ ^ V O O * 0 f x * ' ' * * " ' " * * Tjrfx)) 

^ A C ^ ) i ^ VC^)^0Cxx ^ r rSi^5rtK Cx)) £ 

£ *l Vf^> + 0(y? «-*-**qr Cx )) . 

If we consider that for x > c is y a continuous func

tion of x t y — > • oo for x —> • oo we obtain 
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immediately a l l the assertions of Theorem. 

On the base of the Landau's identity (4) the estima

t ion (8) of Theorem 2 may be s l i g h t l y improved in some spe

c i a l cases. 

Theorem 3» Let cT - 4 9 H, & l , *i< < 5L„ < < M 

(n = 1 ,2, . . . ) and 

(15) P(x) ^Oix00) • 

Then 

(16) P C X ) = 0 6 c * " ' * * 1 1 * - * * ; . 

If (15) holds with symbol cr
 f
(16) also holds with symbol 

Proof. If P (x) « Or**) , where 00 & f - 4 oг 

PCX) = rrCvX^) , where 00 > y - 1 then, according 

to (l), the assertion is trivially satisfied. Let ^(x) * 

a <r (x ) and cT4* 0 . First C XM > > < n , 3 = 

= S
4
C^- ̂ .

1
 ) "•• A^ ) , there exists such a constant c 

that the inequality X^i - X^ > c is valid for 

infinitely many natural n ; i.e. for infinitely many n 

holds A r \ + c )
3
A A ( 3 L

n
) , 

This is a contradiction with I P (X* + c) ~ ? (^ > U c6n ) 

(for m,~+ 00 ) i.e. <T «• 0 , A C-v) = f* f *.) , if (15) 

holds, then 2^ -* £ CA.^) - # C 3 ^ ) » 0 6**) (f ̂ n _> 

—> 00 ) and similarly with the symbol cT i.e. we have 
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3^-, < < m^y (m,) ? where cp(cx) =s 1 or cp (x) 

i s a posit ive continuous and decreasing function, g?(x) =* 

=- cr (1) • Then (p^L2oc+j3 + /f>j , # -= ^fix) 

i s a posit ive function, x,(<x) -» crClAx), i » ir-ja ) ac

cording to (4) 
- i - i »? * @ * £ 

4> G » f * ) « * H Z'ri*'"7'1"*Tq>(m,)#nt»vCx9m, cc*)x<< 

+ q>(t2)x Z/П-

where ACx) s 1 (for cp (x) s 1 ) or Pi (x) i s a 

posi t ive continuous and decreasing function, %(x) ~ <f(1) 

(in the second case) . If we put 

/t.3,2<?G 1 ft-1 
^ ^ 5T--KJC y 2C5C-4-5/a-*/i r* ^ *«C"***>--2'*' J 

we obtain easily, that z satisfies the conditions men

tioned above and 

Analogously as in proof of Theorem 2 we obtain now imme

diately the assertions of Theorem 4* 

Remark* Theorem 3 give* better results than Theorem 2 

(than Landau a estimation (l)) only for cc >• - g — j* 

( oc < y - 1 or PCx>)~cr(x's:~'' ) )• For r » 2 md 

r * 3 the Theorem 3 does not give new results* 
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.Remark. If the assumption cT=- 1 does not hold, the 

transition from the function A & (x) to the function 

A(x) is not so simple. Let us denote A° (\x) -* A ta; S , ^ 

0, >M* ), A'U) - A f X 5 a , 0 , ̂  , M^ ) and let 

f° (x) f P° (x) etc have the same meaning. Let cc > 

(17) P* (x) s O^** ) f P(x) * 0(x* ) • 

Prom the proof of Theorem 2 we obtain (all the time we pre

serve the notation from the corresponding theorem and i t s 

proof) P° (x) * 0(x^ ) f where fi*j~1+ K~I-*£C * f*o m 

(10) (derived without assuming cT = 1 ) and (11) we obtain 

(18) A ^ t * ) - ^ l / ( ^ ) + 0 U ^ ) . 

However 

\AxA?(x)~x*AU)\~\£ [^ ...jjf CACXpl-ACxVdXplcLxp^.ldxJ 

- ^(A°C*+?>x) - A 'U ) ) . « * ^ x ^ " » + x ^ ) «*p«x / l 

and thus using (18) 

P(x) = Otx^) • 

We procede analogously if (17) takes place with the symbols 

cT t for <x » -̂  - 4- and or for Theorem 3. 

In the papers £3J and £4] were - as-well as some ot

hers - derived the following results: 

Let r > 4 and let the form Q. have integer coefficients f 

let b1 9 b 2 f...f b^ be integers, M, f M„f..,f M^ natural 
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numbers. Then holds: 

a) P(x) * o(x%~1 ) . 

b) If at least one of the numbers oc,, , oo^, . . . ^00^ 

i s irrat ional , then 

P(x) * <T ( x * " f ) . 

c) For almost a l l systems otni ovz> . . . , oc^ ( in the 

sense of Lebesgue measure in r-dimensional Euclidean spa

ce E^ ) there i s 

P(x) * 0 ( x ^ * e ) 

for every fc, > 0 . 

d) If y is the supremum of all numbers /3 -> 0 f 

for which the inequalities 

have an infinite number of solution in integers k -> 0 f 
j~ j* ** ± ,K> i N ITU . _J \ 
f^- l^zi • " > 7%> • » Cif - 2 ) y+ *f lCf+1) ' 

(for y * -»- 00 let -f * */2 - 1 ) then for every £ >-

> 0 holds the estimate 

(19) P(x) * 0(x* + £ ) . 

e) Let r > 5 f oc.- «• <*-̂  -* • • • -s ^ ^ and let 

'JT be the supremum of all numbers /5 > 0 , for which 

the inequality 
00 .4*, - ft I & Je/ •/з 

has an infinite number of solutions in integers k -> 0
 f 

P 5 -P « C f - \ ) %fti ( f o r T^ + oo let*-!-1 )
# 

Then for every <o > 0 holds (19) and the value of f in 

in this estimate cannot be generally decreased: e.g. for 
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h a b a . . . a b^ =* 0 we have for every/ £ > 0 also 

fix) « XL < x*-* ) # 

If we consider that for t > 0 is 

( 2 0 ) A C ^ . , a ^ ? ^ ? M ^ ) - A C ^ ) i a , t i , t i y , t M # ) 

it is possible (we interchange Q * <x̂ . , -^ , M^ and 

Q i bj f - ct^ f V M ^ ) from the assertions a) - d) de

rive the same estimates for the function P(x) assuming 

that i / * l f M1f Mlf...f M^ natural; r > 4 (for d) 

r > 5 ) and for forms Q with integer coefficients J 

and thus using Theorem 2 or Theorem 3 to prove the fol

lowing results: 

Theorem 4. Let r > 4 , cT s 1 and let the coeffi

cients of the form Q be integers and MffM.?>...> U^ na

tural numbers. Let at least one of numbers b̂  9 b 2 . , . . . , b^ 

be irrational. Then 

P(x) * cf ( x ^ - ^ ) . 

5) According t o (20) i t i s possible to generalize these as

sumptions. 

6) Under the assumptions of Theorem 4 i t i s c lear that 

&Vyt>>'U . According to (20) and to asser t ion a) i s B(x) = 

=* A(xj Q, 0f - <*£, M£ ) » c x"* • Oix* " 1 ) and thus 

&(a/7V)-B(A/tlr )-*B(%n)i^&(%n £>)<<%Jt"1- Herefrom we imme-

diately obtain 3 CX^) ~CA?+0(X« ' < < /n 3 ^ i . e . 

^<n<<: /fL • ^e c a n conclusively use Theorem 3 and asser

t ion c ) . Theorem 5 follows from assertion b) and Theorem 

2; the consequences of assertions d) and e) are not expli-

o i te ly presented. 
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•Theorem 5. Let r > 5 , cT ~ 1 and let the coeffi

cients of the form Q be integers, M ,M ,..», M^ natu

ral numbers. Then for almost all systems b ,b ,..., bt 

(in the sense of Lebesgue measure in the r-dimensional Eu

clidean space E^ ) is 

P(x) -0<-** + £ ) 

for every e > 0 . 
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