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Commentationes Mathematicae Universitatis Carolinae 

10, 1 (1969) 

ON PRODUCTS IN GENERALIZED ALGEBRAIC CATEGORIES 

VSra TRNKOVX, Pavel CK)RALfiflCfPraha 

0* IntrpflucUgfi* 

Universal algebras of a given type A = {0t* 1 X <=* /3 f 

( A is » family - as a rule increasing - of ordinal numbera 

indexed by ordinal numbers) form the category A (A) whoae 

objects are operational structures, the pairs 

>i C X; $cO* I X *c (h\) where X is a set and cd* are 

<36 -ary operations on X t i#e# mappinga CO* : X x - — > X, 

and morphisms from 0(j fcJ* ? > to (Y; {CJ^ f ) 

are mappinga -f t X —> y compatible with operations In 
V (9t ) X 

the sense that c o o -p A ss f ° a>f for every 
A. *%. 

A < /3 , where -f^* j X*A —» y ** i s f acting co-

ordinate-wise on 92 -tuples from X A . 

Here the operations play a role of a "device select ing 

suitable mappings'* - the morphisms of AC A) . Now, we can 

let th i s device work in a more general situation* Take two 

functors F and (r of the same varianoe from sets to se t s 

and define the generalized algebraic category A(F1 G , A) 

as follows: objects are again pairs ( X . { CO* \ ) but ope-
X ' A 

rations cO~ range over FX and take values in 

GX (so they are mappings 60 x i (FX) * —> G-X ) land> 

morphisms are in the covariant case mappings -f ; X —> Y 
W CdC ) 

such that co^ * C F«f ) x - CG-f) * cox for every 
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% < (i> 7 so we have commutative diagrams 

(FX) * »&X 

(FfЃ* б f 

Í F У Л -—» &У 

(In the contravariant case the vertical arrows are reversed 

and compatibility of f means the fulfilment of the identi

t i e s cJi o CFf >f*A> =r CG-f) • c*>X t o r every J l</3. ) 

We shall refer to functors F involved on the f i rs t 

place in A ( F , (r ; 4 ) . for obvious reasons, as to 

domain-functors, and to functors & as to range-functors. 

Taking F *- Or * I - an identical functor, we get 

clearly AC A) , 

It i s known that A (A) always has products (in usu

al categorical sense)* Unfortunately, th is pleasant property 

i s very often lost for categories A ( F , G , A ) with 

non—identical domain and range-functors. 

It i s easi ly seen that the existence of products in 

A ( F , Gr 9 A ) such that the natural forgetful functor 

preserves them i s equivalent to the requirement that G* 

preserves products. Much less transparent i s the general pro-

bXtrth of existence of products in categories A C F, G , A ) 

- the train objective of the present paper. Then the condition 

that (r preserves products i s , of course, far from being 

necessary and there are many other interesting categories 

A ( F , G } A ) possessing products but with G- not 



preserving products. But generally i t i s true that the be

haviour of the range-functor with regard to products mat

t er s here, and, i f i t does not preserve products, then a l 

so the behaviour of the domain-functor with regard to sums 

(disjoint unions) becomes relevant to the problem* 

Presented material i s exposed in f ive sect ions . The 

f i r s t one brings basic definitions and fac t s , including con

ventions about notations used* In the section 2 there are 

given some necessary conditions for the existence of pro

ducts in A ( F, 6 , A ) . With aid of these i t i s proved 

in the section 3 that for F , (x contravariant faithful 

and 5L A > 0 ACFyGjA) f a i l s to have products. 

Section 4 i s devoted to more close study of certain proper

t i e s of covariant functors* The final section 5 gives a num

ber of theorems on products in A ( F , G-, A ) with 

covariant functors F } & • 

Some problems remain open here, nevertheless, our theo

rems account for most of familiar functors F and G • 

In final remarks some possible generalizations are in

dicated. 

1. ffasic defj.niUons, fact? a,nfl notation 

All functors throughout this paper wil l be functors 

from sets to sets ( i . e . from the category if of a l l sets 

and mappings - including void ones - to if ) . Observe that 

for our purposes we can consider functors only up to the na

tural equivalence -=• • When systems of functors are d i s 

cussed, we use the set-theoretic symbols e , c , U , n 
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for shortness sake* 

Let F and G be functors of the same variance. 

F i s a sub-functor of G i f there exists a monotrans-

formation (UL ; F —> G $ 

F i s a factor funetor of G i f there exists an epi-

transformation ^> : G —* F ; 

F i s a retract of G if there are a monotransformation 

w • p —-, Q. a a | a n epitransformation i> : G —** F 

such that >>/C6 i s the identical transformation of F • 

Recall the usual operations over functors (cf#tl.1): 

Ca) The product F x G , 

(b) the coproduct (disjoint union! F V G defined 

for functors of the same variance, both can be extended to 

an arbitrary family { f | t € V } over a set 3 of 

functors, the results written as TT F and V F „ 
t e a ** L€7 L ' 

respectively* 

(c) The superposition F • G of arbitrary functors G 

and F written (as anywhere e lse) left-hand, i . e . 

C F « G ) X -= F C(x X ) , If F and & are of different 

variance, then F • G i s contravariant, otherwise i t 

i s covariant. 

(d) The hoa. -functor < F , G > for functors of different 

variance, i t s variance being the same as that of G • Re

mind that, writing H for < F , G > we have HX « 

» i y I y $ FX — • G X J and f or -f ; X —* y and H 

covariant CH-OCy) * CGf) * cj> * CF4) . 



Let us last some of the most commonly used functors: 

I denotes the identical functor, 

(L - a constant functor to M ; it is both covariant 

and contravariant; 

P+ - the covariant power functor; 

P+X»*AIAcX?, (P*4KA)-tf(x)lxe Ai for f : X -> Y ; 

N - a subfunctor of P* assigning to every set X 

the set NX of a l l i t s non-void subsets, evidently 

P ^ N \ l ^ j 

P~ - the contravariant power functor^ P * » C* I , C-. > > 

ji - a subfunctor of ( P ~ ) 2 - s : P " " o P ~ assigning 

to every set X the set /3X of a l l u l traf l i ters 
v *) on X j 

Q>M - a cartesian power, flM » < C^ ., I > . 

We shall often use the next fact from [2J: 

Proposition 1#1> Every faithful covariant functor has 

I for i t s subfunctor. Every faithful contravariant functor 

has P" for i t s retract. 

I>et {X j c c e . 4 } ; A 4* 0 ; be an arbitrary family of ob

jects of some category X . Any pair (X , { *& \ <x & Ai > 

- an object X of $C together with a family of morphisms 

ST^ t X —• X ^ j O C c A - i s called an inverse bound 

* ) An alternative description of the functor fl ; i f tT 
i s the category of £1 completely regular topological "̂  " 
spaces, $ ; J" -—> y the forgetful functor, F : y ~ * IT 
the free functor and Y ; (T—• 3* the functor as

signing to each space i t s ft -compactif ication, then ft sz 
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(further "inverse" ia often omitted) of the family 

i%^ I oc € AS . 

If every other inverse bound < Y, f ^ I <K, € A i > 

of -{X I at e A } factorizes through 

( X , 1/r^ / > ; i . e . i f there exists a morphism <h ; Y--> 

-J> X such that <9 » ^r. • H for a l l oc e A , then 

( * > < ̂  i > ** c a i : L e d a PgfittagPrgflWrt <* the family. 

A paeudoproduct i s product i f the factorization i s uni

que* 

A category yc i s said to have (pseudo)products i f 

every family of i t s objects has a (pseudo)product. 

2. Neceggarv ggnfliugag 

Let X - A (F7 0- , A ) and 3 ^ - A(%f&if Af) 

be two categories with a l l the functors Ff &7 Ff f G of 

the same variance and (possibly) of different type a A ** 
m f # A I X -c fi 1 and A ~ ix^ \ ft <: n& 1 . Denote the 

objects of X by X m C X i <r* I A. -c (I l ) and the 

objects of X1 by X^ - CXt co£ I (U *: & 3 ) . It m 

mapping *f ; X — • Y i s a morphism in % or X'1 f wri-

t e simply f * ^ —-*> £ or -f ; X^—* ^ , respectively. 
Tj<fgJWI ?f!H- Assume that there are assignment a $ and 

* * „ - X , a*. * X ^ - X „ , 

between the objects of X and ^ with the following three 

properties: 

(a) f • X , - > « Z ^ - > f ; Y-X^ —» 2 ^ , 
CbJ a? y —* Z «•* ^ . $ y —» A » 
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'c.«i * . * y a - - > x r - > Jh.t Y^-trx, .. 
Then the existence of peeudoproducta in DC impliea 

the exiatence of peeudoproducta in X^ * 

Proof. Let { X* I oc 6 A ? W a n arbitrary f a 

mily of objeeta i a 3Cr . • The. family i $ X * / has - a* 

any other family in DC - a peeudoproduct. say, < X<rf {§ .? > 

" " ^ fot ; K ' > $ X £ ; <*, e A . By (a) i t to 

t - * X „ — > X* , therefor* < *?, , t £ J > to 

a bound of the family I X * J . 

Let C y , 9 ig^J > be an another bound of { X* ? , 

i . e . g^ ; >^ —^ X ^ for CDC e A . By (b) t < 4 %, , 

{ n, i > ia a bound of { $ X * ? , therefore aa - A • 

: $ ^ —> X^ muat exiat. auch that <fa * -f̂  • A for a l l 

oC e A . By (c) i t ia g^. : ^ —* V X r , ao i t ia ahown 

that < V[y 4 4 3 > ia a paeudoproduct of the family i X*{. 

TftgorCT ? t t t Let a category j £ - A C F , < x , . A > ha

ve (paeudo) product a • Then also any category Xn -» 

* A C F̂  f G <A ) of the aame type A but with f-J" f (rf 

being retracts of F and (? , resp . , has peeudoproducta• 

Proof, Let A « $ Mx i A- < (h f • 

With aid of natural transformations 
^ » c / - ÍL__V / - ^ , , ^ 

such that V • /U -» 4- and *r • e « t* define assign-

menta 

* : ^ —-> tf^ and Y ; X<* • X * 

bjr 

$CX,«<y£.)«fX, {<r* J ) with o*m l^ . oiK
x - ^ * * > 
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and 

Y C X , ^ } ) - CX,ia*i) witho^=3rA .cr/ . ^ . 

It la easy to show that $ ami Y thus defined 

satisfy the conditions (a),(b),(c) of lemma 2*2. 

For example, the computation in the covariant case 

runs as follows?: 

(a) (&*)* <xl * c£• CF4 fV with <£ - V *£ • ****' i » P " « 

- V £•c i v <ç* "^- *- • *í- ^ - Ĺ F * ^ ' 
- v % •«; • ^ ' c-Гa>- - v ^ ' - « í •<ғ~ *>"л' 

(bï <firf̂ )# « ; - - - > * • CF, 9-)'**> iBP l l e» f G ^ ' *3T = 

- c f • CFç.) ("A > for <ra
7 . 6 y « o>a » ^ * and 

- vf^»^>f- v -" • *"* <*'""*: -"-^ ; 
( . ) C<5A>.<r;/- ** . CFA)'"»' « t a <jy- V * * * " - ? " ' 

lupU.» <«j * . > ' « * - « £ •CF,Ji>"'' for 

«î - 5 ' tf ' <-T"! 

ү 
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OL A X X " x * x A. * y 

- 0rx . «rJh) - <g*(U.^ = CGf A,) <"ry'<rl- p~A> -• 

The assertion of the theorem follows by lemma 2 . 1 . 

There i s another way of "collapsing" a category 

A ( F, &y A ) so that pseudoproducts are preserved, na

mely, an essential reduction of the type A i s possible . 

Before stating the next theorem assume the type A «• 

- idex I % < (& ] increasing £ A -> 0 and denote by 

cT the f i r s t index with -#,*- 4* 0 . Thus, in the case 

cT > 0 i t i s # a «• o f or a l l X < cT and nullary 

operations enter into consideration. 

Theorem 2 .2 . Let a category A CF7 Cr7 A ) hate 

pseudoproducts. It cT > 0 ; then also the Category 

A ( F , Or,{0,11) has pseudoproducts. If cT- 0 f then 

A C Ft 6 , H J ) has pseudoproducts. 

Proof. Write the objects of ?C * A C F, ^ A ) in 

the form ( X 7 i <r*l ) and the objects of Kf = ACF , 

&, < 0, 11 ) - in the case cT > 0 - a s 
C x > K \ ^ X j > ~ CX,4*>*I <C- 0,4). 

For every A , df * ** ^ /? , take natural transforma

tions /«-* : I —> <*n and nx '. G>. • I such 
4 4 * 4 
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that TTX o per - 4^ f amd def ima assignments 

$ ; X{* —+ OC* And V* ** —+ *<** by 

*CX,<*£i) * CX,io^J) wita <$X - c£ forA<<£ 

ir-fi/par^ forA>cft 
.a -f FA 7 

YćxдtЛ) « cx,to.xJ..) ~tьco*- <*?,*%~фp(x-

In the ease cT » 0 simply discard miliary operations 

Again, complete the proof by showing that $ and y 

satisfy the conditions of lemma 2,1. We shall content oursel-

ves with doing this for the covarlant oases 

(a) Assuming CGf)*<r* » a* . CF-ff*** with c£ ~ a/5 

for X<cT and <r2- <»*.• j r \ for X-xF we must a 4 F* 

prove CGf>* <u* « cof • CF4TW for *->/ - <r « > 

Ч -#'• <«£ * ** 
(Gf).co*- CCтf). <r*~<r*. CFf)™- à£. CFf)«> , 

Ш).Oì*m(G4).<r*.(лSf°s° tҷ'**rfғxs 

=- o»f. JГ* . CFf )'**>. <u£x - *f. j £ . («,£ . CFf) = 

ш ы*. <tғg. cғf) - af. cғf)( Л1> 

(b) Assuming (0<j.)* <y.v » cof • CFty)1 > we mast prove 

(Grq,) . <?l - <r*. CFg.)c**> -"or ^ y - &>/, <£*- <y/ 
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Іf Д<c ď and Ą-*%•*&, ^ я ^ c Л ì в ** 
sCô) Ж_ SCГ^%<*A} 

% > ď Ъut CO&*<g*C&g,)*б>*-cof* <Fg,)ш*cúï* CFg,Ѓ 

for Л <cГ, and, C6q,)c <£ = C<тfr)< й>**tr*y

 ж 

*CJ**<Fq,)*?ґţy шCO^sr^яc(F^lc^-CfЏ><SЄл)

 f o r X èď. 

rjfг) - ШXXL ď 

-Y *y . ~л 

(e) Assuming C JҺ,)o <r* = <r* * CFJҺЃ*^ with <ГY» CÚ\ 

if 4 < cT and cry -. o;v • jr* if *̂  -* <T we are 

to proves < &Jk) * a>?*a>.* *CFJh,)c%> for co* - crx and 
•-.. • •. •. **• f. • $ 

<->* - s? * < « * £ • * * 

••^-*<FHi»m-<£.CFA.1*,-C<*K>'<?- «**>••*>/ > 

d>*« C F A > - 3 i ^ £ - ^ 

•-OrA>« # y •<"£• -OrA)* a%<>?r£y*(u£y -

- C<rA>* ^ / ' lFy * «rA) - <^y . 

Both retraction of functors and reduction of type in 

categories A < F, (x , A ) by the above theorems can, 

of course, be made simultaneously and thus obtained catego

r ies are then the first ones to be considered when a negati

ve result on products in some A (F, G-7 A ) i s expected* 

3* gMrtgftYffiirifiHt c^se 

IhejpjmJJL* ffo category A CF^ Gf A ) with 

S. A >• 0 and faithful contravariant functors F, <? 

has products* 

Pr^of. Since P~ is a retract of both F and G-
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(Imposition 1.1), we have, with regard to results of the pre

ceding section, but to show that A (P~7 P~7 i 0 9 A 1 ) 

f a i l s to have pseudoproducta. In fact , unary operations do 

the whole job, the following proof that A C P~9 P~7 Hi) 

haa not pseudoproduets shows i t : 

Suppose that < (S7 o>5 ) 9 fx 9 +y / > i s a 

paeudoproduct of the family consisting of two objects 

( X , o)x ) ; (Y7 *>y) , where A - icu,*l, Y - ie,d] J 

and, cJx and co are identical unary operations on 

P~ X and p" y reapectively. 

Take a well-ordered infinite set 2 *• ix^ I <** -̂  ?# ? 

with tcucd Z > CwccC 1 and define a bound 

<CZ ^ 1 ^ % , 9y}> h* 

^^>-fe^ ,-^9ii^ )-*^ ,-^^ c^>*^ for oO>3, 

$9̂ >**V<V-C, i ^ ^ ^ W 8 ^ ^ ^ * d for <* > 3 ; 

denote 2 A -* £ ̂  I <* < (b £ for /3 < ?$ the segments 

of Z and put co^((z0l) « Z^, a^CZ^;*- Z ^ ^ for 

a l l / S ? F ^ /l> < nh 7 on the remaining part of P~ Z 

take a>_ identical* 

There must exi8t Ji : (~7cu2) > (S7 o>g ) such 

that 

Since P""^ i s a homomorphism of CP"S* o>,> into 

(P"Z 7 6>£ ) and at the same time a homomorphism of the 

complete boolean algebra (P~S j U 7 (1 ) into 

(?" 2 j (J 7 fl ) the image #- of P~S by P'xft, muat 

be closed under CJ« and boolean operations* 
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Clearly {Z.,z,l , i*,,*2 1 e & , henee 

{z0 IciS- and £ r € & . Assume Z^efr for 

a i l < 7 C , 5 * i i ( X - ^ / 3 . - l - f / S ia i8olated, then 2* «« 

- cog ^2 > e & ' If /3 i a a l imit number, than 

In - U/ Z _ € ^ . Therefore ca**C & > eaxd Z, 
-/З <L*Ґ* <* 

Љ and thia, together with & 2 ^ 2 ^ £a4t*£ J#- ^ i s a 

contradiction* 

4* gotartflfrt ftfflQtrpra Qnfl ^fcefr properU^f 

It haa been mentioned, that, dealing with categoriea 

A CF. &} A ) in the covariant case, i t ia important to 

know the behaviour of F and Gr with regard to sums and 

products, respectively* From this point of view, consider 

f i r s t a following separation property of functors: 

Definition 4.1« .4 covariant functor F i s 8aid to be 

a separating functor if for any two disjoint subsets M, N 

of a aet X i t ia 

(1) CP4"* FdM )JCFM) H CP+*FC*N )1CFN) **/f , 

where iA, ; M —~> X , i 4 1 : N —> X are the corresponding 
M 7 N 

inclusions. 

Denote 4-10} - a 8tandard one-point aet* For e-

very non-void set X and an element X in X define 

Kr X : 4 —> X by vrf CO) « X , and, /O^ * X-* 

—V 'B by ACj (x) ** Q for a l l «x in X • 

Statement 4*1* A functor F i s separating if and only 

jlf 

(2) u£X* HE*-* CP^ F r i i r j c ) j rF ' f ) nCP^F^ )J fF ' f ) - - ^ r / 
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£-£-£. Condition (2) is equivalent to (X) with M * 

<c{<xii N - {<Ul . Condition (l) reads then as 

LP*. F(%,nCFixl) fl IP+. FCi^t UCFtyl) - 0 , 

bat FIX J m LP+'FCvr?')! CF1 ) , therefore 

[P*'FC^)JCFfc<i)-* ZP+<F(i„t)l°f:P+'F(vr**)2(F1) ~ 

, [ P % F C i ^ * ^ ) 3 C F f ) - tP+-F(*r*)l(F1) , 

f p f * FCi4+$ >3fF*lM> * CP^F(^)2(F1) . So the condi
tion (2) is necessary. 

Assume that (2) is fulfilled, bat F is not separa

ting, that i s , for some set X and two disjoint subsets M , 

N of X we tiave 

(3) CP+'FCiH)JCFM) /I CP+'FC*N)JCFN) * JBf . 

In this ease both F M * / and FN 4» / , hen-

os M + 0 and H *fr 0 since otherwise i t would be 

F# 4- 0 and F would have a distinguished point, which 

contradicts (2 J. 

Choose an element X in M and ty in N and de

fine mappings f : • X —* M ,•' • 0- * X —* N by 

r t .far t e M . f t IOJ» t e N 
fCt) » { , 0*C£)~ 4 

• - x «w t c X \ M t/y. for t e XM* 

Note that 

<5> * v i M - <M , <* • *s * AH ' 
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By (3) y there exis t elements ft In FM and £ 

in FN such t h a t 

(6) (FiM)(p) - CFiH)(0 - *> € F* . 

I t follows by (5) that (Ff )(*>)** (Ft>* (FiM)(4i) ** fr 

and 

(F$>)(K,) -» CF9.) « (FiH)(<l) * £ 7 

and, by (6) , T(F*M W F f >JOO»/t, Z(FiN) *(Fg,)l Oc) ** n, . 

By (4) i t i s then (Fvr£)»(F^)(H,)~ ^vr*) • (Fu,x)(Jt) , 

tha t i s , (Fnvf)(a,) * CFmr*) Co,) tor a*(FuAX/t,)e F1 

- in contradict ion with the fulfilment of ( 2 )» 

For every functor F different from C^ denote by 

F * i t s range-domain r e s t r i c t i o n to non-void se t s and map

pings (such a r e s t r i c t i o n e x i s t s , since F + Cg implies 

FX * 0 tor every non-void s e t X ) 0 Taking a standard 

two-point se t 2 - {0, 4 } f denote 

ap ^ZP+'FCw^UCFVCiZP+'FCwfncFi) c F2 , 

Ap - ZP+*FCA4,t)lCQF) • 

For a aet X l e t n$ ; 0 —*• X be the empty mapping. 

Statement 4.2« If Af » 0 , then F i s separating* 

It Af + 0 , then C* i s a subfunctor of F* • 

I t i s si ways 

ZP+'Fe^HCF-e-) c A F • 

SCfifilC* First show that a non-asperating functor F 

- 63 -



has AF * 0 : 

Take a set A with points * , ty, x 4= fty such that 

the condition (2) does not hold for urx and w* , e.g. 

(FatrMcc)-* CFw*)Cd) » * € FX for some <» ^ in F 4 . 

Define an injection <i ; 2. >—> X by d(0) •= x 7 

cL CD - ^ ? and, let /t ; X.—i> 2. be a retraction of 

<i , i . e . /&•<£« t^.Then <Kr*« jc * <ur* 7 W*~ * * *>£f 

therefore 

CF<ur*)Ct) - CFH,)CA>) n CF<ur*)Cd) e Qc 
c * F 

and A 1* 0. 
F * 

Assume further A *¥ J& • The mappings FwJ* 

and Fur coincide on A ; For an element a> in 
1 F 

A there must be elements r^ in Q and «/", c in 

F 1 such that a, ~ ( FM<2 ) (% ) and g~ (F<ur2)(&-) = 

* CFV X c ) . Since AA> • ^r • -u- * ^ - f, , i t i s 

( F ^ ) ( £ ) « > - C - £• . 

Moreover, for every non-void set X a l l mappings 

Fur* far x e X coincide on A ; Take x, ry^ 

i n X , # 4- / ^ and the injection ct : 2. —> X as abo-

ve t then -ur ^ oL*>wr
o f <urS = & ° mr^ and 

the preceding assertion applies. 

flbwt define a transformstion AA, : C* —> F * by 

/ct (a*)*i<F'ur*)(a) for a € A,, and x e X . 
I X «* F 

Cleanly, /0* does not depend on the choice of *v in X ; 
v 

it is an injection (for vr^ is an injection), and 

- 64 -



i t i s a transformation because of f <> %w ** itr y 

for every f / X —> V . 

As to the l a s t asser t ion of the statement 4.2 

if. 4 ** 4 - <ur* o rA implies CP+o F(<±)l(F0)cQ 

and we get the asser t ion using v^ = ^ ° ^ 

Statement 4*3* Every functor F F 4= c^ can be 

writ ten as 

r ' ^ v 5 , 
where functors f̂  and % have following proper t i es : 

&) F^ i s C^ or F^ has a subfunctor CA • 

b) Fb i s the greatest separating subfunctor of F 

in the sense that every separating subfunctor of F i s 8 

subfunctor of F̂  . 

This decomposition of F i s unique up to the natural equi

valence* 

Proof* Denote A p * (Fi)^ Af - the comple

ment of AF in F 4 and for every non-void set X 

put 

I ^ X - CP~« F C ^ A ) K A F ) , £ X * ZP~*F(M,X ) 1 ( \ ) . 

For an a rb i t ra ry mapping f ; X —> Y i t i s >«.., -» 

= 4Xy • f , therefore C P + - Ff-fWCt^X) c % y 

and CP + - F « ) H ^ X ) c f; V . Define F, -f and 

F f accordingly, as range-domain restrict ions of F f . 

It i s proved that far, tha t F * » F * v F * . 



We can now define F^0 -» F0 and f̂  t& 

ia a domain re8triction of Fi?v for $ ; ^—* X f and, 

£ 0 - 0 , g^ - ^ : *~> g X . 
It ia eaaily aeen that A - * A_ and A - ** 0 , 

therefore, by atatement 4»£, i f A + 0 **-en C* i« 

a eubfunctor of F * and F ia a separating functor. a. ^ 
Finally, l e t X : & —> F be a monotransf or mat ion 

of a separating functor G into F • Then necessarily 

X (t) e %f for every t e G f f therefore 

P* CA )̂ (&X) c ^ X *>r every X 4> 0 } and, of 

courae, G-^ ~ 0 » %& • 

Thla property of £ secure* uniqueneaa of the decom

posit ion. 

Corollary (to Statement 4.1)• Every 8eparating func

tor F ia faithful and F0 » 0 . 

Proof# Assume Ff * F ^ for some mappinga 4-7 g^: X*> 

~>Y. Then F<urs « F(.f «"urx)-*- F(a,°vr*)* Ft^^ for 

a l l * in X , therefore, by (2) , -K*) * g-C-v) for a l l 

x i n X i !•&• $**<%>•• 

Pefjfilfrlon 4 f 2 t A functor F ia aaid to be ligbLiffi 

X 7 X * J0 , i f 

(7) U v [ P+* F(*r* )J ( F1 ) = FX . 
X c x ** 

If this identity doea not hold, then F i8 loqse on X • 

If F ia tight on every X , X + 0 9 then i t ia a 

t ight functor, otherwise i t la a J.o0gg fURfftftr* 



Statejpent 4 .4 . ï f F is loose on У; У Ф / ; anđ 

У c X 7 then F i s loose on X • 

RPûдt. Benote i i y —» Л aa incluaion of У 

into X anđ choose some retract tt : X —> У oř * ' • 

Then K * ur* • wJCi for every x in X • Now. assu-

me that F i s t ight on X , that i s , (7) holds. Since /t 

i s a surjection, we get 

F y « LP+* FU)lCFX)*LP+'F(«,)l(UKLP+*F£iir£)l(F1))' 

- U ]LP+*FU)1*LP+* F(<ur*)KFi) -* 

- ULP+*F(«r*mFi)~ ULP+*F(i4r*)lCFi) 
*€X ***> *y-ev > 

in contradiction with looseness of F on y • 

Corollary. If F i s loose on a set X, X 4* 0 , then 

i t i s loose on every set y with COACCC V ^ <u*flt X -

Equivalently, i f F i s tight on X , then i t i s tight 

on every Y, Y 4= 0 with <uucct Y & cuvocL X . 

Proof. - Immediate consequence of Statement 4 .4 . 

Define air* ; 1 —> X by «rX CO) - * , 

<ur C4) -* /U" - P o r a g**©n functor F denote 

W* * C P ^ * F ( ^ r i ) J C F 2 ) , WX-. EP+* FC*£*)J CF-f) . 
Xty *«+• 7 Jt X 

Statement 4 .5 . Let a functor F be loose on a given 

set X with ceuocC X > 1 , i . e . 

Then 
ҒXN u x < +* 

FX ^ U Wx * jl for arbitrary a, in X . 
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Proof. F i r s t note that W* .* w* tor * in X 

and for any mapping f • X —> X i t i s 

LP+.FUmw^) - v ^ , ^ , . 

Assume, now, that U W » FX tor some a> 

in X • 

Choose an element 4i in FX \ U W . Then for 
' **x ^ ^ 

v-

some tX ? * 4- a,, fi. e W£uM . Take an eltsrmt Jlr in 

X so that Jlr 4* a^ *-£r 4* «x , and a> bisection -f ; 

; X —> X such tha t f C-fr-) -* a, # Then 

CP+* F ( f ) J ( U Wx ) * U [ P ^ F W ] m ) -X6X ** xex -*̂-v 

» U W » U W » ғx ? 

theref ore U Wл 
X 6- X *r* 

- ғx , аnd, f or some / .̂ 4» ^ , i t 

Ів *> * ч л 
* 

I t rвmаins t o show thаt jъ e W* 
¥CLX 

Л WЃ l eаđs 

t o а contrаđict: ion: Tаke а mаp >ping ŕ* X —• X such 

that 1/. 
t O ' i t ^ » Q' 

^ C a ) = a., ty(x)=x, ty(£r)~fy(<yJ)- 1 x if ^ * a 

Then 

Jp, - CFgJC/i) e LP"**- F ( ^ ) ] ( ^ n w / y ) c 

c Wx ,/1 WX , , c W* U WX 
O..У %&)&(<$,) <*>*> ** 

Statement 4»6« If F i s t i g h t , then for every set X 

and for i t s a rb i t ra ry two subsets M H i t holds 

(8) tP***F£ix )1(FM) U t?+* F(i* )lCFH)*t?*>FCi?>J CFS) 
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where S - MUN , and, i* ; M - * X , i* s N -> X„ 

г ; S ~~* X are the respective inclusions of M, N ? S 

into X . 

Proof* Denote i 5 ; M — > 3 , i f ; N —.> 5 the 

inclusions of M, N *nto S , respectively. Then we 

have 
.X ,X * S -X ,X . 5 

(9) * M - *B - * M > ^ - *5 • S • 

It i s easy to see that (8) holds, i f one of the sets M,N,S 

i s void. Assume further that M 4- 0 N 4 » / * Then, by 

tightness of F ; 

FM* U CP+* FCwM)lCF1), FN* ULP+* F(<ur* U(F1) . 

Using (9), we get 

lP+>FCi* n(Fm~t?+*F(4*n(UlP+'FC<urM)lCF1)) -
M M ,X£M * 

, U LP*. F(i*. urfnCFDm U LP*. F(w* )J CF1) . 
xtn MX xei * ' 

and, similarly 

LP*. FO>*)MFN)- U LP+< F(itr*)J(FH) . therefore 

CP+< F U * / K F M ) U CP*« F H ^ 

but vr* m i* » urS f«-» * in S , so i t i s , 

f ina l ly , 

U [ p t . FC*r,x)KF1>« CP*-' F U f «( UCP** R K 5 f M . F l ) -

= {?+.FCi%-)2 (FS) 

+>y tightness of F . 
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Tight separating functors are exactly the functors 

preserving sums* let us formulate this as 

Statement 4*7* If F does not preserve sums, then F 

i s either loose or i t i s not separating. 

Remark* Denote by tfj ^ 7 & the systems of a l l 

separating, t ight , loose functors, respectively* Bach of the

se systems i s closed under v . , x , o for functors, 1P i s 

closed on subfunctorsf % i s closed on subfunctors and 

factor-functors, & i s closed on extensions ( F e & ? 

F ~ ^ F' =~* F ' e & ) . Every F in ^ s p l i t s by 

statement 4.3 into F^ v f^ . such that £ * -» C* 

and F̂  preserves sums* 

It i s I e IP r\ *¥ % constant functors C^ are in 
/ 1*1 

¥ , N , P * , / 3 e ^ ; flM e # for <ai*£ M & 1. 

Turn now to range functors* 

Statement 4*8* If (J does not preserve the product of 

a family -[ X_ l x e / 4 ? t then i t does not preserve the 

product of any family { Y I cc e A 1 with £afec£ Y^ -** 

> QjcutcL X ^ for a l l oc In A • 

Proof* Choose for each oc in A mappings i^ : X^ •+ 

~* y«. > *« * Xc ~+ *«, «uck that xm • i^ - \^ . Deno

te < X , i tfK } > and < Y , itr* } > the products 

of fX ? and f X / Respectively* Define mappings 

* > X - * y and x ; y -+ X by 

I t i s then >t • i « fr . 

Assume that 6 preserves the product of iX^I and 
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show that then i t preserves the product of { X^? too* 

Fbr an arbitrary family iX I, x^ e G X ^ for 

<H i n A y there must exist /y. in G Y such that 

(Gsry)(/y,) » f<xi ) C ^ . ) ? and, using (10), we get 

(Gjr* ) (-x) -» ac for x -» <T<r/c ) (n^) by easy calcula-

t ion. The element .x with (Gjr*)(x) — x^ must b« 

unique, since (Gjri )(xgt) - (Gxrt)(xn) impliea 
OP 7 Op X 

C G*r£ ) C ^ ) * (<?*£ ) f*^) for ^ » (Gi) f*vf ) , ^ • 

-= C<r* ) f x * ) 1*? simple calculation using (10)# 

Next three definitions reflect certain properties of 

the functors not preserving products* 

Let £ - iX i oc e A f be a jQuilly of sets* 

Denote by < X , \.?r* ? > i t s product X -JT^ X^ 

with -7T* : X —> X ^ - the ordinary projections* If a 

functor G does not preserve the product of the fami

ly X f then either 

(I) there exists a family {XsA , x € G X^ for 

oC € A . such that there i s no *x in (rX with 
7 

(&#£)<*)* (x^) for a l l ct in A , 

or 

(II) there exist two points «X? tu, in (rX ^ <x -4* r^f 

such that ( Grt* )(*)** (Gjr*)('y.) for a l l <x in A . 

Definition 4*3* A functor G not preserving pro

ducts i s said to blow UP products i f for some family of seta 

the alternative (II) takes place. If, moreover, the alterna-
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t i v e (I) takes place for no family, then G i s said to 

inf late products* 

Definition 4.4* A functor G not preserving products 

i s said to f i l t ra te products, i f for an arbitrary family 

{ X^ loc e A ? with the product < X , ttr^i > the fa

mily of mappings: { Gfl^ lot 6 A ] i s separating on G-X 

in the sense that 

(11) Voce A(((ifroc )(x)* (Gjr^Cy,))^ x - n^ 

for x , ô - in G-X . 

Remark* The system of a l l functors with the property 

(11) i s closed under V x , o and subfunctors. We obtain 

the system Ŝ  of f i l trat ing functors by removing functors 

preserving products . 

Ptf|n^4on, 4,g. A functor fr awerinflafles products 

i f there exists a family { X^ I at e A 1 of non-void sets 

with the following property: 

There exist -x^ in X^ and <y*^ in fr X^ for 

a l l oc in A such that, denoting < X f izr^ } > the 

product of { X ? , for an arbitrary set S and mappings 
<Xr 7 

6\ : X v S —» X^. such that 6£ I X — # 1 and 

^ C/fc) - X for a l l fy in S , i t holds 

c ^ ^ e S C X v S J U ^ ^ ) ^ ) - ^ for a l l a: 

in At >• 4 + cajtcC S . 

Statement 4 f 9. The functors N ; / 3 - < P ~ . , i > super-

f la t e products. For the System 0t of functors super inf la

t ing products i t holds: 
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(oc) Q has a subfunctor belonging to 7i —+ G € 2t 

((I) F .x 3t c ^1 for any functor F f 

(tf) F is a covariant faithful functor - = . > F « 9 t c ^ ? 

at • F c at , 
(cf) F? 0 are contravariant faithful ---=-> F« G- e at y 

( 6 ) F i s contravariant faithful or constant, G e 3t —> 

=* < F, G > e at . 

Proof* 

1) N superinflates products; choose X « {a.^..^-i^ 

X a -=^c . , oL? ; x ^ a , * 2 » i,<M'i
s*ia,,&'Jf/y^*ic.,df , then 

the family { X^ ^ ^ J and points x ^ X ^ ^ , / ^ meet 

the requirements of the definition 4»5# 

2) fh superinflates products; choose ^ - { ^ . , ^ 5 , 

^ - 4 , 2 , 3 , . . . , X ^ - a ^ , * % * - * < * * , * , * < ^ , ^ JJ , then 

the (countable) system *i X^\ rrv* 4 7 £,,,,i and points 

*<n. ? *¥6*/ m e e* ^h e p©Q î--*®---6nt8« (If c W S <> &0 use 
the fact that i * e /JX I ( (h> ST^Cx ) - ^ for 

r̂t * 4 , 2, . - 3 > 2 1 * , i f O**XJ6 S > * 0 7 then u s e 

t<vuL (*>$**! . ) 

3) \ P". 1 > superinflates products; again choo

se the family f X1 1 X ? where X1 « U , Sri f Xz * 

» tc?otJ, ^ - a , X^* C, ^ ; P"Xi —* X f i s the con

stant mapping to a , Ofa ; P'X^ — * X% i s the con

stant mapping to c • 

The assertions (oC) - ( E) can be easi ly proved with 

aid of the Proposition ! • ! • 
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5. Covariflrfl gase. We suppose Always F * C0, & * C^ . 

Theorem 5 .1 . Let A ( F , l> ) /i ) be • category whose 

type A. « i eeA IX <- fh } contains zeros, say, deA * 0 . Then 

A ( F^CJ, A ) has products i f and only i f G preserves 

products* 

Proof. If G preserves products, then, clearly, 

A ( F,Gj A) haa products, so we have to show the con

verse implication* 

Take an arbitrary family { X^ I cC € A I of non-void 

sets and choose a family { ,x € GX^ I oc e A 3 • Denote 

< X , i tf^ lx e A1> the product of {X^ \ with JT^ - the 

ordinary projections. We must show that 

(a) there exists an element x in GX such that 

(Gsr^l(x) * X^. for a l l ^ in A , 

(b) i f for some X,ty in GK i t i s CG .̂ )(x)*>(G^Cfr)* 

* :X for a l l oc in A i then x .« /u. « 

By theorem 2 . 2 - t h e category A ( F 7 G 7 i 0,11 ) * 

has pseudoproducts. To show (a), take the family 

* C X < * * { °t*> cr;* J ) I X € A J of objects of ,4 C F, G-, 

{ 0, 41 ) with operations defined so that for each cC , 

d e A <r* se lects x in G X ^ and cr* carries 

the whole FX_ into x .̂ « 
<& ao 

Let < ( S, -f <r/ , <r/ ? ) , 4 er. 5 > be a pseu-

doproduct of this family. There exists a mapping h ~ ; S ~ * X 

*) Unary operations play no role in our proof and it works 

in the case $e «. 0 for all X 0 X < /$ 9 as well. 



such that 

(1) 61 ~ 3T c Jh, for a l l 00 in A . 

Denote 4> the element in G& selected by <r # For 

X m CGJh)C*) i t i s C(j^X^)-C<x^>C(r^C^)-C^)C^>*^ 

for a l l oc in A , as required* 

To prove (b), assume (Gtf^)Cx) - CC?^ )C^> » ^ 

for a l l o& in A , and* take inverse bounda <CX, i^T0 ^ ^/ 

i Jr 3 > with <r* select ing * and <£ carrying FK 

into X and < ( ^ ; { o > / ( , C J * S ) , < ^ i > with <u£k 

carrying FA into ty selected by coo. . 

Let f, ^ s X —* S be the respective factoring 

morphisms, that i s 

(2) 3T . * 51 * f * & * a- for a l l ac in A , 

and, in particular, 

(3) ^ CGf>Cx) - CG-^)Cr^) - .* . 

By (1) and (2) we get .Jvf»Jh,*ty>- 4^ which 

applied to (3) gives .X «• ̂  -» C<?^i.)C/^) . 

Consider further only categories A C F? (r., 4 ) with 

a completely positive type A=*{d£x\X</S'$, i.e. 

ae. > 0 for all ^ , A -< fb - As a corollary of theo

rem 5.1 we get 

Theorem 5.2. If Fj5 * 0 and (r does not preserve 

products, then a category A ( F n G ; 4 ) has not products. 

Proof. Assume that A (F7 G7 A ) has products. Then 

A (C, - G, {1 J ) has pseudoproducts, by theorems 2.1 and 2.2, 
since F0 4* 0 means that Cf is a retract of F . 

x 
Now, unary operations <r * Ci X — > (rX just 
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se l ec t a point in G X y therefore A (C^ , <£, U i > 

coincides with /4 (C., - <r ., W/ > which f a i l s to have 

pseudoproducts by theorem 5*1, in contradiction with our as-

sumpt ion* 

Theorem 5 . 3 . Let A ( F, G , A ) be a category of 

a type A ** { 3£ I A < /3 ? with a range-functor (r not 

preserving products• 

If the functor ft^ « F i s loose for some A.̂  A*-. (h7 

then A ( F 7 <r ? A ) has not products. 

Proof. Assume ft^ • F loose* Combining s tate

ments 4*4 and 4*8 of the preceding section find a 

set X such that GV, • F i s loose on X and G 
T A 

does not preserve a power < X , { ^ I at 6 A 3 > far 

a suitable set A • 

(I) Denote P -» X and f i r s t assume that for some fa 

mily { ^ € G X k e A i there i s no point V in CrP 

with (( CrJT(jC)(v) - -X̂ . for a l l oc in A . 

Using the notation introduced in statement 4.5, define 

operations cr̂  : CFX) —> GK , oc e A , A -c /I 7 as 

follows: 

Choose an element a in X and an element cL in the 

part LP+o G(%r?)l CG>| ) of G2 , denote D* « 

тui 

dx for t Є J>* 

( 4 ) ďлC±) s 

íor iє CFX) Л N D 
X 

Define ( 2 , f <r* ? ) b^ ö r 1 ^ ) * c£ f0P ^n * m 
Л 
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C F .2 ) x and note that every nu£M 9 x e. X 7 is 

a morphism of C £ , { cr^ 3 ) into ( X ,{ or*I ) ? since 

C G"2ir* )(d)=* ((JUT* )Cd) for every x in X • The-

refore <C 2 , < ô .11 > , i W* ^ 3 > wtth an «^oitra-

ry y ; /4 —.> X is an inverse bound of the family 

U X . , ^ i ) U e / \ ? - X . 
Suppose that < C S , {a* 3 )y i 6^ 3 > is a product 

of £ and denote Jh, ; S —• P the mapping uniquely 

determined by 

(5) f r ^ o A for all oc in /\ , 

Denote fM : % —• S 7 »x 6 X factoring morph-

isms of inverse bounds \ ( i . {(f/J) ,*£ «£* Ca, i > with 

Q>Cac) « X for all aC In A f i.e» î r* - 6" * 4w 

for all a* in A # 
Then for a mapping ?; : X —* S defined by r ( ^ ) . s 

- f C i ) i t i s * - tirX CI) - a* o f' c t ) - 6: • trCcX), 

hence 

(6) C ° ^ " t f ° * a H <** in .A • 

Now, by statement 4 .5 f choose t in (FX ) ^ !D 

denote ^ - - - C F - r ) y Ct) ; i r - CfrA >C<r̂  C/S>) ) , and, using 

(5) and (6) , get 

(&^.)Car)= C6-^oc)«CG;A)Co^C^))= C<J^)CO^C/S>) ) -

• <^* C F% ) C^*>~<£'^ 

for all op in A f in contradiction with our assumption* 

(II) Assume further that (I) happens for no family in &X , 
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but for a family f x ^ € G- X / «x € A i there are 

f f v ' in & P ; or »*-• sr' , such that C<x.?£. > Cir) « 

- CG-jr̂  )tir') m x^ for all at in A . 

Take again the family i(X,i<r*})\aCeAt 

with operations defined by (4) and suppose that i t has a 

product < ( S, i<r*i') , i 6^1 > . 

Define inverse bounds < ( P, {<rPJ ) { JT 3 > and 

< C P,icu*3 ) , i 3^3 > as follows: 

Define <u: X —.> P by ^ * ^ « 4 for a l l 00 

in A f denote D* - JL/ C P + - tt- • FCz**'' ) 3 C F 2 ) , 

cLp » C G * / ^ ^ , > CrfJ , a n d put crpf a.) - A^C.*,) - c£p 

for M. e J>* , • CT^CM.) m v , cu£ Co.) - v ' for 

At e CP+- 0 . FC^>KCFXr*N ID* >, on the rest of ( FP >** 
P P 

define <r and co^ so that a l l 7t^ become morph-
isms, which i s possible by our assumption* 

p 
Note that a l l W ^ * , , ^ , <p~ e P , are morphisms of 

C 2 { o;1? ) into both C P , f cr*f I ) and C P, i o / l ) -

Let + , -f 5 P —V S be the respective morphisms of 

( P , l o ; p n and ( P , { a>l 3 ) into ( S , f <rs I ) 

with ^ - ^ • • • ^ • * / for a l l dC in A . 

Together with (5) we get j f e ,« - f* iy fc ,# f ' '« 1p 9 

so f and f are injections, aid, i t cannot be f "• *£', 

since then it would be <rf * CF-O *7<aJ - (G-4) (v) ** 

- C<H ) O ' ) for any ^ in£P** Q^ * F(p )J CCFX )***^ i f ) . 
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Therefore i t i s «f C-fi..* ) 4-- V (<\L* ) for some 

fv* in P • 

Now, < C 1 , icr* ? ) , i *£ * *>£*,** * > *• •» * * 

verse bound of i t ĵLth two different factoring morphisms 

through < C S , ior*1 ) , i 6^ } > } namely, 

* • %!L^* •"* *' • %T«** 

As a simple corollary we have 

Theorem 5»4» If F i s fa i thful , <r not preserving pro

ducts, and, A contains a? number d£. different from A , 

then A ( F , (x, A ) has not products. 

Proof* fil * F has a subfunctor Q„ which 

i s loose for aft > 1 * a 

Theorem 5>5# If F i s not separating and G* blows up 

products, then A C F , G- , A ) has not products# 

Proof. Assume that for a family i X^ I oc e A i with 

the product < P , { tr^ J > there are or, i r ' in G P , 

/jr -*. v ' such that ( Gir^ ) (v) « ( O/r^ ) ( tr* ) for a l l 

oc in A • 

- Take a fami ly i ( X^, . o* ) \ <x> e A } of ob-

j ec t s of A ( F , & , ' H i ) with O^Ct) ** C<rjr^)(v) for 

a l l t in PX^ * 6 A j and, suppose that the family 

has a pseudoproduct ^ C S^ CJJ' ) , t ^^ 1 > • 

Define inverse bounds ^ f P, 01 ) / t ^Sc^ ̂  a*-d 
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for a l l t in F P , denote i , f ' : P —* S the 

corresponding morphisms such that sr = & * f » <F o f 

for a l l oo in A • 

If F i s not separating, then there exists an element 

t in F P such that (Ff)(t) « ( F f ' ) ( t ) - 46 . 

I t i s then 

(7) CCrf ) (v) ~ (Gf) Cv-') = crs (tc) > 

Now, "f and *f ' have a common retractionM, * S —* P 

defined by %^ ** **& * ^t ^ e ^ , that i s , Ji, o t ~ 

*4lof' ss 4 # Applying to the identity (7) we get v =* n/ 

- a contradiction. 

Let us cal l a type L -= i9£. I X <: (I 1 with a? s 

9 1 for a l l X ; X < /3 ; a unary type. 

Theorem 5.6. A category A ( F ? fr; / i ) with 0-

not preserving products and whose type i s not unary has pro

duct* i f and only i f F0 «• 0 f F* & C* and & 

f i l t r a t e s products ( F* i s a range-domain restrict ion to 

non-void sets and mappings)* 

Proof* If A ( F , & f A ) has products, then F 
X X 

i s neither loose nor faithful . Therefore F%v -=- Fur, 
x for arbitrary *x 7 <ty in X and F/ur^ i s - by t ight

ness - a bisection between FH and F X independent 

of choice of * in X . Putting £* - Fixr£ we obtain 

m nat. equivalence € J C * -—* F * 
Pf 

Since F is not separating, & must then, by theo

rem 5.5, filtrate products. 



The condition F0 =- 0 has been established by 

theorem 5.2* 

Assume| conversely, that the conditions imposed on 

F and G are f u l f i l l e d . Let 

X ~ * ( Xot>* °jT 1 ^ < / * ? M < * « A ? be an arbitrary f a 

mily of objects of A C F , G, 4 ) , Let < p , f ^ ? > 

be the product P » TT X with ordinary projections. 

If, for some /m in M A . there i s no ^ in GP 

such that ( (xsr^ ) (AA, ) ** o? (<m ) for a l l oc in A f 

then every inverse bound < ( Y f <<r?1 ) ; . 4 ^ ^ J > of 

3! must be void and i s , in fact , a product of X • 
9€ 

If, for every /m in M A
; X < /3 , there ex i s t s so 

me AA, in GP such that C G-̂ r )(ytc) -» &*("*- > 

for a l l oc in A , then . < ( P, icr£.1), 1*%,? > with 
p 

<X defined by 

C G ^ - ) ^ - <£* for a l l oC in A 

i s a product of X • 

Theorem 5.7. A category A ( Fy G? A ) with a 

unary type A and G f i l trat ing products has products 

i f and only i f F i s a tight functor with F j 0 ' V 0 7 iM 

particular if F preserves sums. 

Proof« The condition i s necessary by theorem 5.3And5-5. 

Let X ~ < (X^ , <a•* i ) I oc e A I be an ar-

bitrary family of objects of A ( F 7 G r A ) , l e t 

< X , KST^ I oc € A? > be the product X - -T X. with-

ordinary projections JT^. ? oc e A • 

Define a system tH of admissible subsets of X 
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by the condition that M 6 <#t i f and only if for eve

ry i in FM ? there exiats a family i u^ e <rMlA</3J 

such that 

(1) of* LF(JT *i* )Kt)*tG(sr*i*)l(u,) for a l l oo 
Pi eC rn « * ! * » # * 

in A , 

where i x ; M —> X la the inclusion of M into X • 
M 

Since <j f i l t r a t e s products, the family fAX̂  1 i s 

uniquely determined by t and <(fAAcr" J ) , irr * i* I > 

with <r C-t) m jm for t in FM .fcacomes an inver-

se bound of •$ • 

Denote S ** U VL - t h e union, of a l l admissib

l e subeete of X , i ^ ; M —> S , M 6 <0t f - the 

inclusion of M into S . Since F la t ight , we have 

by statement 4.6 
UIP+* F C ^ ) 3 C F M ) - FS -

therefore9 for every /fc in F S ? we have ( F i * )(/&)-» 

88 CFi* ) C t ) for some admia8ible act M and t in FM . 

Putting VI * (Git )(o-*1 (t)) wa get 

V*o iFitt^oi*)^/*) - (jj*• C F C ^ . i * )JCt) . 

*iG (ir^c i^ft* <% ct)mZGC3r^i\)l< 

therefore S la admissible. Moreover, i t i s easily seen, 

that it 1» « morphiem of ( M, i a" J ) into 

iS tAc£i) -
It remaina to ahow that < C S ^ i c ^ l ) ; 

i S^ • i £ I > la a product of X . 

Let < ( y , i o>l J ) , i 1m I > be an in-
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verse bound of X f i . e . cr # CFw) ** (&*l ) * cry 

for a l l oc in .A , and le t A ; y —.> X be the mapping 

uniquely determined by ^ • ^ a r ^ < - C 7 -x e 4 * 

Denote M * C P+Jh, )CV ) and le t A : V —• M be 

the range restr ict ion of > i • Then we have H & 4,* * Ji 

and 1J » ff ^ i^. 9 Jh , therefore 

C2) <£* C F C ^ i * ) J o C F i l ) * i : G C j r c * ^ ) ] ^ G - i l ) - ^ i
y . . 

Now, for every t in FN1 there exists an if. in 

Fy such that ( F Jk K^- ) ~ t . By ( l ) and (2) i t must 

be 
CCJjfe) • <£(&)* <£MC*) - ( £ M « C F J I , ) C ^ ) , 

therefore A is a morphism of C y , <<£*? J onto CM, i<Txl), 

M i s admissible, and -f ; iM * Jh, i s the unique 

factoring morphism of ( Y f i o ^ l ) into ( Sf io^i ) 

such that -0 » C -7T * i * ) • * for a l l oe in A . 

As a corollary we have 

Theorem 5.8.» A category A ( F , Cr, 4 ) of a unary 

type and with F not preserving sums has products i f and 

only i f F i s tight with F0 * 0 and G f i l t r a t e s 

or preserves products • 

Proof. If A C F, Cr ^ A ) has products, then F 

must be t ight by theorem 5.3, F0 *-* 0 by theorem 5.2, 

therefore i t cannot be separating and G then cannot blow 

up products by theorem 5.5. 



The converse has been asserted in theorem 5*7# 

Theorem 5.9. If G superinflates products, then 

A(F (r^A ) has not products. 

Propf• Having in view the theorems 5 .1 , 5.6, 5-8, we 

sha l l have only to prove that A ( F , & ., A ) has not 

products in the case of a unary type A and the functor 

F preserving sums. Then i t i s F ~ I .x CM and 

thus A ( F . G", 4 ) i s isomorphic to some A C I , &7 A') 

with a suitable unary type A ' . Therefore to prove the 

theorem, i t wil l do to show that A ( l 7 Q- , -H } ) has 

not pseudoproducts. The proof then runs as follows. 

Let { X^ I oc e AJ ^ ^ e X^ 7 /y^e G- X^ . enjoy 

the properties s tated in the def in i t ion 4 .5 . Let or : X -> 

—> & X oc € A ? be the constant mapping assigning to e -

very x from X ^ the element Ofa • We shal l show that the 

f ami ly 3£ ** { ( X^ , <%. ) \ °c e A 3 of objects of 

ACL^G-yi'il ) f a i l s t o have a pseudoproduct in th i s 

category. 

Assume that the family SC has a pseudoproduct, say, 

< ( P, Ol ) ; { f 2 k l < x e A 3 > - Let MU be an arb i t ra ry 

i n f i n i t e cardinal number. I t wi l l be shown that uvudL P & AM*. 

Let ( X . { ^ I oc e A J > be the cartesian 

product of the family 4 X ^ I oc e A J . Let S be a set 

with ea/£<.iS ^ ^ t ^ , Define an inverse bound % *» < ( Z , a^ ) ; 

i & I cC e Ai > of the family 3? as follows; 

Z * X v S ? ^ : Z —.> X^ i s a, mapping such 

tha t €T I X « #L , 6* ( ^ ) « * for a.11 >t> in S . 
OC OC ' OC OC* 
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To define the operation CL denote 

M « ize G(X v S)\(&%0)(*,) ~ ^ for alloc in Ah 

Let -< be a well-ordering of S , f 0 r a given A> in S . 

denote S A » ( t e S l t - < - 6 3 • For an A> in S 

denote further M^ - M n CCP+* G H i * )J CCTCXvS .̂); , 

where i ^ ; X v S —> Z i s the inclusion. Since <? super-

inflates products we have ccutc£ M^ > 4 -*- cctto6 S^ . 

Therefore, we can now define <r j Z >GE by the 

transfinite induction in such a way that & (X ) n o* (S) --* 

= j ^ , r.r i s one-to-one on S and for every /S> in S 

i t i s (T ( X v S j c iM , Then, clearly, 

( G ? , ) » (^ a CT « 6T so Z real ly i s an inverse 

bound. 

Let -f : Z —> P be a factoring morphism, i . e . 

(1) ji^ o * — 6^ for a l l oc i n A 7 

(2) <Tp * -f » (&$) o cr^ . 

We shall show that -P i s one-one. On X i t follows 

immediately by ( l ) , further procede by transfinite induction. 

Let A> e S and le t -f - <L^ be one-to-one,^ ; X v 5^-* 

—>Z being the inclusion. Then also G(4 ° i^ ) i s one-to-

one, therefore G"f is ora-'fcD-one on M^ • It remains to 

show -P to be one-to-one on X v S^ v { /4> ? . But i t 

would be, otherwise, f (*> ) « -f C/fe') for some /fc' in 

X v S^ ? and, by (2) , «?* ) * %(*)** (Gf ) * ^ C&'J , 

in contradiction with cj (A>) 4* O^ (*>'), C£ (A), <^W)e M^ 

and Gf being one-to-one on M̂  * 
/9 
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A, Although the problem of products in A ( F9&9A ) 

i s not solved completely in the present paper, we can never

theless show that the theorems proved here clear up many s i 

tuations. Let £) denote the least system of functors con

taining 1} N,fi9 Cwtth M +0, c loset with regard to opera

tions v . , X (over s e t s ) , ° 7 < — , — > (whenever 

defined) and to natural equivalence. From this recursive de

f in i t ion of 2) and with aid of the results of the section 

4 we can prove easi ly: 

If F in 3 i s covariant, then either F0 # 0 

or F - I x C^i or F i s loose; 

i f <? in 3) i s covariant, then either G preser

ves products and G -^ <2W ? or G f i l t rates products 

and G ~ V GL_. or G has for a subfunctor one of 

the functors / £ , /J x I , N , N x - 1 , < P~, I > and hence 

superinflates products. 

Therefore, from the theorems stated in the paper i t fol

lows that: 

If F , G are covariant functors belonging to the 

system 2) , then A ( F 7 G- , A ) has products ex

actly in the following two distinct cases: 

i ) G « a M j 

2) A la unary, F -- I X CM , G « V flM . 
v C »/ ^ 

B» Beside categories A C F# G, A ) treated in the 

text i t i s but natural to study also the categories 
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P (F 7 Gr, A ) whose objects are a l l pa i r s ( X / J with. 

X - a set and (7 - a system of p a r t i a l operations of the 

cype A from the set F X into OK , or , the c a t e 

gories R C F , Gr, A ) with, objects ( X , V ) - a set 

with a r e l a t i o n a l system, i . e . the system of multivalued par

t i a l operations of the type A from FX into. G-X 

(see also L3J). 

The authors have chosen for study the categories 

A CF7 ( T 7 A) since the behaviour of categories 

P C F 7 C r , A ) and R C F , G-, A ) with regard t o 

products i s e s sen t i a l ly simpler. The theorem 3.1 i s val id -

a f te r some quite formal modifications - for categories 

PC F, (r, A ) and R C F , G-? A ) . Therefore, for 

fa i th fu l contravariant F 7 G and 51A > 0 the 

categories* P C F , G-, A ) and R ( F ? G-, A ) have 

not products. If F , (x are covariant , then 

R C F , (r, A ) always has products and the forgetful func

to r preserves them. 

In s i tua t ion8 treated in the paper, the behaviour of 

P C F 7 Gr 7 A ) d i f fe r s from, tha t of A C F , G-, A ) on

ly in the following case: If Gr f i l t r a t e s products then 

P(F, Gr} A ) always has products and the forgetful func

to r preserves them. All other r e su l t s and the i r proofs 

brought in the text can be with jus t formal changes t r a n s 

formed to P C F , G-, A ) . 

C. I t i s , of course, possible to regard a system of 

s t ructure* simultaneously* If Cf i s a s e t , then categories 



A C < F t , < r t f A t l l t . . 7 ) , P«F,7GcfAJlte7)t 

RCi F . G Ai\ L & 7 ) are defined in an obvious 
L> 7 L 7 L 

I t i s c lear that a l l proofs of non-existence of products 

are of that kind t h a t , as soon as for some L0 in 7 

the category A ( F , Cr , A ( ) has not pro-
Lc 7 Lc 7 La 

duets by some of the stated theorems, then 

A (iF . G A } I t € 7 ) has not products either. 
L ? L 7 L 

Further , we can asser t the following: Let for every c in 

7 Gr pire&ervfcd p roducts ,OP, for every o e 7, A^be unary, 

Ĝ  f i l t r a t e products and FL be t igh t with Fv 0 - 0 . 

Then A « FL 1 (.f ; Afc 5 U e 7 ) has products. 

We do not bring exp l ic i t ly the resul t9 for categoriea 

P C - - . ) and R C . • - ) -

D. Let A * ( F , G-, 4 ) be a fu l l aubcategory of 

the category A ( F , G-. A ) whose objects are exactly 

the objects of A ( F 7 G7 A ) with a non-void underlying 

s e t . All the resu l t3 in the text claiming the non-exiatence 

of products in A C F / C r , A ) are without any changes 

va l id in A* CF, Or, A ) as well. The posit ive r e 

s u l t s on the existence of products are s l igh t ly d i f ferent . 

Completing in a simple way the proof of the theorem 5.6 we 

can for example prove: If the type A i s not unary,then 

A* ( F , ( r , A ) has products if and only if G pre

serves products. 
If G f i l t r a t e s or superinflatea products, then 



A* ( F G A ) nas not Droducts even for a unary ty*-

pe A • 

The same problem*, on products as in AS FTCr , A ) 

remain open for categories A* ( F7 G-, A ) . 
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