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Commentationes Mathematicae Universitatis Carolinae 

9,4 (1968) 

GRADIENT MAPS AND BOUNBEDNESS OF GATEAUX DIFFERENTIALS 

Josef KOLOfyrf, Praha 

Introduction* There i s a number of papers devoted to 

the study of properties of gradient mappings. The following 

result i s essentially due to E.S. Citlanadze r i l f [2 j ( s ee a l 

so [3,§ 7J) t Suppose X i s a reflexive Banach space with, 

base, f a continuous functional on X which i s weakly con

tinuous in the open ball II x H < R + ot C R > 0, ac > 0) 

and such that f possesses the Fr^chet derivative f '(x) on 

the bsl l D CII .x 11 -<: R. ) . Assume that the remainder 

co(X)h) *t f ' (x) ( i . e . €OCx, Jh,) » 4C*+<li>)-*(*)-

- V(x)Jh, ) i s uniform on £ (I * ' < R >. Then the gra

dient map F Cx ) m f (x) i s compact on P CII X I < R ) . 

In [ l f 2 ] there are also established tho sufficient conditions 

under which a gradient mapping i s strongly continuous on 

D (II rx II < R ) . These results have been extended by M.I. Ka-

dec [4 3 to st-parable reflexive spaces X without assuming 

of the existencecf the base of X sri by V.J. Anosov 151 to 

nonreflexive spaces which satisfy a certain res tr ic t ive con

dition o Another results in these topics have been obtained 

by E.H. Rothe [6]fC71t[81.According to Rotho [81 a Banach 

space. X ia said to have the property CP) if there ex i s t s 

a sequence -\ y * ? cf l inearly independent elements yJ*" 

of X * ( X * i s dual cf X ) and a number M > 0 with 

- 613 -



the following property: closed linear span of iy* 1 i s 

X** and fbr each positive n there exists a linear prcjec-

tion cf norm at most M on the intersection . D N• where 

M. a { x 6 X; y * Cx ) -r 0 J . The main result of [7J t tej 

is as follows: Let X be a Banach space with property (P) t 

f a functional defined on a convex subset V c X . Assume 

f possesses a continuous Fr^chet derivative f #(x) in V „ 

then the following condition i s necessary and sufficient that 

a gradient map FCx ) = f /Ctx) be completely continuous in 

V ; For each ^ > 0 there exist functionals -£? £ X * , 

i s 1 ^ 2 , . . . f M t such that 

I* CX+ K)\ - - r Y * ) l < ^ i l ^ i / , * ^ ^, * + A , e 1/ 

for a l l A e X which satisfy the inequalities 

\<2,*CJh)\ < \ \\Jh\\ , (i = 4 , V ~ , N ) . 

T. Ando £9J has established the sufficient conditions for the 

compactness of gradient map in Banach spaces X without the 

assumption, of P-property of X » Recently J*W«, Daniel £lOJ 

has established the result of E.H. Rothe £61,171 to c o l l e c t i 

vely compact sets of gradient maps* 

The purpose of this note i s twofold .In § 1 we shall es

tablish sufficient conditions for the strong continuity of 

gradient map F C x ) -» $' Cx ) where a potential f i s a 

convex subadditive functional with i CO) -=- 0 ., meanwhile 

§ 2 deals with the bound edness of Gateaux differential 

V -P C«x0 Jh ) where t is a continuous functional on the 

space X of the second category (in particular on complete spa

ces)* Moreoverf the boundednes& of "homogeneous* maps is also 
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considered* 

Notations and definit ions. Let XfY be real linear normed 

spaces, X* a dual of X , Ê  a set of a l l r e a l numbers f f : 

X —> E a functional of X into E1 . We shall use the 

symbols " • ' , " —» * to denote the strong and weak 

convergence in X , A functional f i s ssid to be 

(a) convex on a convex subset M c: X i f for each x„ y € 

^ M aid U < 0 , O 

•fC^x + (1-a)/y.) ^ A,fY*)«- C1- X)i(n^) , 

Cb) subadditive on X i f for every .x, o^e. X , 

$Cc< + ty) £ fCx) + 4Cty) , 

(z) weakly continuous at X0 € X i f X^ ^ > *Ko implies 

f C X ^ > ^ iCxo) , 

A mapping F *' X —> Y of X into Y i s said to 

be 

(d) compact on M c X i f for each bounded subset N c M 

F(N) i s compact in Y ( i # e . each sequence i^fa} € F C N ) 

contains a subsequence f ifa* ? which is convergent in Y ) 0 

(e) strongly continuous at x0 e X i f x ^ 6 X 

**v ~"^~* •*« implies F C x ^ ) ~+ FCX0) . 

(f) completely continuous on V c X i f F i s compact and 

continuous on V » 

(g) bounded la functional -f - X —y E 1 i s called 

upper-bounded) in X i f for each bounded set M c X > 

F(M) i s bounded in Y ( f(M) i s upper-bounded)• 

For Gateaux, Frichet differentials and derivatives we 

use the notions end notations given in Vajnberg's book [ 3 t 
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chapt.I]# Let F be a mapping of X into Y • A Fr^chet 

derivative F'(x) Cor Frechet differential d F (x, 4v< ) ) 

i s said to have an uniform remainder a> (x,Jfa) on M c X 

i f for any & >0 there exists cT> 0 such that 

0 < l\ Jhsll < cT =*> I a> (<x? h, ) \\ < e I *u II 

for each x e M ; where a>(x , A )« F(x+Jh,)~ FCx)-?'<*>*> 

(or A i f X 7 A ) « F(x +4v)~ F(x)~cL F(x}fi,))0 

Assume that a functional -f z X —> £1 has the Frechet 

derivative? f *(x) on M c X . By gradient mapping F : 

M .—-> X*" there is memt a map defined by F(x) - fV«x), 

X € M , We denote by D^ a closed ball centred about 

origin with radius R > 0 . Throughout this paper we con

sider the f in i t e functions Is only. 

§ 1* Gradient mappings. We shall prove the following 

Theorem 1. Let X be a reflexive Banach space, J)R a 

classd ball In X , G an open coivex subset of X containing 

J)R . Suppose f % G —> E^ i s a convex subadditive 

functional on G with -f (0) - 0 and that f is upper-

bounded on some convex open subset N =1=/ of G . Assume 

f possesses the Frechet differential cLf(x 7 fa* ) on DR 

and that the remainder co(X^A) of cLf(x^fc) i s url-

fona on 3>R , Then the gradient map Ff«x)~+'^**) where 

f*(x) denotes the Fre*chet derivative, is strongly continuous, 

compact and uniformly continuous on J>R and f is weakly 

continuous on DR . 

Proof > First of a l l f i s continuous on G by Theorem 
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2 Cl l t II f § 51. l e t x be an arbitrary (but fixed) element 

cf J R , \ ^ 0 ; \ e X , Then 

The f irs t term on the right side tends to 0 a» n% ~» CD 

by continuity of f on 0 white co Cx.pJh^ ) .—> oo ass 

nru —v <%> t-y our assumption and in view of Jt^—> 0 * Be

ing ot-P (X7M,) linear in Jh e X , continuity of 

cL4 ( X 7 H ) at h = 0 implies d-f Cx74v ) * f'Cx) %v 

for each x 6 I R • Assume { x ^ j e J>R 7 x0 e J>R ? 

X^ > «X0 • Suppose on the contrary that f (x) i s not 

strongly continuous in X0 .Then there exist £^ > 0 

and the subsequence {X,-^,- ? such that 

(1) I*''**** ~ ^ C X ^ " > £o * 

Let h be an arbitrary element of X with IfJfoll & 4 • 

Then for t > 0 

f(x^+ tJh)~ -fCx^) * f'Cx*^)tJh, + 4>(*^, tH) , 

i <.X0 + tJh) - fCx0) « J?'(<x0)th> + a> (Xo,t h) . 

Hence 

(2) r(x^)tH--f'(*0)tJh*>f Cx^+tH)~fCX^ ) _ 

~ G)(X^1tJh,) + f(Xo)--'fiCx<> + 't'h.) +G)(X0,tK) . 

For sufficiently small t > D we have that x +• 

- t i v e fr,\tt^e&, t l i / fi Cf. s ine , f i s ^ 5 . 

additive on G , 

( 3> f ( J C ^ + t # v ) - ffje^t^) 4 * f * A ) . 

- 617 -



Employing convexity of f we have that 

*<*,)-iC*0+th) £ 4C*0-th) - f Cxc) 

and by subadditivity of f 

(4) f r«X„>- fCXe +th) £ fC~th) * 

By our hypothesis 

f(th) » r(0)th + a) (0,th) , 

f c-i^fe) = - r(0)th + CJC0ft C-h)) * 

Since f i s convex and possesses the Fr^chet derivati

ve f *(x) on D-, ? there exists a number t > 0 such that 

for each t e (0 , t, ) we have 

0 £ co (0,th) < | *>o t i h II , 

(6) 0 .4 o> ft?, * < ^ ) < | ^ i I A II , 

fl^^,tli)^S,t I A I -

By cur hypothesis the remainder CO (X 7 H) of f ' (x) i s uni

form on D # Hence there exisl 

that 0 < to <: t implii 

form on D # Hence there exists a positive number ip such 

LЄЭ 

£o 
(7) 0 š CJ ŕ* * > ) < -s- te 

Ä ' 

for each k (k » l t 2 , . . . ) . The relations (1) - (7) inply 

that 

f'cxn.jbKh-f't*.)*.'*1 < ь>*. - л 
Hence 

(8) f'Cx )h -rcx0)h> < % I hi . 

On the other hand, using the following inequalities 

- 618 



f Unf th,)- iC*^) £ f U ^ ) - if*^- tA) £ -it-th), 

employing (5) with changes - f ( th) for f(th) and - f ( - th) 

for f( -th) and (6) , (7) with change of sign to minus, we ob

tain as above that 

Jk> 

This inequality together with (8) imply 

l-fŕ-VfcJЛ' - *'(x.)JҺ,\< єe ЛAH • 

Hence 

im*j-f'cv<i « *«*> ir(^ )H-v(xc)A\* sc . 

But this i s a contradiction with (1) . Hence F(x) = f '(x) i s 

strongly continuous on DR . By Theorem 1.4 [3J F(x) i s 

compact and uniformly continuous on D^ (see also Th.1.3 

13})• According to Theorem 8.2 [33 f i s weakfy continuous 

on DR . This completes the proof. 

Remark 1. It i s easy to see that the f i rs t assertion 

of Theorem 1 remains valid i f B R i s replaced by an open 

convex neighbourhood V(o) of 0 which i s contained in G 0 

Theorem 2 [12J i s valid i f an open convex neighbour• 

hood V(o) of 0 i s replaced by closed ball D« and f 

i s a convex subadditive functional on an open set G which 

contains J>R . Thus we have the following 

Corollary 1. Let X be a reflexive Banach space, D R 

a closed ball in X f G an open convex subset of X con-
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taining "bR . Suppose i : G —> Ei is & convex subadditi

ve functional on G with f (o) = 0 and that f i s upper-

bounded on some convex open subset M 4= 0 of G , Assu

me f possesses the Fr^chet d ifferential cL-P (0, Jh) at 

0 and the Gateaux d ifferential Vf(x1H) for each x e 

e Da , .x 4r 0 and that the remainder cJ (x, <h) ot the 

Frechet derivative f ' (x) (which exists on DR according 

to Th.2 C12J) i s uniform on 3R . Then the gradient map 

F(x) s f '(x) i s strongly continuous, compact and uniformly 

continuous on DR and f i s weakly continuous on J>R -

Remark 2 . The remainder co(cx,Jh) of f ' (x) i s 

uniform on J)R i f F(x) - f ' (x) i s uniformly continuous on 

])R (see [3 ,§ 43)• If X i s a linear normed space, -f: X—> £f , 

a con/ex uniformly continuous fUnr&ional on the open ball 

BR^^ (fix II < R + ot ) , then f has an uniformly continuous 

Frexhet derivative f ' (x) on BR ( II x II <- R ) <=* f i s 

uniformly smooth on BR (see [13 ,The or em 8J) , This asser

tion gives necessary and sufficient conditions that a gradi

ent mapping F(x) s f ' (x) exists, and be uniformly continuous 

on BR (see also Th.7 [13] ) . 

Corollary 2« Suppose X i s a linear noraed space, 0 

an open convex subset of X containing DR , Assume f s a 

t i s f i e s the assumptions of Theorem 1. Then the gradient map 

F(x) « f *(x) i s strongly continuous on DR -

§ 2« Boundednesg of Gateaux d i fferentials and maps* 

First of a l l we recall some well-known notions and result • 

We shall say that -f : X —» £ ^ la a function <f the 
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f irst Baire class i f f is a point-limit of the sequence of 

continuous functions on X . A function f ; X —» E1 i s 

said to have Baire property i f there exists a subset A c X 

of the l»category in X such that f / x - /\ i s continuous. 

We shall use the following 

Lemma 1 [14-.Theorem 14*3.11 • f •* X —y E^ Is a func

tion of the f irs t Baire c lass <===> fbr every c €. E^ 

U e X : f C x ) > c ],{*e X ; f (x)< c } are F^-sets in X . 

Theorem 2. Let X be a linear normed space of the 2* 

category in i t s e l f f f : X —> E 1 a continuous functional 

on X • Suppose f possesses the Gateaux differential 

V f (Xe , A ) at X0 e X and that there ex i s t s a con

stant M > 0 such that for every Jfa.^ , M, e X 

(DlVUx^+JhJl^Mw^ClVfU,,^)}, ! V f C x „ , A a ) l ) . 

Then Vf C*X0 , A ) i s bounded in X # 

Proof* Define a sequence { f^ (fo*) } of functions la 

U c^ > b* 
f cfc) - Cf <X -f. rn,-"f^ ) - f Cxe >).n* 

for every 4^ e X . Then { f̂ , 0&,) ? i s a sequence of 

continuous functionals on X . By our hypothesis JUm> -(L C^)-» 

« Vf Cx, , A ) for every ^ e X . Hmce VfCx, , A ) is 

a function of the f irst Baire class and according to lemma 1 

for every n (n * 1 , 2 t . . . ) 

A^~ ito, e X : Vf(**f M>) < "i, ] , 
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B^ » {M, e X : V-f (xp , M,) > - m, ? 

are ¥#* s e t s . Since the intersection of two ^ sets i s again 

a Tf s e t , <%„, ~ ^ fl B^ i e a i^-set for every n 

(n « l f 2 f . . . ) . Hence &^ =* Ui F^^ , where £ , w are 

closed sets in X • Since 

( ^ . { A e X ; I V # f x # , > h - > | < "* J 

for every n (n » l f 2 f . . . ) f X » U CL and therefo-
*г *1 

re X -s* C1 E,^. - By Baire category theorem at least 

°n* <** v̂̂ rv ("*,*m » 4, 2,-> >, ««y f w ^ , mist con

tain a closed ball* Therefore there exist K > 0 and Jhy e 

e X such that I ^ - ^ « £ * - « - > 4 i , « f ^ , ^ 

and for such h we have that I V# (Xe , J% ) I < srv0 

(for f ^ , ^ c &^c ) . Set y - h - h0 t then I ty « * * 

and 

I V f f * , , ^ ) l & M/m t̂* HV-f (x„Jv) I ,\Vf(xm-*iJI)< 

^ M /mcvo (sn0, c0 ) , 

where co ~ I V-f <f,X„, - ^ ) I . Hence V-f (x0,<h) i s 

bounded on the closed ball I Jsv \\ £. K and by homoge

neity of V-f {x0,H) in h we see that V-f (X0,Av) i s 

bounded on each bounded subset of X , This completes the proof. 

Corollary 3« Let X be a linear normed space of the 2 . 

category in i t s e l f , -f .* X —-> E^ a continuous functional 

on X . Suppose f possesses the Gateaux differential 

Vf (X0? ^ *) at X# € X afld that there ex i s t s a constant 

M > 0 such that for every A * , A,, € X 

• 622 -



V4(x„4%, + Jhz) * MCVfC**,*h)+ ViCx„Hx)) . 
Then Vi (x0 , M, ) i s upper-bounded in X # 

Theorem 3» Let XfY be linear normed spaces, X of 

the second category in i t s e l f , F * X —• Y a mapping 

of X into 1 such that 

(a) \\F(XAM)\\ = \&\\\F(<U,)\\ for every Pie £ f 

and AA, € X # 

(b) IIFCu+trO/f^ M / m ^ n / F 6 a ) / I 7 /I F(v)ll) 

for every /t̂ ,., tr* g X ^ where M i s a positive constant. 

(c) U^ e X , AA € X 7 AJL^—* AA, ==-£ 

—• IF(AJL)\\ & lun SXAfV \\F(AA/rl )// . 

Then F i s bounded in X # 

Proof. Set F„ *> {x e X : II F(x ) \ \ 4EL <n> 1 -

Then X - ^U (^ . It x^e F„, xe X * V ~ » *X , 

then I FOc ) H * <&m A>U& I F(x^) II £ m . 

Hence F^ (m ^ 4? 29.*. ) are closed in X and thus at least 

one of them contains a closed ba l l . Now we proceed as in the 

proof of Theorem 2# 

Theorem f * Let X,Y be l inear .normed spaces, X of 

the 2#category in i t s e l f , F ; X - * Y7 U : X —> Y 

mappings of X into Y . Suppose U possesses the Baire 

property, F sa t i s f i e s the conditions (a) , (b) of Theorem 3 

ana that for every * € X there i s t F (X ) II £ ft U(x)h 

Then F i s bounded map in X , 

Proof. Use the arguments of Banach's proof 115-.Theorem 

ltP»78] and the ones of the second part of the proof of Th#2# 

Remark 3» The conditions (c) of Theorem 3 and II F(x)\\§ 

.4 1 U f* ) II - X e X of Theorem 4 are sufficient 
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that an additive map F be continuous and hence homogene

ous on X # Both are due to Banach [15,p«/78-79j# 

Remark 4» Theorems 3,4 can be used for investigations 

of the boundedness of the Gateaux d i fferentials VF (X07h>). 

Scute other results concerning the boundedness of such dif

ferentials can be found in f3 t § 3 J, [13] • 

Remark 5. Theorem 2 can be derived at once from Theo

rem 4: A functional f is continuous on X y hence 

V4 (Xo i -fa* ) possesses the Baire property and thus the 

condition of Theorem 4 i s sat is f ied with U (<fa.) -= VKXo&i). 

We have the proof of Theorem 2 because i t i s somewhat d i f fe

rent from the Banach's proof [15>Th.l tp»781# 
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