Commentationes Mathematicae Universitatis Caroline

Vera Trnková; Pavel Goralčík
On products in generalized algebraic categories

Commentationes Mathematicae Universitatis Carolinae, Vol. 10 (1969), No. 1, 49--89
Persistent URL: http://dml.cz/dmlcz/105217

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1969

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinas 10,1 (1969)

ON PRODUCTS IN GENERALIZED ALGEBRAIC CATEGORIES
Vera TRNKOVA, Pave GORAĽf́, Prana

0. Introduction.

Universal algebras of a given type $\Delta=\left\{x_{\lambda} \mid \lambda<\beta\right\}$
(Δ is a family - as a rule increasing - of ordinal numbers indexed by ordinal numbers) form the category $A(\Delta)$ whose objects are operational structures, the pairs $\left(X ;\left\{\omega_{\lambda}^{x} \mid \lambda<\beta\right\}\right)$ where X is a set and ω_{λ}^{X} are $x_{\lambda}-a r y$ operations on X, ie. mappings $\omega_{\lambda}^{X}: X^{x_{\lambda}} \xrightarrow{ } X$, and morphisms from $\left(X ;\left\{\omega_{\lambda}^{x}\right\}\right)$ to $\left(Y ;\left\{\omega_{\lambda}^{y}\right\}\right)$ are mappings $f: X \rightarrow Y$ compatible with operations in the sense that $\omega_{a}^{y} \cdot f^{\left(R_{\lambda}\right)}=f \cdot \omega_{\lambda}^{x} \quad$ for every $\lambda<\beta$, where $f^{\left(x_{\lambda}\right)}: x^{x_{\lambda}} \rightarrow y^{x_{\lambda}}$ is f acting coo ordinatewise on $\mathscr{x}_{\boldsymbol{\lambda}}$-tuples from $X^{x_{\lambda}}$.

Here the operations play a role of a "device selecting suitable mappings" - the morphisms of $A(\Delta)$. Now, we can let this device work in a more general situation. Take two functors F and G of the same variance from sets to sets and define the generalized algebraic category $A(F, G, \Delta)$ as follows: objects are again pairs $\left(X,\left\{\omega_{\lambda}^{X}\right\}\right)$ but operations ω_{λ}^{X} range over $F X$ and take values in $G X \quad$ (so they are mappings $\omega_{\lambda}^{X}:(F X)^{\mathscr{L}_{\lambda}} \rightarrow G X$), and, morphisms are in the covariant case mappings $f: X \rightarrow Y$ such that $\omega_{\lambda}^{y} \circ(F f)^{\left(x_{\lambda}\right)}=(G f) \cdot \omega_{\lambda}^{x} \quad$ for every
$\lambda<\beta$, so we have commutative diagrams

(In the contravariant case the vertical arrowe are reversed and compatibility of f means the fulfilment of the identities: $\quad \omega_{\lambda}^{x} \circ(F f)^{\left(X_{\lambda}\right)}=(G f) \cdot \omega_{\lambda}^{y} \quad$ for every $\lambda<\beta$.)

We shall refer to functors F involved on the first place in $A(F, G, \Delta)$, for obvious reasons, as to domain-functors, and to functors G as to range-functors. Taking $F=G=I-a n$ identical punctor, we get clearly $A(\Delta)$.

It is known that $A(\Delta)$ always has products (in usual categorical sense). Unfortunately, this pleasant property io viry often lost for categories $A(F, G, \Delta)$ with non-sdentical domain and range-functors.

It is easily seen that the existence of products in $A(F, G, \Delta)$ such that the natural forgetful funct or preserves them is equirnlent to the requirement that G preserves products. Much less transparent is the general problam of sxistence of products in categories $A(F, G, \Delta)$ - the rain objective of the present paper. Then the condition that G preserves products is, of course, far prom being necessary and there are many other interesting categories
$A(F, G, \Delta)$ possessing products but with G not
preserving products. But generally it is true that the behaviour of the range-functor with regard to products matters here, and, if it does not preserve products, then also the behaviour of the domain-functor with regard to sums (disjoint unions) becomes relevant to the problem.

Presented material is exposed in five sections. The first one brings basic definitions and facts, including conventions about notations used. In the section 2 there are given some necessary conditions for the existence of products in $A(F, G, \Delta)$. With aid of these it is proved in the section 3 that for F, G contravariant faithfur and $\sum \Delta>0 \quad A(F, G, \Delta)$ fails to have products. Section 4 is devoted to more close study of certain propertiess of covariant functors. The final section 5 gives a mum ber of theorems on products in $A(F, G, \Delta)$ with covariant functors F, G.

Some problems remain open here, nevertheless, our theom rems account for most of familiar functors F and G.

In Pinal remarks some possible generalizations are indicated.

1. Basic definitions, facts and notation

All functors throughout this paper will be functors from sets to sets (i.e. from the category \mathscr{P} of all sets and mappings - including void ones - to \mathcal{S}). Observe thst for our purposes we con consider functors only up tc the natural equivalence \cong. When systems of functors are discussed, we use the set-theoretic symbols \in, C, \cup, \cap
for shortness sake.
Let F and G be functors of the same variance.
F is a sub-functor of G if there exists a monotransformation $\mu: F \longrightarrow G$;
F is a factor functor of G if there exists an epitransformation $\nu: G \rightarrow F$;
F is a retract of G if there are a monotransformation $\mu: F \rightarrow G$ and an epitransformation $\nu: G \rightarrow F$ such that $\nu \mu$ is the identical transformation of F.

Recall the usual operations over functors (cf.[1]):
(a) The product $F \times G$,
(b) the coproduct (disjoint unionl $F \vee G$ defined for functors of the same variance, both can be extended to on arbitrary family $\left\{F_{\iota} \mid \downarrow \in \mathcal{I}\right\}$ over a set \mathcal{I} of functors, the results written as $\prod_{\iota \in \mathcal{J}} F_{\iota}$ and $\bigvee_{\iota \in J} F_{\iota}$, respectively.
(c) The superposition $F \cdot G$ of arbitrary functors G and F written (as anywhere else) left-hard, i.e. $(F \circ G) X=F(G X)$. If F and G are of different variance, then $F \circ G$ is contravariant, otherwise it is covariant.
(d) The hon-functor 〈F, $G\rangle$ for functors of different variance, its variance being the same as that of G. Remind that, writirg H for $\langle F, G\rangle$, we have $H X=$ $=\{\varphi \mid \varphi: F X \rightarrow G X\}$ and for $f: X \rightarrow Y$ and H covariant $(H f)(\varphi)=(G f) \cdot \varphi \cdot(F f)$.

Let us last some of the most commonly used functors:
I denotes the identical functor,
C_{M} - a constant functor to M; it is both covariant and contravariant;
p^{+}- the covariant power functor:

$$
P^{+} X=\{A \mid A \subset X\},\left(P^{+} f\right)(A)=\{f(x) \mid x \in A\} \text { for } f: X \rightarrow Y ;
$$

N - a subfunctor of P^{+}assigning to every set X the set $N X$ of all its non-void subsets, evidently $p^{+} \cong N \vee C_{1} ;$
P^{-}- the contravariant power functor, $P^{-} \cong\left\langle I, \mathcal{C}_{2}\right\rangle$;
β - a subfunctor of $\left(P^{-}\right)^{2}=P^{-} \circ P^{-}$assigning to every set X the set βX of all ultrafilters on X^{*});
Q_{M} - a cartesian power, $Q_{M} \cong\left\langle C_{M}, I\right\rangle$. We shall often use the next fact from [2]:
Proposition led. Every faithful covariant functor has
I for its subfunctor. Every faithful contravariant functor has P^{-}for its retract.

Let $\left\{X_{\alpha} ; \propto \in A\right\}, A \neq \varnothing$, be an arbitrory fomily of objects of some category \mathcal{X}. Any pair $\left\langle X,\left\{\pi_{\infty} \mid \propto \in A\right\}\right\rangle$ - an object X of X together with a family of morphisms $\xrightarrow[\sim]{\pi_{\alpha}}: X \rightarrow X_{\alpha}, \alpha \in A$ - is called on inverse bound
*) An alternative description of the functor β : if \mathcal{T} is the category of al completely regular topological $T_{1}-$ spaces, $\Phi: \mathcal{T} \longrightarrow \mathcal{S}$ the forgetful functor, $F: \mathscr{S} \rightarrow \mathfrak{J}$ the free functor and $\Psi: \mathcal{T} \longrightarrow \mathcal{T}$ the functor assigning to each space its β-compactification, then $\beta=$ $=\Phi \circ \Psi \circ F$.
(further "inverse" is often omitted) of the family: $\left\{X_{\propto} \mid \propto \in A\right\}$.

If every other inverse bound $\left\langle Y,\left\{\eta_{\alpha c} \mid \propto \in A\right\}\right\rangle$
of $\left\{X_{\alpha} \mid \propto \in A\right\} \quad$ factorizes through
$\left\langle X,\left\{\pi_{\boldsymbol{c}}\right\}\right\rangle$, ie. if there exists a morphism $h: Y \rightarrow$ $\rightarrow X$ such that $\eta_{\infty}=\pi_{\infty} \circ h$ for all $\alpha \in A$, then $\left\langle X,\left\{J_{\infty}\right\}\right\rangle$ is called a pseudoproduct of the family.

A pseudoproduct is product if the factorization is unique.

A category \mathcal{K} is said to have (pseudo) products if every family of its objects has a (pseudo)product.

2. Necessary conditions

$$
\text { Let } \mathscr{K}=A(F, G, \Delta) \text { and } \mathscr{K}_{1}=A\left(F_{1}, G_{1}, \Delta_{1}\right)
$$ be two categories with all the functors F, G, F_{1}, G_{1} of the same variance and (possibly) of different types $\Delta=$ $=\left\{x_{\lambda} \mid \lambda<\beta\right\}$ and $\Delta_{1}=\left\{x_{\mu}^{\prime} \mid \mu<\vartheta\right\}$. Denote the objects of \mathcal{K} by $X_{\sigma}=\left(X,\left\{\sigma_{\lambda}^{x} \mid \lambda<\beta\right\}\right)$ and the objects of X_{1} by $\left.X_{\omega}=\left(X, \omega_{\mu}^{x} \mid \mu<\vartheta\right\}\right)$. If a mapping $f: X \rightarrow Y$ is a morphism in \mathscr{X} or \mathscr{K}_{1}, write simply $f: X_{\sigma} \rightarrow Y_{\sigma}$ or $f: X_{\omega} \rightarrow Y_{\omega}$, respectively. Lemma_2ed. Assume that there are assignments Φ and Ψ

$$
\Phi X_{\omega}=X_{\sigma} \quad \text { and } \quad \Psi X_{\sigma}=X_{\omega}
$$

between the objects of \mathscr{K} and \mathcal{K}_{1} with the following three properties:
(a) $f: X_{\sigma} \rightarrow \Phi Z_{\omega} \Longrightarrow f: \Psi X_{\sigma} \longrightarrow Z_{\omega}$,
(b) $g: Y_{a} \rightarrow Z_{\omega} \longrightarrow g: \Phi Y_{\omega} \rightarrow \Phi Z_{\omega}$,
(c) $h: \Phi Y_{\omega} \rightarrow X_{\sigma} \Rightarrow h: Y_{\omega} \rightarrow \Psi X_{\sigma}$.

Then the existence of pseudoproducts in \mathscr{K} implies the existence of pseudoproducts in X_{1}.
proof. Let $\left\{X_{\omega}^{\alpha} \mid \propto \in A\right\}$ be an arbitrary for mill of objects in X_{1}. The family $\left\{\Phi X_{\omega}^{\alpha}\right\}$ has - ac any other family in X-a peeudoproduct, say, $\left\langle X_{\sigma},\left\{\begin{array}{l}f \\ f\end{array}\right\}\right\rangle$ with $f_{\alpha}: X_{\sigma} \longrightarrow \Phi X_{\omega}^{\alpha}, \quad \alpha \in A$. By (a) it is $f_{\alpha}: \Psi X_{\sigma} \longrightarrow X_{\omega}^{\alpha}$, therefore $\left.\left\langle\Psi Y_{\sigma}, f_{o c}\right\}\right\rangle$ is - bound of the family $\left\{X_{\omega}^{\alpha}\right\}$.

Let $\left\langle Y_{\omega},\left\{q_{\alpha}\right\}\right\rangle$ be an another bound of $\left\{X_{\omega}^{\alpha}\right\}$, i.e. $g_{\alpha}: Y_{\omega} \longrightarrow X_{\omega}^{\alpha} \quad$ for $\alpha \in A \quad B y(b),\left\langle\Phi Y_{\omega}\right.$, $\left\{g_{\alpha}\right\}>$ is a bound of $\left\{\Phi X_{\omega}^{\infty}\right\}$, therefore an h : : $\Phi y_{\omega} \rightarrow x_{\sigma}$ must exist such that $g_{\alpha}=f_{\alpha} \circ h$ for all $\alpha \in A . \mathrm{By}(\mathrm{c})$ it is $g_{\alpha}: y_{\omega} \rightarrow \Psi X_{\sigma}$, so it is shown that $\left\langle\Psi Y_{\sigma},\left\{f_{\infty}\right\}\right\rangle$ is a pseudoproduct of the family $\left\{X_{\omega}^{\alpha}\right\}$.

Theorem 2ele Let a category $\mathscr{K}=A(F, G, \Delta)$ haDe (pseudo) products. Then also any category $\mathfrak{K}_{1}=$ $=A\left(F_{1}, G_{1}, \Delta\right)$ of the same type Δ but with F_{1}, G_{1} being retracts of F and G,resp., has poevdoproducte.
proof. Let $\Delta=\left\{x_{\lambda} \mid \lambda \cdot<\beta\right\}$.
With aid of natural transformation a

$$
F_{1} \xrightarrow{\mu} F \xrightarrow{\nu} F_{1}, \quad G_{1} \xrightarrow{\varepsilon} G \xrightarrow{\pi} G_{1} .
$$

such that $\nu \cdot \mu=1_{F_{1}}$ and $\pi \cdot \varepsilon=\mathcal{I}_{G_{1}}$ define assignmont

$$
\Phi: X_{1}^{\text {oj }} \longrightarrow X^{\text {dj }} \quad \text { and } \Psi: X^{\text {of j }} \longrightarrow X_{1}^{\text {adj }}
$$

by

$$
\Phi\left(x,\left\{\omega_{\lambda}^{x}\right\}\right)=\left(X,\left\{\sigma_{a}^{x}\right\}\right) \quad \text { with } \sigma_{\lambda}^{x}=\varepsilon_{x} \cdot \omega_{\lambda}^{x} \cdot \nu_{x}^{\left(x_{x}\right)}
$$

and
$\Psi\left(X,\left\{\sigma_{\lambda}^{x}\right\}\right)=\left(X,\left\{\omega_{\lambda}^{x}\right\}\right)$ with $\omega_{\lambda}^{x}=\pi_{x} \cdot \sigma_{\lambda}^{x} \cdot\left\{u_{x}^{\left(x_{\lambda}\right)}\right.$.
It is easy to show that Φ and Ψ thus defined satisfy the conditions (a), (b), (c) of lemma 2.1.

For example, the computation in the covariant case

runs as follows:

(a) (Ff) $\cdot \sigma_{\lambda}^{x}=\sigma_{\lambda}^{z} \cdot(F f)^{\left(x_{\lambda}\right)}$ with $\sigma_{\lambda}^{z}=\varepsilon_{z} \cdot \omega_{\lambda}^{z} \cdot \nu_{z}^{\left(x_{\lambda}\right)}$ implies

$$
\left(G_{1} f\right) \cdot \omega_{\lambda}^{x}=\omega_{\lambda}^{z} \cdot\left(F_{1} f\right)^{\left(\alpha_{\lambda}\right)} \text { for } \omega_{2}^{x}=\pi_{x} \cdot \sigma_{\lambda}^{x} \cdot \mu_{x}^{\left(\alpha_{\lambda}\right)}:
$$

$$
\left(G_{1} f\right) \cdot \omega_{\lambda}^{x}=\left(G_{1} f\right) \cdot \pi_{x} \cdot \sigma_{\lambda}^{x} \cdot \mu_{x}^{\left(\alpha_{x}\right)}=\pi_{z} \cdot(G f) \cdot \sigma_{\lambda}^{x} \cdot \mu^{\left(x_{\lambda}\right)}=
$$

$$
=\pi_{z} \cdot \sigma_{\lambda}^{z} \cdot\left(F_{f}\right)^{\left(x_{2}\right)} \cdot \mu_{x}^{\left(x_{2}\right)}=\pi_{z} \cdot \sigma_{\lambda}^{z} \cdot\left[(F f) \cdot \mu_{x}\right]^{\left(\alpha_{\lambda}\right)}=
$$

$$
=\pi_{z} \cdot \sigma_{\lambda}^{z} \cdot\left[\mu_{z} \cdot\left(F_{1} f\right)\right]^{\left(\alpha_{\lambda}\right)}=\pi_{z} \cdot \sigma_{\lambda}^{z} \cdot \mu_{z}^{\left(x_{a}\right)} \cdot\left(F_{1} f\right)^{\left(x_{\lambda}\right)}=
$$

$$
=\pi_{z} \cdot \varepsilon_{z} \cdot \omega_{\lambda}^{z} \cdot \nu_{z}^{\left(x_{\lambda}\right)} \cdot\left(\mu_{z}^{\left(x_{\lambda}\right)} \cdot\left(F_{1} f\right)^{\left(x_{\lambda}\right)}=\omega_{\lambda}^{z} \cdot\left(F_{1} f\right)^{\left(x_{\lambda}\right)}\right.
$$

(b) $\left(G_{1} g\right) \cdot \omega_{\lambda}^{Y}=\omega_{\lambda}^{Z} \cdot\left(F_{1} g\right)^{\left(x_{\lambda}\right)}$ implies $(G g) \cdot \sigma_{\lambda}^{y}=$
$=\sigma_{\lambda}^{z} \cdot\left(F_{g}\right)^{\left(x_{\lambda}\right)}$ for $\sigma_{\lambda}^{y}=\varepsilon_{y} \cdot \omega_{\lambda}^{y} \cdot \nu_{y}^{\left(x_{\lambda}\right)}$ and $\sigma_{\lambda}^{z}=\varepsilon_{z} \circ \omega_{\lambda}^{z} \cdot \nu_{z}^{\left(x_{\lambda}\right)}:$
$(G g) \cdot \sigma_{\lambda}^{y}=(G g) \cdot \varepsilon_{y} \cdot \omega_{\lambda}^{y} \cdot \nu_{y}^{\left(\alpha_{x}\right)}=\varepsilon_{z} \cdot\left(G_{1} g\right) \cdot \omega_{\lambda}^{y} \cdot \nu_{y}^{\left(\alpha_{\lambda}\right)}=$
$=\varepsilon_{z} \cdot \omega_{\lambda}^{z} \cdot\left(F_{1} g\right)^{\left(x_{\lambda}\right)} \cdot \nu_{y}^{\left(x_{\lambda}\right)}=\varepsilon_{z} \cdot \omega_{\lambda}^{Z} \cdot \nu_{z}^{\left(x_{\lambda}\right)} \cdot(F g)^{\left(x_{\lambda}\right)}=\sigma_{\lambda}^{z} \cdot\left(F_{g}\right)^{\left(x_{\lambda}\right)}$.
(c) $(G h) \cdot \sigma_{\lambda}^{y}=\sigma_{\lambda}^{x} \circ(F h)^{\left(x_{\lambda}\right)} \quad$ with $\sigma_{\lambda}^{y}=\varepsilon_{y} \cdot \omega_{\lambda}^{y} \cdot \nu_{y}^{\left(x_{\lambda}\right)}$
implies $\left(G_{1} h\right) \circ \omega_{\lambda}^{y}=\omega_{\lambda}^{x} \cdot\left(F_{1} h\right)^{\left(x_{\lambda}\right)}$ for
$\omega_{\lambda}^{x}=\pi_{x} \cdot \sigma_{\lambda}^{x} \cdot \mu_{x}^{\left(X_{\lambda}\right)}:$

$$
\begin{aligned}
& \omega_{\lambda}^{x} \cdot\left(F_{1} h\right)^{\left(x_{\lambda}\right)}=\pi_{x} \cdot \sigma_{\lambda}^{x} \cdot\left(\mu_{x}^{\left(x_{\lambda}\right)}\left(F_{1} h\right)^{\left(x_{\lambda}\right)}=\pi_{x} \cdot \sigma_{\lambda}^{x} \cdot\left(F_{h}\right)^{\left(x_{x}\right)} \cdot \mu_{y}^{\left(\omega_{x}\right)}=\right. \\
& =\pi_{x} \cdot(G h) \cdot \sigma_{\lambda}^{y} \cdot \mu_{y}^{\left(x_{\lambda}\right)}=\left(G_{1} h\right) \cdot \pi_{y} \cdot \sigma_{\lambda}^{y} \cdot \mu_{y}^{\left(\alpha_{a}\right)}= \\
& =\left(G_{1} h\right) \cdot \pi_{y} \cdot \varepsilon_{y} \cdot \omega_{\lambda}^{y} \cdot \nu_{y}^{\left(x_{\lambda}\right)} \cdot\left(\mu_{y}^{\left(x_{\lambda}\right)}=\left(G_{1} h\right) \cdot \omega_{\lambda}^{y} \cdot\right.
\end{aligned}
$$

The assertion of the theorem follows by lemma 2.1.

There is another way of "collapsing" a category $A(F, G, \Delta)$ so that peudoproducts are preserved, nom mely, an essential reduction of the type Δ is possible. Before stating the next theorem assume the type $\Delta=$ $=\left\{x_{\lambda} \mid \lambda<\beta\right\}$ increasing $\Sigma \Delta>0$ and denote by σ^{\sim} the first index with $x_{\boldsymbol{\gamma}} \neq 0$. Thus, in the case $\sigma^{r}>0$ it is $x_{\lambda}=0$ for all $\lambda<\sigma$ and mullary operations enter into consideration.

Theorem 2.2. Let a category $A(F, G, \Delta)$ have pseudoproducts. If $\delta^{\prime}>0$, then also the c_{a} tegory $A(F, G,\{0,1\})$ has pseudoproducts. If $\sigma^{\prime}=0$, then $A(F, G,\{1\})$ has pseudoproducts.

Proof. Write the objects of $\mathcal{K}=A(F, G, \Delta)$ in the form $\left(X,\left\{\sigma_{\lambda}^{X}\right\}\right) \quad$ and the objects of $\mathcal{K}_{1}=A(F$, $G,\{0,13)$ - in the case $\sigma^{\sim}>0$-as $\left(x,\left\{\omega_{0}^{x}, \omega_{1}^{x}\right\}\right)=\left(x,\left\{\omega_{i}^{x} \mid i=0,1\right)\right.$.

For every $\lambda, \sigma^{\sim} \leqslant \lambda<\beta$, take natural transformations $\mu^{\lambda}: 1 \longrightarrow Q_{x_{\lambda}}$ and $\pi^{2}: a_{x_{a}} \longrightarrow I$ such
that $\pi^{\lambda} \circ \mu^{\lambda}=1_{I}$, and define assignments
$\Phi: x_{1} \operatorname{dij} \longrightarrow x^{d j}$ and $y: x^{\circ+j} \longrightarrow x_{1}^{2 y}$ by

$$
\begin{aligned}
& \Phi\left(x,\left\{\omega_{i}^{x}\right\}\right)=\left(x,\left\{\sigma_{\lambda}^{x}\right\}\right) \text { with } \sigma_{\lambda}^{x}=\omega_{0}^{x} \quad \text { for } \lambda<\sigma^{\prime}, \\
& \sigma_{\lambda}^{x}=\omega_{1}^{x} \circ \pi_{F x}^{\lambda} \text { for } \lambda \geqslant \sigma^{\prime},
\end{aligned}
$$

$$
\Psi\left(x,\left\{\sigma_{\lambda}^{x}\right\}\right)=\left(x,\left\{\omega_{i}^{x}\right\}\right) \quad \text { isth } \omega_{0}^{x}=\sigma_{0}^{x}, \omega_{1}^{x}=\sigma_{\sigma}^{x} \rho \mu_{F X}^{\delta}
$$

In the case $\delta^{\prime}=0$ simply diseur mollary operations ω_{0}^{x}.

Again, complete the proof by showing that Φ and Ψ satisfy the conditions of lemad.1. We shall content ourselvas with doing this for the covariant case:
(a) Assuming (Cf) $\cdot \sigma_{\lambda}^{x}=\sigma_{\lambda}^{z} \cdot(F f)^{\left(\theta e_{\lambda}\right) \quad \text { with } \sigma_{\lambda}^{z}=\omega_{0}^{z}, ~(\lambda)}$ for $\lambda<\sigma^{\sigma}$ and $\sigma_{\lambda}^{2}=\omega_{1}^{2}$ - $\pi_{F I}^{\lambda}$ for $\lambda>\sigma^{r}$ we must prove $(G f) \circ \omega_{i}^{X}=\omega_{i}^{Z} \cdot(F f)^{(i)}$ for. $\omega_{0}^{X}=\sigma_{0}^{X}$, $\omega_{1}^{x}=\sigma_{\sigma}^{x} \cdot \mu_{F x}^{\sigma}$, but
$(G f) \cdot \omega_{0}^{x}=(G f) \cdot \sigma_{0}^{x}=\sigma_{0}^{Z} \cdot(F f)^{(0)}=\omega_{0}^{\equiv} \cdot(F f)^{(0)}$, $(G f) \cdot \omega_{1}^{x}=(G f) \cdot \sigma_{d}^{x} \cdot \mu_{F X}^{\sigma}=\sigma_{d}^{Z} \circ(F f)^{(x)} \circ \mu_{F X}^{\sigma}=$ $=\omega_{1}^{z} \cdot \pi_{F Z}^{\sigma} \cdot(F f)^{\left(\rho_{\rho}\right)} \cdot \mu_{F X}^{\sigma}=\omega_{1}^{z} \cdot \pi_{F Z}^{\infty} \circ \mu_{F I}^{\alpha} \circ(F f)=$ $=\omega_{1}^{z} \cdot 1_{F Z} \cdot(F f)=\omega_{1}^{z} \cdot(F f)^{(1)}$.
(b) Assuming $(G g) \cdot \omega_{i}^{y}=\omega_{i}^{R} \cdot(F g)^{(i)}$ we must prove $(G g) \cdot \sigma_{\lambda}^{y}=\sigma_{\lambda}^{z} \cdot(F g)^{\left(x_{\lambda}\right)}$ for $\sigma_{\lambda}^{y}=\omega_{0}^{y}, \quad \sigma_{\lambda}^{z}=\omega_{0}^{z}$
if $\lambda<\delta^{\gamma}$ and $\sigma_{\lambda}^{y}=\omega_{1}^{y} \circ \pi_{F y}^{\lambda}, \quad \sigma_{\lambda}^{z}=\omega_{1}^{z} \circ \pi_{F E}^{\lambda} \quad$ if
$\lambda \geqslant \sigma^{\gamma}$ but $\left.(G g) \circ \sigma_{\lambda}^{y}=(G g) \circ \omega_{0}^{y}=\omega_{0}^{z} \circ(F g)^{\infty)}=\omega_{0}^{z} \circ(F g)^{\infty e_{\lambda}}\right)$ for $\lambda<\sigma^{\prime}$, and, $(G g) \cdot \sigma_{\lambda}^{y}=(G g) \cdot \omega_{1}^{y} \cdot J_{F Y}^{\lambda}=$ $=\omega_{1}^{z} \circ(F g) \circ \pi_{F y}^{\lambda}=\omega_{1}^{Z} \cdot \pi_{F z}^{2} \circ(F g)^{\left(x_{\lambda}\right)}=\sigma_{\lambda}^{2} \cdot(F g)^{\left(\alpha_{A}\right)}$ for $\lambda \geqslant \sigma_{\text {: }}$ (c) Assuming $(G h) \circ \sigma_{\lambda}^{y}=\sigma_{\lambda}^{x} \circ(F h)^{\left(x_{2}\right)}$ with $\sigma_{\lambda}^{y}=\omega_{0}^{y}$ if $\lambda<\delta^{\gamma}$ and $\sigma_{\lambda}^{y}=\omega_{1}^{y}$ - $\pi_{F Y}^{\lambda}$ if $\lambda \geqslant \sigma^{\prime}$, we are to prove $(G h) \cdot \omega_{i}^{y}=\omega_{i}^{x} \cdot(F h)^{(i)}$ for $\omega_{0}^{x}=\sigma_{0}^{x}$ and $\omega_{1}^{x}=\sigma_{\sigma}^{x} \cdot \mu_{F X}^{\sigma} \quad$ but $\omega_{0}^{x} \cdot(F h)^{(0)}=\sigma_{0}^{x} \cdot(F h)^{(0)}=(G h) \cdot \sigma_{0}^{y}=(G h) \cdot \omega_{0}^{y}$,
$\omega_{1}^{x} \cdot(F h)=\sigma_{d}^{x} \cdot \mu_{F x}^{\sigma} \cdot(F h)=\sigma_{d}^{x} \cdot(F h)^{\left(x_{\rho}\right)} \cdot \mu_{F y}^{\sigma}=$
$=(G h) \cdot \delta_{\delta}^{y} \circ \mu_{F y}^{\delta}=(G h) \circ \omega_{1}^{y} \circ \pi_{F y}^{\delta} \cdot \mu_{F y}^{\delta}=$
$=(G h) \cdot \omega_{1}^{Y} \cdot 1_{F Y}=(G h) \cdot \omega_{1}^{Y}$.
Both retraction of functors and reduction of type in categorite $A(F, G, \Delta)$ by the above theorems can, of course, be made simultaneously and thus obtained categories are then the first ones to be considered when a negative result on products in some $A(F, G, \Delta)$ is expected.

3. Contravariant case

Theorem 3.1. No categary $A(F, G, \Delta)$ with $\sum \Delta>0$ and faithful contravariant functars F, G has products.

Proff. Since P^{-}is a retract of both F and G
(Proposition 1.1), we have, with regard to results of the areceding section, but to show that $A\left(P^{-}, P^{-},\{0,1\}\right)$
fails to have pseudoproducts. In fact, unary operations do the whole job, the following proof that $A\left(P^{-}, P^{-},\{13)\right.$ has not pseudoproducts shows it:

Suppose that $\left.\left\langle\left(S ; \omega_{s}\right), f_{x}, f_{y}\right\}\right\rangle$ is a peeudoproduct of the family consisting of two objects $\left(X, \omega_{x}\right),\left(y, \omega_{y}\right)$, where $-X=\{a, b\}, Y=\{c, d\}$, and, ω_{X} and ω_{y} are identical unary operations on $P^{-} X$ and P^{-Y}, respectively.

Take a well-ordered infinite set $Z=\left\{x_{\infty} \mid \alpha<\vartheta\right\}$ with card $Z>$ card 5 and define a bound $\left\langle\left(z, \omega_{z}\right),\left\{g_{x}, g_{y}\right\}\right\rangle$ by
$g_{x}\left(x_{0}\right)=g_{x}\left(x_{1}\right)=a, g_{x}\left(x_{2}\right)=g_{x}\left(x_{3}\right)=b, g_{x}\left(x_{\alpha}\right)=b \quad$ for $\alpha>3$,
$g_{y}\left(x_{0}\right)=g_{y}\left(x_{2}\right)=c, g_{y}\left(x_{1}\right)=g_{y}\left(x_{3}\right)=d, g_{y}\left(x_{\alpha}\right)=d \quad$ for $\alpha>3 ;$
denote $Z_{\beta}=\left\{x_{\alpha} \mid \alpha<\beta\right\}$ for $\beta<2$, the segments of Z and put $\omega_{Z}\left(\left\{z_{0}\right\}\right)=Z_{5}, \omega_{Z}\left(Z_{\beta}\right)=Z_{\beta+1}$ for all $\beta, 5 \leqslant \beta<\vartheta$, on the remaining part of $P^{-} Z$ take ω_{z} identical.

There must exist $h:\left(Z, \omega_{z}\right) \longrightarrow\left(S, \omega_{S}\right)$ such that

$$
g_{x}=f_{x} \cdot h, \quad g_{y}=f_{y} \cdot h .
$$

Since $P^{-1} k$ is a homomorphism of ($P^{-} S ; \omega_{s}$) into $\left(P^{-} Z, \omega_{z}\right)$ and at the same time a homomorphism of the complete boolean algebra ($P-S ; U, \cap$) into ($P^{-} Z ; U, \cap$), the image \mathscr{L} of $P^{-} S$ by P^{-h} must be closed under ω_{z} and boolean operations.

Clearly $\left\{x_{0}, x_{1}\right\},\left\{x_{0}, x_{2}\right\} \in \mathscr{Z}, \quad$ hence $\left\{x_{0}\right\} \in \mathscr{Z}$ and $Z_{5} \in \mathscr{H}$. Assume $Z_{\infty} \in \mathscr{B}$ for ail $\alpha, 5$ ́ $\alpha<\beta$. If β is isolated, then $Z_{\beta}=$ $=\omega_{z}\left(Z_{\beta-1}\right) \in \mathscr{E}$. If, β is a limit number, then $Z_{\beta}=\bigcup_{\alpha<\beta} Z_{\alpha} \in \mathscr{L}$. Therefore card $\mathscr{L} \geqslant$ card Z, and this, together with card $2^{S} \geqslant$ card \mathscr{L}, is a contradiction.

4. Covariant functor and their properties

It has been mentioned, that, dealing with categories $A(F, G, \Delta)$ in the covariant case, it is important to know the behaviour of F and G with regard to sums and products, respectively. From this point of view, consider first a following separation property of functors:

Definition_fele covariant functor F is said to be a separating functor if for any two disjoint subsets M, N of a set X it is

$$
\begin{equation*}
\left[P^{+} \circ F\left(i_{M}\right)\right](F M) \cap\left[P^{+} \circ F\left(i_{N}\right)\right](F N)=\varnothing, \tag{1}
\end{equation*}
$$

where $i_{M}: M \longrightarrow X, i_{N}: N \longrightarrow X \quad$ are the corresponding inclusions.

Denote $\quad \mathbb{X}=\{0\}$ - standard one-point set. For every non-void set X and an element X in X define $w_{x} X: 1 \longrightarrow X$ by $w_{x}^{x}(0)=x$, and, $u_{x}: X \rightarrow$ $\rightarrow 1$ by $\mu_{x}(x)=0$ for all x in x.

Statement fete A functor F is separating if and only 19
(2) $w_{x}^{x} \neq w_{y}^{x} \rightarrow\left[P^{+} \circ F\left(w_{x}^{x}\right)\right](F 1) \cap\left[P^{+} \circ F\left(w_{y}^{x}\right)\right](F 1)=\theta:$

Proof. Condition (2) is equivalent to (1) with $M=$ $=\{x\}, N=\{y\}$. Condition (1) reads then as
$\left[P^{+}, F\left(i_{\{x\}}\right)\right](F\{x\}) \cap\left[P^{+} . F\left(i_{\{y\}}\right)\right](F\{y\})=\varnothing$,
but $F\{x\}=\left[P^{+} 。 F\left(w_{x}^{f x\}}\right)\right](F 1)$, therefore
$\left[p^{+} \cdot F\left(i_{\{\times\}}\right)\right](F\{\times\})=\left[p^{+}, F\left(i_{\{\times 3}\right)\right] \circ\left[P^{+}, F\left(w_{x}^{i x\}}\right)\right](F 1)=$ $=\left[P^{+} \cdot F\left(i_{(x\}} \cdot w_{x}^{i x i}\right)\right](F 1)=\left[p^{+} \cdot F\left(w_{x}^{x}\right)\right](F 1)$,
$\left[P^{+} \cdot F\left(i_{\{y\}}\right)\right](F\{y\})=\left[P^{+} \cdot F\left(w_{y}^{x}\right)\right](F i)$. So the condiion (2) is necessary.

Assume that (2) is fulfilled, but F is not separeting, that is, for some set X and two disjoint subsets M, N of X we have
(3) : $\left[P^{+} \cdot F\left(i_{M}\right)\right](F M) \cap\left[P^{+} \cdot F\left(i_{N}\right)\right](F N) \neq \varnothing$.

In this case both $F M \neq \varnothing$ and $F N \neq \varnothing$, hence $M \neq \varnothing$ and $N \neq \varnothing$ since otherwise it would be $F \varnothing \neq \varnothing$ and F would have a distinguished point, which contradict e (2).

Choose an element x in M and y in N and define mappings $f: X \rightarrow M, g: X \rightarrow N$ by

$$
f(t)=\left\{\begin{array}{l}
t \text { for } t \in M \\
x \text { for } t \in X \backslash M
\end{array}, g(t)=\left\{\begin{array}{l}
t \text { for } t \in N \\
y \text { for } t \in X \backslash N
\end{array} .\right.\right.
$$

Note that

(4)

$$
i_{M} \cdot f \circ i_{N} \cdot g=w_{X}^{x} \circ u_{X}, i_{N} \circ g \circ i_{M} \cdot f=w_{Y}^{x} \cdot u_{X},
$$

$$
\begin{equation*}
f \cdot i_{M}=1_{M}, \quad q \cdot i_{N}=1_{N} \tag{5}
\end{equation*}
$$

By (3), there exist elements p in FM and q in $F N$ such that
(6) $\quad\left(F i_{M}\right)(n)=\left(F i_{N}\right)(q)=\pi \in F X$.

It follows by (5) that $(F f)(K)=(F f) \circ\left(F i_{M}\right)(\eta)=1$ and

$$
(F g)(r)=(F q) \cdot\left(F i_{N}\right)(q)=q \text { ? }
$$

and, by $(6),\left[\left(F i_{M}\right) \circ(F f)\right](r)=\pi,\left[\left(F i_{N}\right) \circ(F g)\right](\kappa)=r$.
By (4) it is then $\left(F w_{x}^{x}\right) \cdot\left(F \mu_{x}\right)(r)=\left(F w_{y}^{x}\right) \circ\left(F \mu_{x}\right)(r)$,
that is, $\left(F w_{x}^{x}\right)(a)=\left(F w_{y}^{x}\right)(a) \quad$ for $a=\left(F \mu_{x}\right)(n) \in F 1$

- in contradiction with the fulfilment of (2).

For every functor F different from C_{f} denote by F^{*} its range-domain restriction to non-void sets and mappings (such a restriction exists, since $F \neq C_{f}$ implies $F X \neq \varnothing$ for every non-void set X). Taking a standard two-point set $2=\{0,1\}$, denote

$$
Q_{F}=\left[p^{+} \cdot F\left(w_{0}^{2}\right)\right](F 1) \cap\left[p_{0} F\left(w_{1}^{2}\right)\right](F 1) \subset F 2,
$$

$$
A_{F}=\left[P^{+} \cdot F\left(\mu_{2}\right)\right]\left(Q_{F}\right)
$$

For a set X let $\mathcal{v}_{X}: \varnothing \rightarrow X$ be the empty mapping.
Statement 4e2. If $A_{F}=\varnothing$, then F is separating. If $A_{F} \neq \varnothing$, then $C_{A_{F}}^{*}$ is a subfunctor of F^{*}. It is al may

$$
\left[P^{+} \cdot F\left(v_{1}\right)\right](F \theta) \subset A_{F} .
$$

Prone. First show that a non-separeting functor F
has $A_{F} \neq \emptyset$:
Take a set X with points $x, y, x \neq y$ such that the condition (2) does not hold for w_{x}^{x} and w_{y}^{x}, e.g. $\left(F w_{x}^{x}\right)(c)=\left(F w_{y}^{x}\right)(d)=s \in F X \quad$ for some c, d in F. Define an injection $d: 2 \rightarrow X$ by $d(0)=x$, $d(1)=y$, and, let $\pi: X \longrightarrow 2$ be a retraction of d, ie. $\kappa \cdot d=1_{2}$. Then $w_{0}^{2}=\mu \cdot w_{x}^{x}, w_{1}^{2}=\pi \cdot w_{y}^{x}$, therefore

$$
\left(F w_{0}^{2}\right)(c)=(F n)(s) \equiv\left(F w_{1}^{2}\right)(d) \in Q_{F}
$$

and $A_{F} \neq \varnothing$.
Assume further $A_{F} \neq \varnothing$. The mappings $F w_{0}^{2}$ and $F w_{1}{ }^{2}$ coincide on A_{F} : For an element a in A_{F} there must be elements q in Q_{F} and b, c in F1 such that $a=\left(F \mu_{2}\right)(q)$ and $q=\left(F w_{0}^{2}\right)(b)=$ $=\left(F w_{1}^{2}\right)(c)$. Since $\mu_{2} \cdot w_{0}^{2}=\mu_{2} \circ w_{1}^{2}=1_{1}$, it is $\left(F u_{q}\right)(q)=b=c=a$.

Moreover, for every non-void set X all mappings F w_{x}^{x} for $x \in X$ coincide on A_{F} : Take x, y in $X, x \neq y$, and the injection $d: 2 \longrightarrow X$ as above, then $w_{x}^{x}=d \circ w_{0}^{2}, \quad w_{y}^{x}=d \circ w_{1}^{2} \quad$ and the preceding assertion applies.

Now, define a transformation $\mu: C_{A_{F}}^{*} \longrightarrow F^{*}$ by $\mu_{x}(a)=\left(F w_{x}^{x}\right)(a)$ for $a \in A_{F}$ and $x \in X$.
clearly, μ_{x} does not depend on the choice of x in x, it is an injection (for w_{x}^{x} is an injection), and
it is a transformation because of $f \circ w_{x}^{X}=w_{f}^{y}(x)$ for every $f: X \rightarrow Y$.

As to the last assertion of the statement 4.2
$w_{0}^{2} \circ v_{1}=v_{2}=w_{1}^{2} \circ v_{1} \quad$ implies $\left[P^{+} \circ F\left(v_{2}\right)\right](F \varnothing) \subset Q_{F}$,
and we get the assertion using $v_{\|}=u_{2} \circ v_{2}$

Statement 4e3. Every functor $F \quad F \neq C_{D} \quad$ cen be written as

$$
F=F_{d} \vee F_{b},
$$

where functors F_{d} and F_{s} have following properties:
a) F_{d} is C_{b} or F_{d}^{*} has a subfunctor $C_{A_{F}}^{*}$;
b) F_{b} is the greatest separating subfunctor of F in the sense that every separating subfunctor of F is a subfunctor of F_{s}.
This decomposition of F is unique up to the natural equival once.

Proof. Denote $\tilde{A}_{F}=(F 1) \backslash A_{F}$ - the complemeat of A_{F} in $F 1$ and for every non-void set X put

$$
F_{d} x=\left[P^{-} \cdot F\left(\mu_{x}\right)\right]\left(A_{F}\right), \quad F_{0} x=\left[P^{-} \cdot F\left(\mu_{x}\right)\right]\left(\tilde{A}_{F}\right)
$$

For an arbitrary mapping $f: X \rightarrow Y$ it is $\mu_{X}=$ $=u_{y} \cdot f$, therefore $\left[P^{+} \cdot F(f)\right]\left(F_{d} X\right) \subset F_{d} Y$ and $\left[P^{+} \cdot F(f)\right]\left(F_{b} X\right) \subset F_{b} Y$. Define $F_{d} f$ and $F_{s} f$, accordingly, as range-domain restrictions of $F f$.

It is proved that far, that $F^{*}=F_{d}^{*} \vee F_{s}^{*}$.

We can now define $F_{d} \varnothing=F \emptyset \quad$ and $F_{d} v_{x}$
is a domain restriction of $F v_{X}$ for $v_{X}: \theta \rightarrow X$, and, $F_{t} \emptyset=\emptyset, F_{s} v_{X}=v_{F_{x}}: \emptyset \rightarrow F_{b} X$.

It is easily seen that $A_{F_{d}}=A_{F}$ and $A_{F_{b}}=\varnothing$, the refire, by statement 4.2 , if $A_{F} \neq \rho$ then $C_{A_{F}}^{*}$ is a subfunctor of F_{d}^{*} and F_{s} is a separating functor.

Finally, let $\lambda: G \rightarrow F$ be a monotransformation of a separating functor G into F. Then necessarily $\lambda_{1}(t) \in \tilde{A}_{F}$ for every $t \in G 1$, therefore $P^{+}\left(\lambda_{X}\right)(G X) \subset F_{f} X \quad$ for every $X \neq \varnothing$, and, of course, $G \varnothing=\varnothing=F_{\phi} \varnothing$.

This property of F_{5} seances uniqueness of the decorposition.

Corollary (to. Statement 4.1). Every separating fundtor F is faithful and $F \varnothing=\varnothing$.

Proof. Assume $\mathrm{Ff}=\mathrm{Fg}$ for some mappings $f, g: X \rightarrow$ $\rightarrow Y$. Then $F w_{f(x)}^{y}=F\left(f \circ w_{x}^{x}\right)=F\left(g \circ w_{x}^{x}\right)=F w_{q}^{y}(x)$ for all x in X, therefore, by $(2), f(x)=g(x)$ for all x in X, i.e. $f=g$.

Definition 4e2. A functor F is said to be tight on $X, X \neq \varnothing, \quad$ if
(7)

$$
\bigcup_{x \in X}\left[p^{+} \cdot F\left(w_{x}^{x}\right)\right](F 1)=F X .
$$

If this identity does not hold, then F is loose on X. If F is tight on every $X, X \neq \varnothing$, then it is a tight functor, otherwise it is a loose functor.

Statement Les. If F is loose on $Y ; Y \neq \varnothing$, and $Y \subset X$, then F is loose on X.

Proof. Denote $i_{y}: Y \rightarrow X$ an inclusion of Y into X and choose some retract $\pi: X \rightarrow y$ of i_{y}. Then $r \cdot w_{x}^{X}=w_{n(x)}^{y}$ for every x in X. Now, assume that F is tight on X, that is, (7) holds. Since r is a surjection, we get

$$
F Y=\left[P^{+} \cdot F(\kappa)\right](F X)=\left[P^{+} . F(\kappa)\right]\left(\bigcup_{x \in X}\left[P^{+} F F\left(w_{x}^{x}\right)\right](F 1)\right)=.
$$

$$
\begin{aligned}
& =\bigcup_{x \in X}\left[P^{+} 0 F(k)\right] \cdot\left[P^{+} \cdot F\left(w_{x}^{x}\right)\right](F i)= \\
& =\bigcup_{x \in X}\left[P^{+} \cdot F\left(w_{k(x)}^{y}\right)\right](F i)=\bigcup_{y \in y}\left[P^{+} \cdot F\left(w_{y}^{y}\right)\right](F i)
\end{aligned}
$$

in contradiction with looseness of F on Y Corollary. If F is loose on a set $X, X \neq \varnothing$, then it is loose on every set Y with card $Y \geqslant$ card X : Equivalently, if F is tight on X, then it is tight on every $Y, Y \neq \varnothing$ with card $Y \leq$ card X.

Proof. - Immediate consequence of Statement 4.4. Define $w_{x, y}^{x}: 2 \rightarrow X$ by $w_{x y}^{x}(0)=x$, $w_{x y}^{x}(1)=y$. For a given functor F denote $W_{x y}^{x}=\left[P^{+}, F\left(w_{x y}^{x}\right)\right](F 2), \quad W_{x}^{x}=\left[P^{+} \circ F\left(w_{x}^{x}\right)\right]$ (FT). Statement 4.5. Let a functor F be loose on a given set X with card $X>2$, ie.

$$
F x \backslash \bigcup_{x \in x} W_{x}^{x} \neq \varnothing \text {. }
$$

Then
$F X \backslash \bigcup_{x \in X} W_{a x}^{X} \neq \varnothing$ for arbitrary a in X.

Proof. First note that $W_{x \alpha}^{x}=W_{x}^{X}$ for x in X and for any mapping $f: X \rightarrow X$ it is $\left[P^{+} \cdot F(f)\right]\left(W_{x y}^{x}\right)=W_{f(x) f(y)}^{x} \cdot$

As sume, now, that $\bigcup_{x \in x} W_{a x}=F X$ for some a in X.
Choose an element p in $F X \backslash \bigcup_{x \in X} W_{x x}^{x}$. Then for some $x, x \neq a, p \in W_{a x}^{x}$. Take an element by in x so that $b \neq a, b \neq x$, and a bijection f :
$: X \rightarrow X$ such that $f(b)=a$. Then
$\left[P^{+} \circ F(f)\right]\left(\bigcup_{x \in x} W_{\theta_{x}}^{x}\right)=\bigcup_{x \in x}\left[P^{+} \circ F(f)\right]\left(W_{f_{x}}\right)=$

$$
=\bigcup_{x \in x} W_{a f(x)}=\bigcup_{x \in x} W_{a x}=F X,
$$

therefore $\bigcup_{x \in X} W_{b x}=F X$, and, for some $y \neq b$, it is $p \in W_{b y}^{x}$.

It remains to show that $\eta \in W_{a x}^{X} \cap W_{e y y}^{x}$ leads to a contradiction: Take a mapping $g: X \rightarrow X$ such that

$$
g(a)=a, g(x)=x, g(b)=g(y)= \begin{cases}a & \text { if } y=a, \\ x & \text { if } y \neq a .\end{cases}
$$

Then

$$
\begin{aligned}
p & =(F g)(p) \in\left[p^{+} \cdot F(g)\right]\left(W_{a x}^{x} \cap W_{b y}^{x}\right) c \\
& =W_{a x}^{x} \cap W_{g(b) g(y)}^{x} \subset W_{a a}^{x} \cup W_{x x}^{x} .
\end{aligned}
$$

Statement 4.6. If F is tight, then for every set X and for its arbitrary two subsets M, N it holds
(8) $\left[P^{+} \circ F\left(i_{M}^{X}\right)\right](F M) \cup\left[P^{+} \circ F\left(i_{N}^{X}\right)\right](F N)=\left[P^{+} \circ F\left(i_{S}^{X}\right)\right](F S)$
where $S=M U N$, and, $i_{M}^{X}: M \rightarrow X, i_{N}^{X}: N \rightarrow X$, $i_{S}^{X}: S \rightarrow X \quad$ are the respective inclusions of M, N, S into X.

Proof. Denote $i_{M}^{S}: M \longrightarrow S, i_{N}^{S}: N \longrightarrow S$ the inclusions of M, N into S, respectively. Then we have

$$
\begin{equation*}
i_{M}^{x}=i_{S}^{x} \circ i_{M}^{s}, \quad i_{N}^{x}=i_{S}^{x} \circ i_{N}^{s} \tag{9}
\end{equation*}
$$

It is easy to see that (8) holds, if one of the sets M, N, S is void. Assume further that $M \neq \varnothing, N \neq \varnothing$. Then, by tightness of F,
$F M=\bigcup_{x \in M}\left[p^{+} \cdot F\left(w_{x}^{M}\right)\right](F \mathbb{1}), F N=\bigcup_{x \in N}\left[P^{+} \cdot F\left(w_{x}^{N}\right)\right](F \mathbb{1})$. Using (9), we get
$\left[p^{+} \circ F\left(i_{M}^{x}\right)\right](F M)=\left[P+\circ F\left(i_{M}^{X}\right)\right]\left(\bigcup_{x \in M}\left[P+\circ F\left(w_{x}^{M}\right)\right](F 1)\right)=$

$$
=\bigcup_{x \in M}\left[p^{+} \cdot F\left(i_{M}^{x} \cdot w_{x}^{M}\right)\right](F \mathbb{})=\bigcup_{x \in M}\left[p^{+} \cdot F\left(w_{x}^{x}\right)\right](F \mathbb{Z}),
$$

and, similarly
$\left[P^{+} \cdot F\left(i_{N}^{x}\right)\right](F N)=\bigcup_{x \in N}\left[P^{+} \circ F\left(w_{x}^{x}\right)\right](F \mathbb{O})$, therefore $\left[P^{+} \circ F\left(i_{M}^{x}\right)\right](F M) \cup\left[P^{+} \circ F\left(i_{N}^{x}\right)\right](F N)=\bigcup_{x \in S}\left[P^{+} \circ F\left(w_{x}^{x}\right)\right](F \mathbb{1})$, but $w_{x}^{x}=i_{s}^{x} \cdot w_{x}^{s} \quad$ for x in S, so it is, finally,

$$
\begin{aligned}
\bigcup_{x \in S}\left[P^{+} \circ F\left(w_{x}^{x}\right)\right](F 1) & =\left[P^{+} \circ F\left(i_{s}^{x}\right)\right]\left(\bigcup_{x \in S}\left[p^{+} \rho F\left(w_{x}^{s}\right)\right](F \mathbb{1})=\right. \\
& =\left[P^{+} \circ F\left(i_{s}^{x}\right)\right](F S)
\end{aligned}
$$

hy tightness of F.

Tight separating functor are exactly the functors preserving sums. Let us formulate this as

Statement 4.7e If F does not preserve sums, then F is either loose or it is not separating.

Remark. Denote by \mathscr{P}, \mathcal{F}, \mathscr{L} the systems of all separating, tight, loose functors, respectively. Each of these systems is closed under $V, x, 0$ for functors, P is closed on subfunctors, \mathcal{F} is closed on subfunctors and factor-functors, \mathscr{L} is closed on extensions $(F \in \mathscr{L}$, $\left.F \longleftrightarrow F^{\prime} \Longrightarrow F^{\prime} \in \mathscr{L}\right)$. Every F in \neq splits by statement 4.3 into $F_{d} \vee F_{s}$ such that $F_{d}^{*} \cong \mathcal{C}_{F_{A}}^{*}$ and F_{s} preserves sums.

It is $I \in \mathcal{P}^{P} \cap \mathcal{F}$, constant functors \mathcal{C}_{M} are in $\mathcal{Y}, N, P *, \beta \in \mathscr{L}, Q_{M} \in \mathscr{Z}$ for card $M \geqslant 2$.

Turn now to range functors.
Statement 4.8. If G does not preserve the product of a family $\left\{X_{\alpha} \mid \propto \in A\right\}$, then it does not preserve the product of any family $\left\{Y_{\propto} \mid \propto \in A\right\} \cdots$ with card $Y_{\alpha} \geqslant$ \geqslant card X_{α} for all α in A.

Proof. Choose for each α in A mappings $i_{\alpha}: X_{\alpha} \rightarrow$ $\rightarrow Y_{\alpha}, r_{\alpha}: Y_{\alpha} \rightarrow X_{\alpha}$ such that $r_{\alpha} \cdot i_{\alpha}=1_{x_{\alpha}}$. Denomte $\left\langle X ;\left\{\pi_{\infty}^{X}\right\}\right\rangle$ and $\left\langle Y,\left\{\pi_{\alpha}^{Y}\right\}\right\rangle$ the products of $\left\{X_{\alpha}\right\}$ and $\left\{Y_{\alpha}\right\}$,respectively. Define mappings $i: x \rightarrow y$ and $x: y \rightarrow x$ by
(10)

$$
i_{\alpha} \cdot \pi_{\alpha}^{X}=\pi_{\alpha}^{Y} \cdot i, \quad r_{\alpha} \cdot \pi_{\alpha}^{Y}=\pi_{\alpha}^{X} \cdot n .
$$

It is then $N \cdot i={ }^{1} x$.
Assume that G preserves the product $\mathcal{C}\left\{Y_{\alpha}\right\}$ and
show that then it preserves the product of $\left\{X_{\infty}{ }^{\}}\right.$too:
For in arbitrary family $\left\{x_{\alpha}\right\}, x_{\alpha} \in G X_{\alpha}$ for σ in A, there mast exist y in $G Y$ such that $\left(G \pi_{\alpha}^{y}\right)(y)=\left(G i_{\alpha}\right)\left(x_{\alpha}\right)$, and, using (10), we get $\left(G \pi_{\alpha}^{x}\right)(x)=x_{\alpha}$ for $x=(G r)(y)$ by easy calculitin. The element x with $\left(G \pi_{\alpha}^{x}\right)(x)=x_{\alpha} \quad$ must be unique, since $\left(G \pi_{\alpha}^{x}\right)\left(x_{1}\right)=\left(G \pi_{\infty}^{x}\right)\left(x_{2}\right)$ implies $\left(G \pi_{\alpha}^{y}\right)\left(y_{1}\right)=\left(G \pi_{\alpha}^{y}\right)\left(y_{2}\right)$ for $y_{1}=(G i)\left(x_{1}\right), y_{2}=$ $=(G i)\left(x_{2}\right)$ by simple calculation using (10).

Next three definitions reflect certain properties of the functors not preserving products.

Let $\mathfrak{X}=\left\{X_{\alpha} \mid \propto \in A\right\}$ be a family of sets. Denote by $\left\langle X,\left\{3 \pi_{\alpha}^{X}\right\}\right\rangle$ its product $X=\prod_{\alpha \in A} X_{\alpha}$ with $\pi_{\alpha}^{X}: X \rightarrow X_{\alpha}$ - the ordinary projections. If a functor G does not preserve the product of the famiby \boldsymbol{X}, then either
(I) there exists a family $\left\{x_{\alpha}\right\}, x_{\alpha} \in G X_{\alpha}$ for $\alpha \in A$, such that there is no x in $G X$ with $\left(G \pi_{\alpha}^{X}\right)(x)=\left(x_{\alpha}\right)$ for all α in A,
or
(II) there exist two points x, y in $G X, x \neq y$, such that $\left(G \pi_{\alpha}^{x}\right)(x)=\left(G \pi_{\alpha}^{X}\right)(y)$ for all α in A.

Definition 4.3. A functor G not preserving products is said to blow up products if for some family of sets the alternative (II) takes place. If, moreover, the al terns-
five (I) takes place for no family, then G is said to inflate products.

Definition 4.4. A functor G not preserving products is said to filtrate products, if for an arbitrary family $\left\{X_{\alpha} \mid \propto \in A\right\}$ with the product $\left\langle X,\left\{\pi_{\infty}\right\}\right\rangle$ the $f a-$ mill of mappings $\left\{G \pi_{\alpha} \mid \propto \in A\right\} \quad$ is separating on $G X$ in the sense that
(11) $\forall \alpha \in A\left(\left(G \pi_{\alpha}\right)(x)=\left(G \pi_{\alpha}\right)(y)\right) \Rightarrow x=y$ for x, y in $G X$ -

Remark. The system of all functor with the property (11) is closed under $V \times$, 0 and subfunctors. We obtain the system of of filtrating functors by removing functors preserving products.

Definition 4.5. functor G superinflates products: if there exists a family $\left\{X_{\alpha} \mid \alpha \in A\right\}$ of non-void sets with the following property:

There exist x_{α} in X_{α} and y_{a} in $G X_{\alpha}$ for all α in A such that, denoting $\left\langle X,\left\{\pi_{\infty}\right\}\right\rangle$ the product of $\left\{X_{\alpha^{3}}\right\}$, for an arbitrary set S and mappings $\sigma_{\alpha}: X \vee S \rightarrow X X_{\alpha}$ such that $\sigma_{\alpha} \mid X=\pi_{\alpha} \quad$ and $\sigma_{\alpha}(s)=x_{\infty}$ for all s in S, it holds card $\left\{x \in G(X \vee S) \mid\left(G \sigma_{\alpha}\right)(x)=y /\right.$ for all α in $A\}>1+$ card S.

Statement 4e2. The functors $N, \beta,\left\langle P^{-}, I\right\rangle$ superlate products. For the system \mathcal{H} of functor superinflating products it holds:
$(\propto) ~ G$ has a subfunctor belonging to $\partial \Longrightarrow G \in \partial \mathscr{H}$ ，
（ β ）$F \times \not \subset \subset \not \subset$ for any functor F ，
$(\gamma) F$ is a covariant faithful functor $\Rightarrow F \circ \gamma \subset \subset \mathcal{H}^{\prime}$ ，狄 $\circ \mathrm{F} \subset$ 狄，
（ σ^{\sim} ）F, G are contravariant faithful $\Rightarrow F \circ G \in \partial \eta$ ，
$(\varepsilon) \quad F$ is contravariant faithful or constant，$G \in \partial \mathscr{r} \Rightarrow$ $\Rightarrow\langle F, G\rangle \in \gamma 亡$.

Proof．

1）N superinflates products；choose $X_{1}=\{a, b\}$ ， $x_{2}=\{c, d\}, x_{1}=a, x_{2}=c, y_{1}=\{a, b\}, y_{2}=\{c, d\}$ ，then the family $\left\{X_{1}, x_{2}\right\}$ and points $x_{1}, x_{2}, y_{1}, y / 2$ meet the requirements of the definition 4．5．

2）β superinflates products；choose $X_{n}=\left\{a_{n}, b_{n}\right\}$ ， $n=1,2,3, \ldots, x_{n}=a_{n}, y_{n}=\left\{\left\{a_{n}\right\},\left\{a_{n}, b_{n}\right\}\right\}$ ，then the（countable）system $\left\{X_{n} \mid m=1,2, \ldots\right\}$ and points： x_{n}, y_{n} meet the requirements．（If card $S<H_{0}$ use the fact that $\left\{x \in \beta_{2_{0}} \mid\left(\beta \pi_{n}\right)(x)=y_{n} \quad\right.$ for $n=1,2, \ldots 3 \geqslant 2^{2^{x_{0}}}$, if card $S \geqslant \psi_{0}$ ，then use card $\beta S=2^{2 \operatorname{cand} S} .2$

3）$\left\langle P^{-}, I\right\rangle$ superinflates products；again choo－ se the family $\left\{X_{1}, X_{2}\right\}$ where $X_{1}=\{a, b\}, X_{2}=$ $=\{c, d\}, x_{1}=a, x_{2}=c, y_{1}: P^{-} x_{1} \rightarrow X_{1}$ is the con－ stant mapping to $a, y_{2}: p-X_{2} \longrightarrow X_{2}$ is the con－ stant mapping to c ．

The assertions $(\alpha)-(\varepsilon)$ can be easily proved with aid of the Proposition 1．1．
5. Covariant case. We suppose always $F \neq C_{\varnothing}, G \neq C_{f}$. Theorem Sele Let $A(F, G, \Delta)$ be a category whose type $\Delta=\left\{x_{\lambda} \mid \lambda<\beta\right\}$ contains zeros, say, $x_{0}=0$. Then $A(F, G, \Delta)$ has producta if and only if G preserves products.

Proof. If G preserves products, then, clearly, $A(F, G, \Delta)$ has products, so we have to show the converse implication.

Take an arbitrary family $\left\{X_{\alpha} \mid \propto \in A\right\} \quad$ of non-vaid sets and choose a family $\left\{x_{\alpha} \in G X_{\alpha} \mid \propto \in A\right\}$. Denote $\left\langle X,\left\{\pi_{\alpha} \mid x \in A\right\}\right\rangle$ the product of $\left\{X_{\alpha}\right\}$ with π_{∞} - the ordinary projections. We muat show that
(a) there exists an element x in $G X$ such that $\left(G \pi_{\alpha}\right)(x)=x_{a}$ for all α in A,
(b) if for some x, y in $G X$ it is $\left(G \pi_{a}\right)(x)=\left(G \pi_{\sigma}\right)(y)=$ $=x_{a}$ for all α in A, then $x=y$.

By theorem 2. 2 , the category $A(F, G,\{0,1\}$,*)
has pseudoproducts. To show (a), take the family $\left\{\left(X_{\alpha},\left\{\sigma_{0}^{\alpha}, \sigma_{1}^{\alpha}\right\}\right) \mid \propto \in A\right\} \quad$ of objects of $A(F, G$, \{0, 1\}) with operations defined so that for each \propto, $\alpha \in A, \sigma_{0}^{\alpha}$ selects x_{α} in $G X_{\alpha}$ and σ_{1}^{α} carries the whole $F X_{o c}$ into x_{o}.

Let $\left\langle\left(S,\left\{\sigma_{0}^{s}, \sigma_{1}^{s}\right\}\right),\left\{\sigma_{\alpha}\right\}\right\rangle$ be a pseudoproduct of this family. There exists a mapping $h: S \rightarrow X$
*) Unary operations play no role in our proof and it works

$$
\text { in the case } x_{\lambda}=0 \text { for all } \lambda, \lambda<\beta \text {, as well. }
$$

such that
(1)

$$
\sigma_{\alpha}=\pi_{\alpha} \circ h \quad \text { for all } \alpha \text { in } A
$$

Denote is the element in $G S$ selected by σ_{0}^{s}. For $x=(G h)(s)$ it is $\left(G \pi_{\alpha}\right)(x)=\left(G \pi_{\alpha}\right) 0(G h)(s)=\left(G \sigma_{\alpha}\right)(s)=x_{\alpha}$ for all α in A, as required.

To prove (b), assume $\left(G \pi_{\alpha}\right)(x)=\left(G \pi_{\alpha}\right)(y)=x_{\alpha}$ for all α in A, and, take inverse bounds $\left\langle\left(X,\left\{\sigma_{0}^{X}, \sigma_{1}^{x} 3\right)\right.\right.$, $\left\{\pi_{a}\right\}>$ with σ_{0}^{x} selecting x and σ_{1}^{x} carrying $F X$ into x and $\left\langle\left(x,\left\{\omega_{0}^{x}, \omega_{1}^{x}\right\}\right),\left\{\pi_{\infty}\right\}\right\rangle$ with ω_{1}^{x}. carrying $F X$ into y selected by ω_{0}^{x}.

Let $f, g: X \rightarrow S \quad$ be the respective factoring morphisms, that is
(2)

$$
\pi_{\alpha}=\sigma_{\alpha} \cdot f=\sigma_{\alpha} \cdot g \text { for all } \propto \text { in } A,
$$

and, in particular, (3)

$$
(G f)(x)=(G g)(y)=s
$$

By (1) and (2) we get $h \cdot f=h \circ g=1_{x} \quad$ which applied to (3) gives $x=y=(G h)(s)$.

Consider further only categories $A(F, G, \Delta)$ with a completely positive type $\Delta=\left\{x_{\lambda} \mid \lambda<\beta\right\}$, i.e. $\boldsymbol{x}_{\lambda}>0$ for all $\lambda, \lambda<\beta$. As a corollary of thorem 5.1 we get

Theorem 5.2. If $F \varnothing \neq \varnothing$ and G does rot preserve products, then a category $A(F, G, \Delta)$ has not products.

Proof. Assume that $A(F, G, \Delta)$ has products. Then $A\left(C_{1}, G,\{1\}\right)$ has pseudoproducts, by theorems 2.1 and 2.2, since $F \varnothing \neq \varnothing$ means that C_{1} is a retract of F. Now, unary operations $\sigma^{x}: C_{1} X \longrightarrow G X$ just
select a point in $G X$, therefore $A\left(C_{1}, G,\{1\}\right)$ coincides with $A\left(C_{1}, G,\{0\}\right)$ which fails to have pseudoproducts by theorem 5.1, in contradiction with our assumption.

Theorem 5.3. Let $A(F, G, \Delta)$ be a category of a type $\Delta=\left\{x_{\lambda} \mid \lambda<\beta\right\}$ with a range-functor G not preserving products.

If the functor $Q_{x_{2}} \circ F$ is loose for some $\lambda, \lambda<\beta$, then $A(F, G, \Delta)$ has not products.

Proof. Assume $Q_{o e_{\gamma}}$ • F loose. Combining statements 4.4 and 4.8 of the preceding section find a set X such that $Q_{x_{\gamma}} \cdot F$ is loose on X and G does not preserve a power $\left\langle X^{A},\left\{J_{a} \mid \propto \in A\right\}\right\rangle$ for a suitable set A.
(I) Denote $P=X^{A}$ and first assume that for some famill $\left\{x_{\alpha} \in G X \mid \alpha \in A\right\}$ there is no point v in $G P$ with $\left(\left(G \pi_{\alpha}\right)(v)=x_{\alpha}\right.$ for all α in A.

Using the notation introduced in statement 4.5, define operations $\sigma_{\lambda}^{\alpha}:(F X)^{\alpha_{\lambda}} \rightarrow G X, \alpha \in A, \lambda<\beta$, is follows:

Choose an element a in X and an element d in the part $\left[p^{+} \cdot G\left(w_{0}^{2}\right)\right](G \mathbb{1})$ of $G 2$, denote $D_{x}^{\lambda}=$ $=\bigcup_{x \in x}\left[P^{+} \cdot Q_{x_{2}} \cdot F\left(w_{a x}^{x}\right)\right](F 2), d_{x}=\left(G w_{a a}^{x}\right)(d)$, and mit

$$
\sigma_{\lambda}^{\alpha}(t)=\left\{\begin{array}{l}
d_{x} \text { for } t \in D_{x}^{a} \tag{4}\\
x_{\alpha} \text { for } t \in(F X)^{\alpha_{a}} \backslash D_{x}^{a}
\end{array}\right.
$$

Define $\left(2,\left\{\sigma_{a}^{2}\right\}\right)$ by $\sigma_{2}^{2}(t)=d$ for in l t in
(FR) ${ }^{x_{2}}$ and note that every $w_{a x}^{x}, x \in X$, is a morphism of $\left(\mathbb{2},\left\{\sigma_{\lambda}^{2}\right\}\right)$ into $\left(X,\left\{\sigma_{\lambda}^{\alpha}\right\}\right)$, since $\left(G w_{a x}^{x}\right)(d)=\left(G w_{a a}^{x}\right)(d)$ for every x in X. Therefore $\left\langle\left(\mathbb{2},\left\{\sigma_{\lambda}^{2}\right\}\right),\left\{w_{a}^{x} \varphi(\alpha)\right\}\right\rangle$ with an arbitralry $\mathscr{S}: A \rightarrow X$ is an inverse bound of the family $\left\{\left(X,\left\{\sigma_{\lambda}^{\alpha}\right\}\right) \mid \alpha \in A\right\}=\mathfrak{X}$.

Suppose that $\left\langle\left(S,\left\{\sigma_{\lambda}^{s}\right\}\right),\left\{\sigma_{\alpha}\right\}\right\rangle$ is a product of \mathfrak{X} and denote $h: S \rightarrow P$ the mapping uniquely determined by

$$
\begin{equation*}
\sigma_{\alpha}=\pi_{\alpha} \cdot h \text { for all } \alpha \text { in } A . \tag{5}
\end{equation*}
$$

Denote $f_{x}: \mathbb{2} \rightarrow S, x \in X$, factoring morphisms of inverse bounds $\left\langle\left(2,\left\{\sigma_{a}^{2}\right\}\right),\left\{{\underset{a}{c}}_{x}^{x}(a)\right\}\right\rangle$ with $\varphi(\alpha)=x$ for all α in A, ie. $w_{a \alpha}^{x}=\sigma_{\alpha} \cdot f_{\alpha}$ for all \propto in A.

Then for a mapping $\tau: X \rightarrow S$ defined by $\tau(x)=$ $=f_{x}(1)$ it is $x=\omega_{a x}^{x}(1)=\sigma_{\alpha} \circ f_{x}(1)=\sigma_{\infty} \circ \tau(x)$, hence

$$
\begin{equation*}
\sigma_{\infty} \circ \tau=1_{x} \text { for } 211 \alpha \text { in } A \tag{6}
\end{equation*}
$$

Now, by statement 4.5, choose t in $(F X)^{x_{r}} \backslash D_{x}^{\gamma}$, denote $s=(F \tau)^{\left(x_{\gamma}\right)}(t), v=(G h)\left(\sigma_{\gamma}^{s}(o)\right)$, and, using (5) and (6), get
$\left(G \pi_{\alpha}\right)(v)=\left(G \pi_{\alpha}\right) \cdot(G h)\left(\sigma_{\gamma}^{s}(s)\right)=\left(G \sigma_{\alpha}\right)\left(\sigma_{\gamma}^{s}(s)\right)=$

$$
=\sigma_{\gamma}^{\infty} \cdot\left(F \sigma_{\alpha}\right)^{(\alpha,}(\gamma)=\sigma_{\gamma}^{\alpha} \cdot\left(F \sigma_{\alpha}\right)^{\left(\alpha_{\gamma}\right)}(F \tau)^{\left(\alpha_{\gamma}\right)}(t)=\sigma_{\gamma}^{\alpha}(t)=x_{\alpha}
$$

for all α in A, in contradiction with our assumption.
(II) Assume further that (I) happens for no family in $G X$,
but for a family $\left\{x_{\infty} \in G X \mid \propto \in A\right\} \quad$ there are v, v^{\prime} in $G P, v \neq v^{\prime}$, such that $\left(G \pi_{\infty}\right)(v)=$ $=\left(G \pi_{\alpha}\right)\left(v^{\prime}\right)=x_{\alpha}$ for all α in A.

Take again the family $\left\{\left(X,\left\{\sigma_{\lambda}^{\infty}\right\}\right) \mid \propto \in A\right\}$ with operations defined by (4) and suppose that it has a product $\left\langle\left(S,\left\{\sigma_{\lambda}^{S}\right\}\right),\left\{\sigma_{\infty}\right\}\right\rangle$.

Define inverse bounds $\left\langle\left(P,\left\{\sigma_{\lambda}^{P}\right\}\right),\left\{\pi_{\infty}\right\}\right\rangle$ and $\left\langle\left(P,\left\{\omega_{a}^{P}\right\}\right),\left\{\pi_{a}\right\}\right\rangle$ as follows:

Define $\mu: X \rightarrow P$ by $\pi_{\alpha} \cdot \mu=1_{x}$ for all α in A, denote $D_{p}^{\alpha}=\bigcup_{p<p}\left[p^{+} \cdot Q_{x_{k}} \cdot F\left(w_{\mu(a) \neq p}^{p}\right)\right](F R)$, $d_{p}=\left(G w_{\mu(a) \mu(a)}^{p}\right)(d)$, and put $\sigma_{a}^{p}(\mu)=\omega_{2}^{p}(\mu)=d_{p}$ for $\mu \in D_{p}^{\lambda}, \sigma_{2}^{p}(\mu)=v, \omega_{2}^{p}(\mu)=v^{\prime}$ for $u \in\left[P^{+} \circ Q_{x_{a}} \cdot F(\mu)\right]\left((F X)^{x_{n}} \backslash D_{x}^{a}\right)$, on the rest of $(F P)^{x_{2}}$ define σ_{λ}^{p} and ω_{λ}^{p} so that all π_{α} become morphisms, which is possible by our assumption.

Note that ail $w_{\mu(a) \neq}^{P}, \eta \in P$, are morphisms of ($2,\left\{\sigma_{2}^{2}\right\}$) into both $\left(P,\left\{\sigma_{2}^{P}\right\}\right)$ and $\left(P,\left\{\omega_{\lambda}^{P}\right\}\right)$. Let $f, f^{\prime}: P \rightarrow S \quad$ be the respective morphisms of ($P,\left\{\sigma_{\lambda}^{P}\right\}$) and ($P,\left\{\omega_{\lambda}^{P}\right\}$) into $\left(S,\left\{\sigma_{\lambda}^{S}\right\}\right)$ with $\pi_{\propto}=\sigma_{\infty} \circ f=\sigma_{\alpha} \cdot f^{\prime}$ for all α in A. Together with (5) we get ho f=h•f $=1_{p}$, so f and f^{\prime} are injections, and, it cannot be $f=f^{\prime}$, since then it would be σ_{γ}^{s}. $(F f)^{\left(\mathcal{N}_{\gamma}\right)}(\mu)=(G f)(v)=$ $=(G f)\left(v^{\prime}\right)$ for any μ in $\left[P^{+} o Q_{\alpha_{\gamma}} \circ F(\mu)\right]\left((F X)^{\alpha_{\gamma}} \backslash D_{x}^{\gamma}\right)$.

Therefore it is $f\left(\imath^{*}\right) \neq f^{\prime}\left(\right.$ R*) $\left.^{*}\right)$ for some p^{*} in P

Now, $\left\langle\left(2,\left\{\sigma_{a}^{2}\right\}\right),\left\{\pi_{\infty} \circ w_{\mu(a) \neq *}^{P}\right\}\right\rangle$ is an inverse bound of \mathcal{X} with two different factoring morphisms through $\left\langle\left(S,\left\{\sigma_{\lambda}^{s}\right\}\right),\left\{\sigma_{\infty}\right\}\right\rangle, \quad$ namely,

$$
f \cdot w_{\mu(a) \not)^{*}}^{P} \text { and } f^{\prime} \cdot w_{\mu(a) \neq *}^{P}
$$

As a simple corollary we have
Theorem fete If \dot{F} is faithful, G not preserving prom ducts, and, Δ contains a number x_{λ} different from 1 , then $A(F, G, \Delta)$ has not products.

Proof. $Q_{x_{\lambda}}$ - F has a subfunctor $Q_{x_{\lambda}}$ which is loose for $x_{\lambda}>1$.

Theorem 5.5. If F is not separating and G blows up products, then $A(F, G, \Delta)$ has not products.

Proof. Assume that for a family $\left\{X_{\alpha} \mid \propto \in A\right\}$ with the product $\left\langle P,\left\{\pi_{\alpha}\right\}\right\rangle$ there are v, v^{\prime} in $G P$, $v \neq v^{\prime}$, such that $\left(G \pi_{\alpha}\right)(v)=\left(G \pi_{\infty}\right)\left(v^{\prime}\right)$ for all α in A.
$;$ Take a family $\left\{\left(X_{\alpha}, \sigma_{a}\right) \mid \alpha \in A\right\}$ of ob jects of $A(F, G,\{1\})$ with $\sigma_{\infty}(t)=\left(G \pi_{\infty}\right)(v)$ for all t in $F X_{a}, \alpha \in A$, and, suppose that the family has a pseudoproduct $\left\langle\left(S, \sigma_{6}\right),\left\{\sigma_{\infty}\right\}\right\rangle$.

Define inverse bounds $\left\langle\left(P, \sigma_{p}\right),\left\{\pi_{\infty}\right\}\right\rangle$ and $\left\langle\left(P, \sigma_{p}^{\prime}\right),\left\{\pi_{\alpha}\right\}\right\rangle$ by $\sigma_{p}(t)=v, \sigma_{p}^{\prime}(t)=v^{\prime}$
for all t in $F P$, denote $f, f^{\prime}: P \rightarrow S$ the corresponding morphisms such that $\pi_{a}=\sigma_{\alpha} \cdot f=\sigma_{a} \circ f^{\prime}$ for all α in A.

If F is not separating, then there exists an element t in FP such that $(F f)(t)=\left(F f^{\prime}\right)(t)=u$.

It is then

$$
\begin{equation*}
(G f)(v)=\left(G f^{\prime}\right)\left(v^{\prime}\right)=\sigma_{s}(u) \cdot \tag{7}
\end{equation*}
$$

Now, f and f^{\prime} have a common retraction $h: S \rightarrow P$ defined by $\sigma_{\alpha}=\pi_{\infty} \circ h, \alpha \in A$, that is, h $\circ f=$ $=h \circ f^{\prime}=1_{p}$. Applying to the identity (7) we get $v=v^{\prime}$ - a contradiction.

Let us call a type $\Delta=\left\{\mathscr{\varkappa}_{\lambda} \mid \lambda<\beta\right\} \quad$ with $\mathscr{H}_{\lambda}=$ $=1$ for all $\lambda, \lambda<\beta$, a unary type.

Theorem 5.6. A category A (F, G, Δ) with G not preserving products and whose type is not unary has products if and only if $F \varnothing=\varnothing, F^{*} \cong C_{M}^{*} \quad$ and G filtrates products (F^{*} is a ronge-domain restriction to non-void sets and mappings).

Proof. If $A(F, G, \Delta)$ has products, then F is neither loose nor faithful. Therefore $F w_{x}^{x}=F w_{y}^{x}$ for arbitrary X, y in X and $F w_{x}^{X} \quad$ is - by tightness - a bijection between $F \mathbb{D}$ and $F X$ independent of chaice of x in X. Putting $\varepsilon^{x}=F w_{x}^{x}$ we obtain a nat. equivalence $\varepsilon: C_{F i}^{*} \longrightarrow F^{*}$.

Since F is not separating, G must then, by theorem 5.5, filtrate products.

The condition $F \varnothing=\varnothing$ has been established by theorem 5.2.

Assume, conversely, that the conditions imposed on F and G are fulfilled. Let
$\mathscr{X}=\left\{\left(X_{\alpha},\left\{\sigma_{\lambda}^{\alpha} \mid \lambda<\beta\right\}\right) \mid \alpha \in A\right\}$ be an arbitrary family of objects of $A(F, G, \Delta)$. Let $\left\langle P,\left\{\pi_{\alpha}\right\}\right.$ 〉 be the product $P=\prod_{\infty} X_{\alpha}$ with ordinary projections.

IP, for some m in $M^{\mathscr{L}}$, , there is no μ in $G P$..
such that $\left(G \pi_{\alpha}\right)(\mu)=\sigma_{\lambda}^{\infty}(m)$ for all \propto in A, then every inverse bound $\left\langle\left(Y,\left\{\sigma_{\lambda}^{y}\right\}\right),\left\{\eta_{\alpha}\right\}\right\rangle$ of \mathfrak{X} must be void and 1o, in fact, a product of \mathfrak{X}. If, for every m in $M^{x_{\lambda}}, \lambda<\beta$, there exists some μ in $G P$ such that $\left(G \pi_{\alpha}\right)(\mu)=\sigma_{\lambda}^{\infty}(m)$ for all α in A, then $\left\langle\left(P,\left\{\sigma_{\lambda}^{P}\right\}\right),\left\{\pi_{\alpha}\right\}\right\rangle$ with σ_{λ}^{p} defined by

$$
\left(G \pi_{\alpha}\right) \sigma_{\lambda}^{P}=\sigma_{\lambda}^{\alpha} \quad \text { for all } \alpha \text { in } A
$$

is a product of \mathfrak{X}
Theorem 5.7. A category $A(F, G, \Delta)$ with a unary type Δ and G filtrating products has producte if and only if F is a tight functor with $F \varnothing=\varnothing$, in particular if F preserves sums.

Proof. The condition is necessary by theorem 5.3and 5.2.
Let $\mathscr{X}=\left\{\left(X_{x},\left\{\sigma_{\lambda}^{\infty}\right\}\right) \mid \alpha \in A\right\}$ be an arbitrary family of objects of $A(F, G, \Delta)$, let $\left\langle X,\left\{\pi_{\alpha} \mid \propto \in A\right\}\right\rangle$ be the product $X=\prod_{\alpha \in A} X_{\alpha}$ with ordinary projections $\pi_{\propto}, \propto \in A$.

Define a system $\varphi \mathcal{L}$ of admiseible subsets of X
by the condition that $M \in$ er if and only if for every t in $F M$, there exists a family $\left\{\mu_{\lambda} \in G M I \lambda<\beta\right\}$ such that
(1) $\sigma_{\lambda}^{\alpha} \cdot\left[F\left(\pi_{\alpha} \cdot i_{M}^{x}\right)\right](t)=\left[G\left(\pi_{\alpha} \cdot i_{M}^{x}\right)\right]\left(\mu_{2}\right)$ for all α in A,
where $i_{M}^{X}: M \rightarrow X$ is the inclusion of M into X.
Since G filtrates products, the family $\left\{\mu_{\lambda}\right\}$ is uniquely determined by t and $\left\langle\left(M,\left\{\sigma_{2}^{M}\right\}\right),\left\{\pi_{\infty} \cdot i_{M}^{X}\right\}\right\rangle$ with $\sigma_{\lambda}^{M}(t)=\mu_{\lambda}$ for t in FM. becomes an inverse bound of \mathfrak{X}.

$$
\text { Denote } S=\cup \mathscr{\quad} \quad=\text { the union of all admissib- }
$$

le subsets of $X, i_{M}^{S}: M \rightarrow S, M \in \mathscr{C}, \quad-$ the inclusion of M into S. Since F is tight, we have by statement 4.6

$$
\bigcup_{M \in e r}\left[p^{+} \cdot F\left(i_{M}^{S}\right)\right](F M)=F S
$$

therefore, for every s in $F S$, have $\left(F i_{s}^{x}\right)(s)=$ $=\left(F i_{M}^{X}\right)(t)$ for some admissible set M and t in $F M$. Putting $v_{a}=\left(G i_{M}^{s}\right)\left(\sigma_{a}^{M}(t)\right)$ we get

$$
\begin{aligned}
& \sigma_{\lambda}^{\alpha} \cdot\left[F\left(\pi_{\alpha} \cdot i_{s}^{X}\right)\right](s)=\sigma_{\lambda}^{\alpha} \cdot\left[F\left(\pi_{\alpha} \cdot i_{M}^{X}\right)\right](t)= \\
& =\left[G\left(\pi_{\dot{\alpha}} \cdot i_{M}^{x}\right)\right] \cdot \sigma_{a}^{M}(t)=\left[G\left(\pi_{\alpha} \cdot i_{s}^{x}\right)\right] \cdot\left(G i_{m}^{s}\right) \cdot \sigma_{\lambda}^{M}(t)=\left[G\left(\pi_{\alpha} \cdot i_{s}^{x}\right)\right]\left(v_{\lambda}\right) \text {, } \\
& \text { therefore } S \text { is admissible. Moreover, it is easily seen } \\
& \text { that } i_{M}^{S} \text { is a orphism of }\left(M,\left\{\sigma_{2}^{M}\right\}\right. \text {) into } \\
& \text { (} s,\left\{\sigma_{\lambda}^{s}\right\} \text {). } \\
& \text { It remains to show that }\left\langle\left(S,\left\{\sigma_{2}^{s}\right\}\right)\right. \text {, } \\
& \left\{\pi_{c} \cdot i_{s}^{x}\right\}>\quad \text { is a product of } \mathscr{X} \text {. } \\
& \text { Let }\left\langle\left(Y,\left\{\sigma_{a}^{y}\right\}\right),\left\{\eta_{\alpha}^{\}}\right\rangle\right. \text {be an in- }
\end{aligned}
$$

verse bound of \mathfrak{X}, ie. $\sigma_{\lambda}^{\alpha} \cdot\left(F \eta_{\alpha}\right)=\left(G \eta_{\alpha}\right) \cdot \sigma_{\lambda}^{y}$ for all α in A, and let $h: y \rightarrow X$ be the mapping uniquely determined by $\pi_{\propto} \cdot h=\eta_{a}, a \in A$. Denote $M=\left(P^{+} h\right)(Y)$ and let $\hat{h}: Y \rightarrow M$ be the range restriction of h. Then we have $h=i_{M}^{x} \cdot \hat{h}$ and $\eta_{\alpha}=\pi_{\infty} \cdot i_{M}^{X} \cdot \hat{h}$, therefore (2) $\sigma_{\lambda}^{\alpha} \cdot\left[F\left(\pi_{\alpha} \cdot i_{M}^{x}\right)\right] \cdot(F \hat{h})=\left[G\left(\pi_{\alpha} \cdot i_{M}^{x}\right)\right] \cdot(G \hat{h}) \cdot \sigma_{\lambda}^{y} \cdot$.

Now, for every t in FM there exists an y in FY such that $(F \hat{h})(y)=t$. By (1) and (2) it must be

$$
(G \hat{h}) \cdot \sigma_{\lambda}^{y}(y)=\sigma_{\lambda}^{M}(t)=\sigma_{\lambda}^{M} \cdot(F \hat{h})(y),
$$

therefore \hat{h} is a morphism of $\left(Y,\left\{\sigma_{\lambda}^{Y}\right\}\right)$ onto $\left(M,\left\{\sigma_{2}^{M}\right\}\right)$, M is admissible, and $f: i_{M}^{s} \cdot \hat{h}$ is the unique factoring morphism of (Y, $\left\{\sigma_{\lambda}^{y}\right\}$) into (S, $\left\{\sigma_{\lambda}^{5}\right\}$) such that $\eta_{\alpha}=\left(\pi_{\alpha} \cdot i_{s}^{x}\right)$.f for all α in A.

As a corollary we have
Theorem 5.8e A category $A(F, G, \Delta)$ of a unary type and with F not preserving sums has products if and only if F is tight with $F \varnothing=\varnothing$ and G filtrates or preserves products.

Proof. If $A(F, G, \Delta)$ has products, then F must be tight by theorem 5.3, $F \emptyset=\varnothing$ by theorem 5.2, therefore it cannot be separating and G then cannot blow up products by theorem 5.5.

The converse has been asserted in theorem 5.7.
Theorem 5.9. If G superinflates products, then $A(F, G, \Delta)$ hes not products.

Proof. Having in view the theorems 5.1, 5.6, 5.8, we shall have only to prove that $A(F, G, \Delta)$ has not products in the case of a unary type Δ and the functor F preserving sums. Then it is $F \simeq I \times C_{M}$ and thus $A(F, G, \Delta)$ is isomorphic to some $A\left(I, G, \Delta^{\prime}\right)$ with a suitable unary type Δ^{\prime}. Therefore to prove the theorem, it will do to show that $A(I, G,\{1\})$ has not pseudoproducts. The proof then runs as follows.

Let $\left\{X_{\alpha} 1 \propto \in A\right\}, x_{\alpha} \in X_{\alpha}, y_{\alpha} \in G X_{\alpha}$. enjoy the properties stated in the definition 4.5. Let $\sigma_{\propto}: X_{\infty} \rightarrow$ $\rightarrow G X_{\propto,} \propto \in A$, be the constant mapping assigning to every x from X_{∞} the element y_{∞}. We shall show that the family $\boldsymbol{X}=\left\{\left(X_{\alpha}, \sigma_{\infty}\right) 1 \propto \in A\right\} \quad$ of objects of $A(I, G,\{1\})$ fails to have a pseudoproduct in this category.

Assume that the family \mathfrak{X} has a pseudoproduct; say, $\left\langle\left(P, \sigma_{p}\right) ;\left\{\eta_{\alpha} \mid \propto \in A\right\}\right\rangle$. Let M be sn arbitrary infinite cardinal number. It will be shown that card $P \geqslant$.

Let $\left\langle X,\left\{\pi_{\boldsymbol{\alpha}} \mid \propto \in A\right\}\right\rangle$ be the cartesian product of the family $\left\{X_{\alpha} \mid \propto \in A\right\}$. Let S be a set with card $S \geqslant \mu$. Define an inverse bourd $\mathcal{Z}=\left\langle\left(Z, \sigma_{\mathcal{Z}}\right)\right.$; $\left\{\sigma_{\alpha} \mid \alpha \in A\right\}>$ of the family X as follows:

$$
Z=X \vee S, \sigma_{\propto}: Z \rightarrow X_{\alpha} \text { is a mapping such }
$$

that $\sigma_{\alpha} \mid X=\pi_{\infty}, \quad \sigma_{\infty}(\Delta)=x_{\alpha} \quad$ for all s in S.

To define the operation σ_{z} denote
$M=\left\{z \in G(X \vee S) \|\left(G \sigma_{x}\right)(z)=y_{x} \quad\right.$ for all α in $\left.A\right\}$. Let \prec. be a well-ordering of S, for a given s in S, denote $S_{\%}=\{t \in S \mid t<s\}$. For an s in S denote further $M_{b}=M \cap\left[\left(P^{+} \circ G\right)\left(i_{b}\right)\right]\left(G\left(X \vee S_{b}\right)\right)$, where $i_{s}: X \vee S_{s} \rightarrow Z$ is the inclusion. Since G superinflates products we have card $M_{s}>1+$ card S_{s}. Therefore, we can now define $\sigma_{Z}: Z \longrightarrow G Z$ by the transfinite induction in such a way that $\sigma_{z}(X) \cap \sigma_{Z}(S)=$ $=\varnothing, \quad \sigma_{Z}$ is one-to-one on S and for every is in S it is $\sigma_{z}\left(X \vee S_{b}\right) \subset M_{b}$. Then, clearly, $\left(G \sigma_{\infty}\right) \cdot \sigma_{z}=\sigma_{\infty} \cdot \sigma_{\alpha}$ so Z really is an inverse bound.

Let $f: Z \rightarrow P$ be a factoring morphism, ie. (1)

$$
p_{\alpha} \cdot f=\sigma_{\alpha} \text { for all } \alpha \text { in } A
$$

$$
\begin{equation*}
\sigma_{p} \cdot f=(G f) \circ \sigma_{z} . \tag{2}
\end{equation*}
$$

We shall show that f is one-one. On X it follows immediately by (1), further procede by transfinite induction. Let $s \in S$ and let $f \cdot i_{s}$ be ono-to-one, $i_{s}: X \vee S_{s} \rightarrow$ $\rightarrow Z$ being the inclusion. Then also $G\left(f \circ i_{s}\right)$ is one-toone, therefore $G f$ is one-tomone on M_{p}. It remains to show f to be are-tomane on $X \vee S_{s} \vee\{s\}$. But it would be, otherwise, $f(s)=f\left(s^{\prime}\right)$ for some s^{\prime} in $X \vee S_{s}, \quad$ and, by $(2),(G f) \circ \sigma_{z}(s)=(G f) \circ \sigma_{z}\left(s^{\prime}\right)$, in contradiction with $\sigma_{z}(s) \neq \sigma_{z}\left(s^{\prime}\right), \sigma_{z}(s), \sigma_{z}\left(s^{\circ}\right) \in M_{s}$ and $G f$ being one-to-are on M_{p}.

Appendix

A. Although the problem of products in $A(F, G, \Delta)$ is not solved completely in the present paper, we can nevertheless show that the theorems proved here clear up many aituations. Let \mathscr{D} denote the least system of functors containing I, N, β, C_{M} with $M \neq \varnothing$, closed with regard to operations V, \times (over sets), $\cup,<-,->$ (whenever defined) and to natural equivalence. From this recursive definition of \mathfrak{D} and with aid of the results of the section 4 we can prove easily:

If F in D is covariant, then either $F \varnothing \neq \varnothing$ or $F \simeq I \times C_{M}$ or F is loose;
if G in D is covariant, then either G preser-
ves products and $G \simeq Q_{M}$, or G filtrates products and $G \simeq V_{C \in y} Q_{M_{L}}$, or G has for a subfunctor one of the functors $\beta, \beta \times I, N, N \times I,\left\langle P^{-}, I\right\rangle$ and hence superinflates products.

Therefore, from the theorems stated in the paper it follows that:

If F, G are covariant functors belonging to the system D, then $A(F, G, \Delta)$ has products exactly in the following two distinct cases:

1) $G \simeq Q_{M}$;
2) Δ is unary, $F \simeq I \times C_{M}, G \simeq \underset{C \in J}{V} Q_{M_{L}}$.
B. Beside categories $A(F, G, \Delta)$ treated in the text it is but natural to study also the categories

P(F, G, Δ) whose objecte are all pairs (X, O) with X - a set and σ - a system of partial operations of the cype Δ from the set $F X$ into $G X$, or, the categories $R(F, G, \Delta)$ with objects. (X, σ) - a set with a relational system, i.e. the system of multivalued partial operations of the type Δ from $F X$ into $G X$ (see also [3]).

The authors have chosen for atudy the categories $A(F, G, \Delta)$ since the behaviour of categories $P(F, G, \Delta)$ and $R(F, G, \Delta)$ with regard to products is essentially simpler. The theorem 3.1 is valid after some quite formal modifications - for categories $P(F, G, \Delta)$ and $R(F, G, \Delta)$. Therefore, for faithful contravariant F, G and $\Sigma \Delta>0$ the categories $P(F, G, \Delta)$ and $R(F, G, \Delta)$ have not products. If F, G are covariant, then $R(F, G, \Delta)$ always has products and the forgetful functor preserves them.

In situations treated in the paper, the behaviour of $P(F, G, \Delta)$ differs from that of $A(F, G, \Delta)$ only in the following case: If G filtrates products then $P(F, G, \Delta)$ always has products and the forgetful functor preserves them. All other results and their proofs brought in the text can be with just formal changes transformed to $P(F, G, \Delta)$.
C. It is, of course, possible to regard a system of structureg simultaneously. If \mathcal{J} is a set, then categories

$$
A\left(\left\{F_{L}, G_{L}, \Delta_{L}\right\} \mid L \in \mathcal{I}\right), P\left(\left\{F_{L}, G_{L}, \Delta_{L}\right\} \mid L \in \mathcal{J}\right),
$$

$R\left(\left\{F_{L}, G_{L}, \Delta_{L}\right\} \mid L \in \mathcal{Y}\right)$ are defined in an obvious way. It is clear that all proofs of non-existence of products are of that kind that, as soon as for some L_{0} in J the category $A\left(F_{L_{0}}, G_{L_{0}}, \Delta_{L_{0}}\right) \quad$ has not products by some of the stated theorems, then
$\left.A\left(F_{L}, G_{L}, \Delta_{L}\right\} \mid l \in \mathcal{J}\right)$ has not products either. Further, we can assert the following: Let for every L in I G preserves products, or, for every $\iota \in J, \Delta_{\downarrow}$ be unary, G_{L} filtrate products and F_{L} be tight with $F_{L} \varnothing=\varnothing$. Then $A\left(\left\{F_{L}, G_{L}, \Delta_{L}\right\} \mid L \in J\right)$ has products. We do not bring explicitly the results for categories P(...) and $R(\ldots)$.
D. Let $A^{*}(F, G, \Delta)$ be a full subcategory of the category $A(F, G, \Delta)$ whose objects are exactly the objects of $A(F, G, \Delta)$ with a non-void underlying set. All the results in the text claiming the non-existence of products in $A(F, G, \Delta)$ are without any changes valid in $A^{*}(F, G, \Delta)$ as well. The positive results on the existence of products are slightly different. Completing in a simple way the proof of the theorem 5.6 we can for example prove: If the type Δ is not unary, then $A^{*}(F, G, \Delta)$ has products if and only if G preserves products.

If G filtrates or superinflates products, then

```
A* (F,G,\Delta) has not oroducts even for a unary ty-
pe }
    The same problems on products as in A(F,G,\Delta)
remain open for categories A* (F,G,|).
    references
[1] A. PULTR: On selecting or morphisms among all mappings
between underlying sets of objects in concrete
categories and realisations of these, Comment:
Math.Univ.Carolinae 8,1(1967),53-83.
i21 A. PULIR: A remark on selective functors, Comment.Math.
    Univ.Carolinae 9,1(1968),191-196.
[3] O. WYLER: Operational Categories, Proceedings of the Con-
    ference on Categorial Algebra, La Jolla 1965,
    295-316.
    (Received February 4, 1969)
```

