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Comment at iones Mathematicae U n l v e r s i t a t i s C a ^ l i n a e 

10 ,1 (1969) 

DIFFERENTIABILITY OF CONVEX FUNCTIONALS AND BOUNDEDNESS OF 

NONLINEAR OPERATORS AND FUNCTIONALS 

Josef KOIOMtf, Praha 

Introduct ion. The f i r s t part of t h i s paper concerns the 

d i f f e r e n t i a b i l i t y propert ies of convex f u n c t i o n a l s . I t id 

shown that i f f i s a convex continuous subadditive f u n c 

t i o n a l having the f i r s t Gateaux d e r i v a t i v e 4'(u) and the 

second Gateaux d i f f e r e n t i a l V f (<u> - 4%} <H> ) on some o-

pen convex bounded neighbourhood V(0) of 0 of a l i n e a r 

normed space X and i f II«f (0) II i s smal l , then there 

e x i s t s the FrSchet der iva t ive V(u) on V(0) and \f'(u)\\ 

i s small on V(0) provided V*f (*L, *t, Jk ) i s c o n t i 

nuous at (070) uniformly with respect t o u, € V(0) ( T h . l ) . 

Some condit ions, under which the Gateaux d i f f e r e n t i a l Vf(U0Ph) 

(or the G&teaux der iva t ive f ' ( 4 6 ) of a convex funct iona l 

i s the Fre*chet der ivat ive are e s tab l i shed (Theorems 2 , 4 , 5 , 6 ) , 

Moreover, the subsets of X which c o n s i s t of the points of A 

at which a convex funct iona l (under some further c o n d i t i o n s ! 

posses ses the Fr£chet or Hadamard's d e r i v a t i v e are described 

(Theorems 3 , 7 ) . 

The second part of t h i s paper i s devoted t o the study of 

boundedness of nonlinear operators and f u n c t i o n a l s . Each s e c 

t i o n concludes with a br i e f note concerning some recent r e 

s u l t s i n these t o p i c s . For some f u r t h e r re ferences see C1J, 
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[23i 131 and the references cited here. 

1 . Djfferei.)UaHUt.Y Qt convex foncUQnajLs. 

The terminology and notations of c n , ( 2 J , t 3 J is used. 

For Gateaux, Fr£ehet differentials and derivatives we use no

tions and notations given in Vajnberg's book [4 ,chapt.IJ . A 

functional $ i s said to be subadditive on a set Q If ui f 

Alz € Q , ^ + U^ e Q imply that 4(u1 + 4JL%)& •f-atrf+tOtJ. 

Theorem 1. Let X be a Banach space, -P a continuous 

functional on X , -t (0 ) «• 0 . Suppose f has the f i r s t and 

second Gateaux differentials V4(*M7A) , V*f(<tc7 A 7 h ) 

on some convex open bounded neighbourhood V(0) of 0 € X 

such that I Vi (0 7 A) | h S l\ 4, J for every A e X 

and some number fc, > 0 and that V t (AM 7 A, A) i s con

tinuous at A ** 0 7 A ** 0 uniformly with respect to Ac e 

feV(O). Assume -f i s subadditive and convex on V(0) -

Then f possesses the Fr^chet derivative $'(AM) on 

yCO) W-f'(^ ) H h 3 e for each tee V (0); +, 

•f'C-tt) are Lipschitzian on V(O) and f i s uniformly dif

ferent iable on VCO) * 

Proof. According to Theorem 1 £51 f has Lipschitzian 

Fr^chet derivative -f'(AM) on V(0) and f i s uniform

ly differentiable on V(0) . By our hypothesis H'(0) l\ £& 8 . 

It remains to prove that || f £-tc) l\ & 3 g for each 

AM € V(0) . 

Let AM e V (0) be an arbitrary (but fixed) element 

of V(0) . Choose t > 0 sufficiently small such that 

tH , AM± tJh e V CO) , where A e X , \\A\\^ 1 . 



Then 

(1) + (*c + th.) c ^ f t t U £ t'(*c)th + 

+ ± t - / f C l - r ) V*f (u + vtH, *.,*>>** • 

Since V*$ (JUL , M,, M,) i s continuous at (0,0) and ho

mogeneous at £v, M, we see that there exists a constant 

N > 0 such that \Vzf (A+,H, H)\ 4 N H Av II 2 

for each AJL € V(0) * Using ( l ) and emplyoing the proper

t i e s of *f we have that 

(2) r(<A,)t*i 4 fctJhs)+ \ **N nAfla * 

Since * has the Freshet derivative -TC0) at 0 and 

•f (0) » 0 7 

(3) - P C t ^ ) =- -f'(0)t4v + CO(0, tJh,) 7 

where 

(4) 0 4* co(Q, th,) £ £ t H ^ II 

for sufficiently small t > 0 . From the inequality 

$'(0)M, 4* £ (I M, II and the relations (2) , (3) , (4) i t f o l 

lows that 

V(4A,)h, & i e H ^ II + \ * N II ^ II* . 

Choose t -> 0 such small that | t N 6 e • Then 

f'(4A,)Jh £ 3 fc II -ft II for each .U e V (0) and i t € X , 

II <fll 4 4 • On the other s ide, employing convexity and sub-

additivity of f on V(0) we obtain 

f " U t ) t & £ t(ju,)-f(U-tH)~ 

- it*f(1-v)\/i4(u<+'*:*>'74>i,H)cl'V 2k 
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> -f(-tJh, - \ t 2 N \Lh\l* -

£ - 3 £ * II h, II 

for sufficiently small t > Q , l H \ \ h / l ar&/uueVCO). 

Thus we have I *'(***£ ) Jv \ £ 3 €> II <h II for each>o,6 l/«V 

and l l f i X with f 4».f| ^ -1 . Hence iV(*c)ll 4 3 & 

for each M, e VCO) and this concludes the proof* 

Remark I. We recall a certain assertion which is well-

known and useful in real analysis (see for instance £6J): 

Let fy be a twice-differentiable real function of real va

riable defined on an interval D of the length Jt • Assu

me I ^ ( x ) l 4 € and I fy" (x ) I h M, for every * c 

€ 0 j where £ ? A- are some fixed positive numbers. If 

4 (j^ ) * 4 ^ ^ then I p / f r O I A 2 C e ^ > ^ for 

every x € J • 

Theorem 2« Let X be a reflexive Banach space, -f a 

convex continuous subadditive functional on X having the 

Gateaux differential V-f (<u,0 9 <H ) at u0 e X . Assume 

there exists a weakly continuous functional fy. on tne c l ° " 

sed ball J>=*{u.eK:\\u,\\&4'i such that +(u) & 

£fy(u.) and, c^6-4^> & - ^ C ^ ) for each <u, e D . 

Then -f possesses the Freehet derivative**^' (<u>0) at 

£C£o£. Continuity and convexity of i imply that 

V4(AJL,7JV)>- +'0Uf)Jt, where V(,4Mp ) denotes the Gateaux 
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derivative of *P at AA0 * Suppose that there does not ex

i s t the Frdchet derivative f CKA0 ) at AAO - From the be

ginning we proceed as in the proof of Theorem 1 LI]. In the 

relations ( l ) - (4) of that proof write AA0 for 0 , f 

for F and the remainder in (1) replace by 

CO(U0ftH)~ i(U0 + tH) -tiAA, ) - l'C<A„)tH . 

Since the one-sided GSteaux derivative V+ f (AA09 H ) i s 

equal to f'(<A0) H and -f is convex, we can deal here* 

only with a sequence f t^ J of positive numbers. Let H0 f 

{H 1 it I have the aame meaning as in the proof of Theo-

rem 1 £ 1 ] . Instead of (5) in [13 we write 

(5) 
t(u++t^H0) -t(U.)m rCu^t^H.* d>(AA07t^ H0) . 

Being -f convex, 

C6) 0 £ co(u^t^H^) , 0 -4 co(AA0 i t ^ H , ) 

for every H (H ** 49 2.,,,,). From (5) and (6) we have that 

(7) O£coC4i0ft^Hmskf)m fCUt + t^H^-fCu*)* 

+f'(u,)t^C4%-K4)+ a>Cu9,t*hA>0)+ Ku^-fCUr+tm^H, ) . 

A a ^ A > 0 j t^ —> 0 / there exists an index H0 

such that H >> M^ =-£ 0 <. t^ <z A . Consider now on 

only such H for which Jk & 4t0 . Convexity and subad-

divity of f imply 
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-l^ml^LtCat+Jh^-fCKd*)! * t^+CK,*,^ • 

Similarly we obtain that 

(9? *(AJL.)-K*+%^JhJ4L f(44,-1^^)-<f(*0) & 

Since At0 7 A-*^ B ^ f o r e v * r y -*> CJk- I*2-,...), 
our hypothesis imply 

ao) tctk*^)* fyCtu^, *(-<h*)± &C-K) & -q-cK) 

for erery A, (Jc * 4, 27... ) 0 Yrom (7) - (10) we obtain 

(Jh ^ M,a) that 

(11) 0 at £ ^ ^ ^ A ^ ) * 9-^Sfc)- 9-cA*} * 

+ r c ^ x ^ - A * ^ ) * £ < ^ c ^ , t ^ ^ ) . 

Since t^ —> 0«. aa Jt —•> o*> and -f poasessea the 

GSteaux derivative i'(AL0 ) at AJLC y we have that 

| - CO (AJL,^ t0hJ^A0) —> 0 . Furthermore, -f-W*-22-* ^ 

impliea 9 * < J ^ > - ^ ^ ) —* 0 and M^J^-H^-TO 

aa i t —* O0 . Thua ^- Ct> £<a* , t ^ x ^ ) —y 0 as 

Jk—t-OO and thia ia a contradiction (aee proof of Th.l £1J). 

The theorem ia proved. 

The result of Th. 2 one may rewrite aa followa: 

Theorem 2*'. Let X be a reflexive Banach apace, f m 

functional on X having the Gateaux derivative 4'(^Cfi) at 

U0 € X 0 Assume 4 i s convex and subadditive on a cloaed 

ball B ^ k c X ; II AJL II 4m IAJL0 II + A } . Suppose the-
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re exists a weakly continuous functional ^ on a closed 

ball $ ** iu € X; ll u II £ 1 J auch that 4(u) 4* q* (u) 

and fyC-u) & - (^(u,) tor each u e D • 

Then 4 possesses the Fr^chet derivative 4' (u0 ) 

at uo • 

Theorem 3 131 and Theorem 2 give the following 

Theorem 3»Let X be a separable reflexive Banach apa

ce, -f a convex Lipsohitzian aubadditive functional on X * 

Suppose there exiats a weakly continuous functional g** on 

D <*{u€ X* \\JU>\h. A'i auch that 4 (u) *. q<(u ) and 

Cfri-AA,) .= ~<g*(u) for each <U e J> * 

Then the aet Z of a l l u e X where the Frgchet de

rivative 4'(u) of 4 at u exiata ia a f j ^ set of 

the-second category in X and hence i t containa a G^r-aet 

which ia dense in X -

Theorem 4« Let X be a reflexive Banach space, 4 a 

functional on X having the Gateaux derivative 4* (up ) 

at U0 6 X , Suppose 4 ia convex on some convex open 

neighbourhood VCu0 ) of AJL0 * Assume there exists a func

tional fy on VCu0) auch that 4 Cu0 ) - fy(u0 >, 4(u)£ 

£ <fr(u) for each U C VCu0 ) and that fy poasessea 

the Fr^chet derivative <^(uc ) at u,0 . 

Then 4 poaaesses the Fr^chet derivative 4'Cu0 ) at 

U0 . 

Proof* Suppose that the Fr^chet derivative 4/(U0 ) 

does not exist at U0 e X • Let i i i ^ J , i t^ 1 

have the similar meaning aa in the proof of Theorem 1 £13 

(see alao the proof of Tru2). In view of the existence of 
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the Gateaux derivaxive 4'CJUL, ) a t 'u' -> w t ma? restrict 

our consideration only for Kt^l with "fe*̂ —f 0^ as 

M -+ oo . Since to JULf Jfa0 and I H^ \\ . 1 

(M,»4,2r~), KKW * 4. A« t ^ ^ - " * °+ whenever 

i t -> A? , there exiata an lnts*** ^ such that >fo .£. 

S i J e , — • ^ + t ^ M^ , *. - fc^ H0 e VCu,, ) , 

Moreover, 0 6 co (u, , t ^ A * ^ > for each •& d ^ , 

where o > f ^ ^ l i ^ ) - * 4 C u , + 1^Jt^)+f(u9)-4'Cai,) tn^ KLA • 

In fact , convexity of 4 on V(4t, ) implies CO < ct, <. 4, 

Jk, & k,a ) that 

Hence 

± C f C ^ - r - ^ t ^ ^ ^ ) - - P ^ > J -* 

£ 4C*L. + t ^ H ^ )-4Cu0) . 

Since i ^ i C # ( ^ * l L Jw)-^C4l,) ] - ^ ^ ^ A - * ) 

and \ ^ f ^ ; t ^ c ^ ^ ^ ) =* f'fr-v) * \ , we obtain 

the deaired concluaion at once from this fact and the last 

inequality. Now we proceed aa in the proof of Theorem 2. 

For the f i rs t difference on the right side in (7) we have 

that (Jk, & <k>0) 

(12) 4Cu^t^H^)-4Cuc)£ g,Cu,+ %^<K>+) - 9- <"* ) 

by our hypothesis. Since fy* possesses the Fr^chet deriva

t ive <j!(u,) at u.c , 

(iVfyCu^t^H^-^Cu,) * <^CM.0)t^m^^Cuffyt^H^)} 
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where 

(14) y- OJ, Cuc , t^A Jh,^ ) ~-y 0 

as Jk, —v CO , for t ^ —-* 0^ and II Jh,^ ll * -f . Fur

ther by convexity of 4 on V (u.9) and according to our 

hypothesis (M/ £ M,0 ) 

tCA**)-*^*^*,.) 4 f^,- t^*-.)-*("*)* 
(15) 

where 

(X6) f « . , < " . , ^ - * . » - > * , * - * " > ' 

From (7) , (12) , (13) , (15) I t followe that 

(17) Vfc * * 

+ f'(-u0)(<h,-A^) 

for each • & . £ & . Since -f has the Gateaux der ivat ive at 
o . 

«,. e X, i£<»Cup,t„A4i,0) —> 0 **&-+co. 

As M^ - 2 ^ A, ^ we have that (fCu^Ch,^^- K)—* 0 7 

4'(44.)Chc- h^ ) —+0 . These fac ts and (14), (16), (17) imp-
A 

ly that g- co C4tc , *L A - ) — » 0 as - 4 , - * <*?, 

which i s a contradict ion (see the beginning of the proof of 

Th.l C13)• Hence i possesses the Fr^chet der ivat ive -PCarf 

a t jui e X # Theorem i s proved. 

One may proved the following 

99 -



Theorem 5. Let X be a reflexive Banach" space, f 

a convex functional on some convex open neighbourhood 

V(u0) of ALO £ X and having the Giteaux derivative 

¥(AJL9) at 4*0 . Suppoae there exists a aubadditive func

tional q* on an open ball BL » -f AJL, e X / /l>o, /! -<: R J 

containing ^ such that f Ctc,) =-Q,(4t0) and fCtc) & 

£ QLOUL) f o r «dch >66 of some convex open neighbourhood 

V£ C ^ ) of It . Assume fy. possesses the Fr^chet deriva

tive g/(0) at 0. 

Then f possesses the Frgchet derivative 4'(AJUC) 

a t AA.0 -

Theorem 6. Let X be a reflexive Banach apace, f 

a convex functional on the closed ball D « -f<tt € X .• \\Att& 

£ S\$7 f(0)** 0 . Suppose -f i s weakly continuous on J) , 

$(rJUt)k -$ (AA) for each At e D and that there ex

i s t s the GSteaux derivative 4'(0) at 0 . 

Then-f possesses the Fr^chet derivative 4'CO) at 
0 . 

We shall use a notion of the Hadamard'a derivative 

t7 fchapt.VIII,p.l50-15lJ ft8J ff9J f£lOJ ,tl2J,£13.Theorem 3.3J. 

Let F be a continuous mapping of an open set -fl of 

a Banach space X into Banach space Y • A mapping F 

i s said to have a Hadamard'a differential at <u0 e fL 

i f there exists a linear mapping A„ of X into V 

having the following property: for any continuous mapping 

<fr of J - < Q, 1 > into XL such that <^(0) * 4JL0 

and that the derivative $ (Q) of a, at 0 (with 

respect to J ) ex i s t s , then t —> F (fy(t)) has at 

the point t =s 0 a derivative (with respect to J ) 
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equal to A^ qSC 0 ) . The linear map ,4, ia called 

a Hadamard's derivative of F at icc . 

One may prove that A^ i s a continuous mapping 

from X into Y • Moreover, i f F ia Lipschitzian on 

H. and there exists a linear Gateaux differential 

J)F (AL<>9 <fo ) at JUC e SL , then F possesses 

the Hadamard'a derivative A^ at AAC & SI L !!• 

This result together with Theorem 3 £3 ] give the following 

Theorem !• Let X be a separable Banach space, -f 

a convex Lipschitzian functional on X • Then the set 2 

of a l l AJL e X where the Hadamard's derivative A^ 

ex i s t s i s a f^y -set of the second category in X • 

Remarks* The properties of the one-sided Gateaux dif

ferentials and derivatives of convex functionals are also 

studied in [14,§ 3J. The Freshet and Siteaux di f ferent iabi l i 

ty of convex functionals hass been recently investigated by 

E. Asplund C15J. One of his interesting results i s as f o l 

lows: If X i s a Banach space which admits an equivalent 

norm such that the corresponding dual norm in X* i s l o 

cal ly uniformly rotund, then the set W of a l l X € X 7 

where a continuous convex functional f i s Fr^chet-diffe-

rentiable ia a (j^ -set which i s dense in X . I n parti

cular, each Banach space X such that X * i s separab

le and each reflexive Banach space which admits an equivalent 

Frgchet-differentiable norm has the above property» 

2. BpunqeflnesB of ponlinftar operators an<j fupc1?lonjy.a* 

Let X., y be linear norroed spaces, F * X —* y a 
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mapping of X into V . A mapping F i s said to have 

the Baire property in M £ X i f there exists a set 

N c M of the 1. category in M such that F /^ . / s / 

i s continuous. A set A c X i s called a Baire set in X 

i f there exists an open set Or in X such that (r -A, 

A - G are both the sets of the 1. category in X 

(see -.I6 3,chapt.l,§ 11; [173 § 22C). Each closed and each 

open set i s a Baire se t . It is known [16,chapt.IJ that 

M C X i s a Baire set <-===-» M -*= & - P , where G i s 

a P^-set and P i s a set of the f irst category in X . 

In particular a set Z «• G- - R 9 where Gr i s open 

in X and R i s a set of the f i r s t category in X i s 

a Baire set in X . If F : X —> Y i s a mapping having 

the Baire property in X , then for each open (or closed) 

subset G e y the set F~* CG-) c X is a Baire set 

in X . Conversely: i f Y is a separable space and for 

each G- c y open (or closed) in y , the set F~*(&) 

i s a Baire set in X , then F has the Baire property in 

X . If M is a Baire set of the second category in a t o 

pological group Q. , then the set-t^^T1: x € M, %€ M? 

i s a neighbourhood of the unit element of Q t 17,§ 22CJ. 

In particular: i f X i s a linear normed space and M c X 

is a Baire set of the second category in X , then the 

set W of a l l differences W -=r 4L - it , where <u~ 7 

If € M i s a neighbourhood of zero in X 123J • A 

mapping F ; X —> y is said to be a function of the 1. 

Baire class i f i t i s a point-limit of the sequence 

i F^ iAJb ) } of continuous mappings F (m, -=• 4, 2- . .* ) 

of X into y » A mapping 
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F : X —> Y (a functional -f on X ) ia called boun

ded (upper-bounded) in X i f for each bounded set M c 

X , F (M) i s bounded in Y ( *(M ) i s upper-

bounded). Henceforth E1 denotes the set of a l l real num

bers* 

All theorems of this section are stated for mappings 

or functionals which are defined on a linear normed apace 

X of the 2# category in I tse l f (in particular for map- . 

pings which are defined on Banach spaces)* 

Theorem 9. Let X 7 Y be linear normed spaces, X 

of the 2# category in i tae l f , F : X —+ Y a mapping of X 

into Y • Suppose the following conditions are f u l f i l l e d : 

(a) IFC;\,t6>fU \*\r « F (AA ) » for eve

ry AA* £ X , 3. e E1 } where tf ia some positive number* 

Cb) There exist an open subset M -f« 0 in X and 

a mapping & .• M —* Y of M into Y having the Baire 

property in M and i s such that If F (AJL ) il £ « & (<u ) fl 

for each *u 6 M • 

(c) There exists a constant K > 0 such that 

IFC-u-or) II 4 K<mo* C i l F O t ) ! , I FCir) ID 

for each AJL^ <V € M -

Then F i s bounded mapping in X • 

Proof* Since 6 has the Baire property in M ,the

re exists a set A c M of the 1. category in M such 

that G- /ft _ 4 i s continuous* Being M open and non-

void in the space X of the second category in i t s e l f , M 

i s a set of the 2 . category in X • Furthermore, A i s 

a set of the 1. category in X and hence M — A 4* 0 • 
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Therefore there exists AJL0 <S M - A «uch that 

& / M - A i 8 continuous at AJL0 . Thus for £c > 0 the

re exists an open subset N c M such that .<6C 6 N 

and i t € N - A *=*$> I G CAL) - G Cu* 1 I h £0 . 

But B «• N — A i s a Baire set of the second category i*-

X and hence the aet W of a l l differences 74Ts u-V? 

where x£ ; V € 2 ., i s a neighbourhood of 0 in X • 

According to (a),(b) for w e W ( i . e . <uT -= 4JL - V 9 

U7 V € 2 ) we have 

I F f ^ ) I * \\F(iL-<ir)ll h 

at K/wt^ C«F06>» , U F O ) I ) . 

Since Z c M and >cc € Z -=.> « FCu)t £ I GCtc) l\ h 

££,0 + l\GCutf) II , we have that H FC<ur) II6 K C£0 +// 6 CAJL0 ) \\ ) 

for each <ur e W . Hence F ia bounded in some neighbour

hood of 0 and in view of (a) of Th.9 , F ia bounded on 

each bounded ball of X Thia concludee the proof. 

Corollary 1. Let X , y be linear normed spaces, 

of the 2. category in i tae l f , F: X —-> V a mapping of X 

into y . Suppose the following conditions are fu l f i l l ed: 

(a) tFCOiu)i m \Xlr t P(IL) I for each 

i t 6 X, & € £ } where ft0 i s some positive number. 

(b) F i s continuous at some point JU0 e X and 

there exiata a constant K > 0 such that 

IF (AJL~ vn £ K "no* CHFC<u,)ll, IFCir)t) 

holds for each JUL, V of some open neighbourhood VCic0) 

of U0 . 

Then F i s bounded in X • 
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Theorem 9 . Assume X 9 V are the same as in Theo

rem 9* Suppose the assumption (b) of Th.9 i s fu l f i l l ed and 

that F sa t i s f i e s the condition I F (u + v ) \\ h 

£ Kotoax (i\F(u)H7 IF(<v)i) for every u9 v e X ? 

where K i s some positive constant. If F(-u)= -FC-tc) 

for each u e M 9 then F i s bounded in X • 

Proof. Using the similar arguments as in the proof of 

Th.9 we conclude that F i s bounded on some open neigh

bourhood W of 0 • Hence there exist the numbers cTs* 09 k 

C > 0 such that i AJU I 4 <f *m> AM e W and that 

\ju>l£(f^ l\F(u)t £ C . Let T)K be a closed ball 

centered about 0 and with radius R •> 0 9 V i t s ar

bitrary element. There exists an integer nrvo such that 

tR/nT .6 cf . By our hypothesis 

I F c V ) l - I F C | £ •*!,,> I £ Ktmjouc (tF(^)i , 

\\F(%Jno-m)£...£K"*IF(%n 6 K^C • 

Hence F i s bounded on J)R and being J)R arbitra

ry , this proves the boundedness of F in X • 

Corollary 2 . Let X 9 y be linear normed spaces, 

X of the second category in i t s e l f , F : X —.> y a map

ping of X into y such that F sa t i s f i e s the condi

t i o n IIFCu + <v)\\ h Kmcuc (\\F(u)\\9 HF(ir)l\ ) 

for every JU7 V € X ( K i s some positive constant) 

and that F i s continuous at some point Up € X • 

If F C - >u> > «• — F ( A t ) for each AJL of some open 

neighbourhood V (u0) of JUL0 , then F i s bounded 

in X . 
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Remark 2. We recal l the result of $. Banach f 18,p.79J 

concerning the continuity of linear operators: If A * 

: X ~+ X i s an additive operator from Banach space X 

into X and such that t A (AJL)II & I <r (44,) It tor eve

ry 4JL e X , where Q i s a (nonlinear) operator from 

X into X having the Baire property in X v then 

A i s continuous (and hence homogeneous, i . e . A (&<£,)=* 

* XA(AJL) for every AJL 6 X and X € £ f ) on X . 

Theorem 1Q» Let X be a linear normed space of the 

aecond category in i t s e l f , -f a subadditive functional 

on X such that 4 i s lower-semlcontlnuoua at 0 • Sup

pose there exist an open subset M 4- 0 of X , » 

functional £ . defined on M such that 4(u,)~ 4(it) a? 

£ O ^ f ^ ) - ^ ^ ) for each 4A7 IT e M . Assume £ . poa-

aeasea the Baire property in M and 4(-44,)£-4 (Ax,) 

for each 4JL € M , 

Then -f i s continuous in X and upper-bounded 

on each closed ball J R « { x t e X r II -tt, fl am R ? 

of X . 

Pfroof. First of a l l f (0).» 0 , Indeed, for some 

X*t e M we have that 

f (0) W a t - ^ ) a j f 6 t t ) ^ - T V - ^ ) * 4(u)—t(4JL)~ 0 . 

On the other hand 4(0) A 2 4(0) implies 4(0)Z 0 

and hence 4(0) s* 0, By our hypothesis there exists 

4Ji0 € M — A f where A i s a set of the 1* category 

in M , such that the restrict ion 0,/f^^A of fy to 

M - A ia continuous at 4lp . Thus for £# > O the

re exists an open subset N c M such that *4,0 € N 
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and AJL e N - A — > I <fr CAM) - <$,CAM9 ) I .a? n£ • 

The aet W of a l l differencee <ur .» AM -ir where ML, 

nreN-A 9 la a neighbourhood of 0 in X . Hence the

re exiata c£ > 0 euch that Ivr I < c£ *-=-» r e k . 

For anw <ur e W with Hi*/* II < c£ we have 

fft4J-)-=r-PC^6-^) 4 •f^)-f.-jV-Zr') 4 *C4JL)-4(V) £s 

£ fyCAjL)-cyCir) & \fyCAM)- frC44.o)\+\q>C4JL0)-&CV>)\Js £0. 

On the other aide -f ia lower-aemicontinuoua at 0 . 

Therefore there exiata c£ > 0 auch that R <ur II < 

< <% ~m$1Cw>)& fCO)-Bc - - % . Set cr-lWnCc£,c£), 

then \\<ur I < cT -**> \f Cw) \ < £ . Thia denotes 

that f la eontlnuoua at 0 Hence -P la continuous 

on X (aee Cl9,Th.25.2.1). Continuity of -f at 0 and 

aubadditivity of -f imply that -f ia upper-bounded on 

each cloaed ball -DR • Thia concludes the proof. 

Theorem 11. Let X be a linear normed apace of the 

second category in i t s e l f , -f a aemlnorm ( i . e . f ia 

aubadditive and -f COLML) ** I cc I 4 CAM ) for every AM € 

B X and oC e E 1 ) on X • Suppose there exist an 

open subset M 4* Ĵ  of X and a> functional g~ defined 

on M having the Baire property in M such that fCAM) 4s. 

£ tytAJL) for each ML e M * 

Then f i s continuous and hence bounded in X • 

Remark 3 . The above theorems can be used to inves t i 

gation of boundedneas and continuity of Gateaux differen-

t i a l a . One may alao apply them to investigation of the exia-
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tence of the bounded differential -"20J. The following fact 

ia well-known: If f ia a functional having the Baire 

property in the apace X of the 2. category In i t s e l f 

and i f there exists a linear Gateaux differential 

J)f (AA0 , <fc > at 4A0 6 X*7 then f possesses the Ga

teaux derivative 4'(AJLP) at AL0 . 

In the caae whan f la continuous on X , this 

fact can be obtained without using the Baire'a theorems as 

follows: Denote f^ (Jh ) «- m, (4 (U,„ + «t~*Jh,) - f (u*0 )) , 

m = 4, 12,... 1 fa> e X . Then f^ CJfz ) are continuous 

on X and &&}> +L C4%) = T>4 (ll, - <h> ) for eva-

ry Jh, e X . Thua ]} f (*JL0 7 4u ) la a function of the 

1. Baire c lass . Then the seta p . . { A 6 X / 

T)4(u0,Jh,)£ 01, Q*{he X>J)f(u,opJh)& 03 are Gy--

aeta in X ( t21,Th.H.3 .1J) . Hence N ~ P 0 Q, i s a 

Gj- -aet in X and N« f b € X : Df (u0, <& ) - <? i • 

Since N ia linear and G y - s e t in the space X of 

the second category in i t s e l f , by Mazur-Sternbach Theorem 

£2£ ,§ 3J i t ia closed in X . Now i t ia sufficient to use 

the following assertion ([23J, for functionals see alao 

[24J, chapt .I ,cor.2): Let X , X1 be linear normed spaces, 

dim, Xi <. oo P 71 : X —> Xi a linear ( i . e . additi

ve and homogeneous) mapping of X into X1 • If the aet 

It"*1 (0) ia oloaed in X , then 2C ia continuous 

in X . 

In sequel wa shall use a property of subset of a l ine 

ar normed apaca X which haa been introduced by S. Mazur 

and W. Orlicz in 125-1. A subset M of a linear normed 
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space X over the f i e ld (p of real or complex numbers 

la said to be a Mazur-Orlicz set i f the apace X i s not 

the union .{J M^ of a sequence of aeta M± m oc. M + 

+ U+ 9 where cc^ e <J> , U4 € X (i = 4, 2. 7 -*. ) • 

The following noationa have been introduced by M. Zorn 

[263# A aubaet D of X Is l inearly open i f for 44,, ft e 

e X the elementa cc of <p for which AJU+ cc h, e J> 

form an open aubaet of <P • A mapping (x defined on • l i 

nearly open aet D c X with valuea in Y ia called 

l inearly continuoua i f for arbitrary (but fixed) 44,, ire X 

the function G (u< + § if ) ia continuoua in £ 

( i . e . in £ for which 4M + § v e J) ) . The f o l 

lowing reault ia due to M# Zorn £26J : Let F be a map

ping defined on a linearly open aet D c X with values 

in Y . If F ia l inearly continuoua and i f there ex-

iata a Mazur-Orlicz aet P c X auch that F ia 

bounded on P — P , then F ia bounded on T) * 

Uaing thia re8ult we prove the following 

Theorem 12. Let X , X be linear normed apaces, 

X of the 2. category in i tae l f , F : X —+ Y a mapping 

of X into y • Suppoae there exiat an open aubaet 

D 4s 0 of X 9 a l inearly continuoua mapping 0" from 

D into y auch that IJ FC^a) II • l & ( i t ) | and 

(18) n F(4t - ir ) l -4 K/m-a* (IF (4i) II f HF(<tr)t) 

for each >tt., tr* € J> 9 where K ia some poaitive number. 

If there exiata a Mazur-Orlicz aet P c. X auch that 

Or ia bounded on J) - ' P , then F ia bounded in 

aome neighbourhood of 0 € X . Moreover, i f F aatia-
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f l ea the condition (a) of Theorem 9, then F ia bounded 

in X • 

Proof. By Zorn'a result (5 i s bounded on J) . 

Hence F i s also bounded on J) • Since J) i s a Baire 

set of the second category in X , the aet W •» { W : W= 

ss IL-V $ AC, or € J> } ia a neighbourhood of 0 . Using Cl8) 

we aee that F i s bounded on W • The second aasertion 

la obvious. 

In next B CAJL 7fc) w i l l denote the open ball cente

red about point JUL and with radiua fc > 0 . Using the 

properties of Baire sets and Baire functions one la able 

t o prove +he following 

Proposition 1. Let X $ Y be separable linear 

normed spaces, F : X —* y a mapping of X into Y , 

£ a positive number. Suppose that for every point AJL G X 

there exiat /cu > 0 and a mapping G-c defined on 

an open ball B CM, - /cCUf ) and with values in y ha

ving the Baire property in B CAX7 /CC4X' ) such that 

H FCnr ) - G^Ov ) II < S for each or € B <**, /cc"y). 

Then there exists a mapping G : X —* Y of X 

into y having the Baire property in X and 

II G-C4A ) - F Cu,) II < £ for every AA> e X • 

The last assertion i s an extension of the well-known 

corresponding result C21,Th.l6.6.U which was proved for 

real function of the f i r s t Baire claas ( i . e . for function 

which i s a point-limit of a sequence of continuous functions). 

Remarks: Recall that for nonlinear operatora the no

tions of boundedness and continuity are not equivalent 



[4,chapt.IJ. However, i f F i s uniformly continuous on 

the closed ball DR .-=. {AJL e X: flu, l\ £ R ? , then F 

i s bounded L4,p«30J. The connections between linear boun-

dedness and boundedness of nonlinear operators have been 

studied by S, Yamamuro [273 (see also M. 3ragin: Ref.2urn. 

1964,85 # 520). Boundedness of convex functionals was in

vestigated in C28,Th.4J, i 3 ,corol .U • For some results con

cerning the boundedness of nonlinear operators see T2,Th» 

3 , 4 ] . Theorem 9' generalizes the result of Th. 4 t 2 J . The » 

assumption (a) of Th* 3 I2J i s redundant, thus read the 

Theorem 3 [2J a g fpUows: 

Let X , y be linear normed spaces, X of the se 

cond category in i t s e l f , F : X -—* V a mapping of X 

into y such that the following conditions are fu l f i l l ed : 

(1) 8 F(u + v)\l £ MMUVCCIFCAJL)!, « F(v)\\ ) 

for every AJL 9 V e X f where M i s some positive constant; 

( 2 ) \ e X , AJL € X, JLL^-+ AJL - = » 

-.*-> I IFOt) l | h Aw> *F(u/rv)ll . 

Then F i s bounded in X • 

Indeed, denote X^ s { /x e X : II F (u,) \\ £ «v 3 • 

Then X_ (m =1, 2 , - . - ) are closed in X and X-=̂  CJ X . 
•TV 7 ' *fls 7 «Fl' 

By Baire category theorem at least one of X^ , say X*± f 

must contain a closed ball 3)(*L,7 H,) =r -f >ct £ X ; /I u -

- 4£# II 6 *> J • Then for V 6 X with II or II £ fc we 

have or -*- x ^ e D ( AJL9 , A, ) and 

IIFCir-)!! - = I I F C C T r + ^ ) - ^ ) B -£ M^a*ff fFft />^)t t , 



IFC-UvH) £ Mmajc (<n., hFC-4Lp)fl) . 

Thus F i s bounded on the closed ball centered about ori

gin and with radius ft > 0 . This fact and the condition 

( l ) imply that F i s bounded in X (see the end of the 

proof of Th.9') . 

Some results concerning the uniform boundedness prin

ciple for nonlinear operators and related topics wi l l be 

published later* 
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