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Commentationes Mathematicae Universitatis Carolinae

10, 2 (1969)

SOME PROPERTIES OF SET FUNCTORS
V&ra TRNKOVA, Praha

In the present paper functors from the category S
of all sets into itself are studied. Special attention is
paid to the preservation of various configurations in 57
There are investigated the functors preserving intersec-
tions, proimages, difference kernels, products and subdi-

rect products. The paper has six parts. The first one

brings the basic conventions, notations, familiar defini-
tions and facts used in the sequel. The second part cont-
ains two propositions concerning the preservation of inter-
section of finite families and proimages and it brings se-
veral examples, In the third part there are defined the
small functors. These are exactly the functors expressible
as direct limits of the small diagrams composed from cova-
riant hom=functors. For the small functors their first and
second charachters are defined. The first character of a
small functor F specifies, roughly speaking, the number
of hom—functors we have to take in order to express F as
a factor functor of their disjoint union. The second cha=-
racter determinates the supremum of their dimensions. Fug;
ther we bring seversal lemmas, issuing in the theorem 3,1

describing all the functors preserving the difference
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kernels and intersections. In the fourth and fifth sec~
tions there are investigated the functors preserving
products or subdirect products, respectively. We bring

a number of lemmas on these. The fourth part results in
the theorem 4,1 describing all the functors preserving
products, the fifth one in the theorem5,l1 describing all
the functors preserving subdirect products. The sixth
section examines the possibility of the embedding of a
given functor into a hom-functor. There are again brought
various examples. The results of the present pgper can be
generalized to functors of a category with suitable pro-

perties to the category S .

1.

We recall some definitions and give some conven-
tions.

I. Conventions from the set theory.

Every ordinal number is the set of all smaller or-
dinal numbers; in particular,? = /Z, 4"]],2‘{0,43,cardinal
numbers are those ordinal numbers oc such that if 3
is a smaller ordinal number, then there is no one-to-one
mapping of B onto o .

The ordered couple of elements X, X, is denoted by
(ag7 X, Y. If X 1s a set, then by ¢, the identical
mapping of X onto itself is denoted, by 1&: 0 — X the
empty mapping is denoted. A mapping £: X — Y  is cal~
led inclusion if f(x) = X  for all X € X. As usual,

every mapping onto a set is called a surjection, every
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one~to-one mapping is called an injection.
II. All functors throughout this paper will be covari-
ant functors from the category S of all sets (the
empty set including!) and all their mappings into it-
self. Often we consider functors only up to the natural
equivalence <= .
III. Let F, G be functors;
F  is a gubfunctor of G ~-if there exists a mono-
transformation @ : F — G ;
F is a factorfunctor of G if there exists an
epitransformation » 7 G — F .
If v: G — F is a natural transformation, then by
» (G) the subfunctor H of F  with H(X)=1} (G(X))
for every set X 1is denoted.
IV. Let us list some of the used functors (the notation
from (11 is kept):
I denotes the identical functor;
CM denotes the constant functor to a set M,
QM denotes the covariant hom-functor from a set
M, i.e. QM(X) = ¥om (M, X) .
Thus @, = C, . The functor (, is called ipi=
vial, the others are pon-triyial.
V. For every non-trivial functor F denote by F* its

domain-range-restriction to the caté#gory of all non-
void sets and all their mappings (such a restriction ex~-
ists since F # (, implies F(X)# J for every non-
void set X ).
VI. In the sequel we consider the disjoint union V of
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functors over a set (for the definition see for example

also [1]). But we are not quite correct in the compu-

ting with them. If F = \V/ GM we often suppose
ted . !

By (X) © F(X) . This simplifies the denotation.
VII. Recall (ef.[2]) that if f: X — Y is an in-
jection (or a surjection) and X # £ , then
F(¢) 1is also an injection (or a surjection, respecti-
vely). For, choose #£ : ¥ — X with n ¢f= €, (or
fon = e, ); then F(x)e F(f) = em) (or F(£) -
oFlr)= L respectively).
VIII. For every functor F and every mapping f: X—VY
denote by F(X)f the set of all[F(£)I(x) with

x € F(X).If f 1is an inclusion, we shall write also

F(X), instead of F(X), -
IX. Recall that a functor F 1s said to be geparating

if, whenever A, B c X , An B=ﬁ, then F(A)xn
N F'(B)x =g. ’

Every functor F
is separating and F; has no non-trivial se-

F

=
can be expressed as F & Fy, v F,

where F,
parating subfunctor (cf. Statement 4,3 from [31).

2.
We recall that a functor F
preserves intersections (or preserves intersections of
finite collections or pregerves non-void intersections
of finite collections) if, whenever X is a set and

{ ); ; € A] a collection of its subsets and



Y:Q Y, (or moreover A is finite or moreover A

is finite and Y % &, respectively), then F(Y)x-
=.‘g F'(Y“)x ;

preserves proimages (or preserves proimages of non-void
sets, respectively), if, whenever £: X — Y is a sur-
Jection, A ¢ Y (or moreover A =* @ ;| respectively),
B=+"CA), then F(B) = [F(#)I(F(A), ) ;
preserves difference kernelg (or preserves pon-void dif-
ference kernels) if, whenever f,@° X—> Y are map-
pings, A is their difference kernel, i.e. A ={xe X;
fx) = g(x)1 (or moreover A # @, respectively),
then F(A )X is the difference kernel of [ (#) and

Fg) ;
preserves difference kernels of stars if, whenever <
is a star (i.e. Y =1{<£,9,0; L€ T 7} where

I+ 0 ,4,9,: X —=VY, are mappings), A 1is the
difference kernel of & (i.e.A={xe€ X; f (x)=g (x)
for all ¢ € J} ), then FC(A), 1is the difference ker-
nel of the sfar FY¥ (i.e. FY = (<F($),F(g;));
Le ).

Note 2,1: It is known and easy to see that F
preserves difference kernels of stars if and only if it
preserves difference kernels and intersections.

Proposition 2,1: Every functor preserves non-void
intersections of finite collections.

Proof: Let X be a set, A, B its subsets,
AN B * g, Then evidently F(AAB), c F(A) ,
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F'(Ar\e,)B c F(B) , consequently F(AnB), c
c F(A), n F(B), . LetzeFCA), n F(B), ;
we hf:ve to prove T € F(AN B)x . Denote by 1,:4:
: A+ X, 4,: B> X,pn:AnB —> A the imlu-
sions. Denote by @ or & the elements of F(A) or
F(B) with [F(4)]@)=2,[F(4)1(4) = Z . Choose
C€E€ ANB ma define the mapping x« : X — A such
that £ (x) =x for X € A, £(x)=¢c for X€

€ X-A, Then x o 1«:4 = €, and there exist some
t:B—>AANB suchthat o4, =fot. Put
d=L[F(t)I&) € F(ANB). Then a = [LF(r-i)l@)=

=LF(rn)1(2) = [F(neiy)1)= [Ftnot)1(6)=LFtp)l),

consequently @ € F(A n B), , which implies Z €
e F(ANn B)x .

Coroligry 2,1: Every separating functor preserves
intersections of finite collections.

Convention 2,1: Let P, M be sets, 2: P — M
a mapping. Denote by CP m  the functor F defined

> T

as follows:

it P=g, M=g , then F=(, ;
if M = , then l~‘*=c;,F(ﬂ)=P and if
X # g, then F(h)= n.

£ P =&, we shall write Coym  instead ofCP,ﬂ’Mv.

Exam 241
a) If M # ¢ then the functor (,, does not pre-
’
serve intersections of finite collections.

b) Now we describe the functor [ with the following
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properties: F 1is separating, preserves intersections
of finite collections but it does not preserve intersec=-
sections. Let N Dbe the set of all natural numbers.

Let v ¢ G’N —>» F  be the epitransformation such that
the equality 3, (x) =1 (%) with X = {Xpbmr, €

€8 (X)), nyp =1y, 37 , € 8,(X) holds if and on-
ly if there exists m € N such that x, = @, for
all m 2 m . It is easy to see that F  has the requi-
red properties.

Proposition 2,2: If a functor F preserves non-
void difference kernels, then it preserves proiméges of
non-void sets.

Proof: Let £: X — Y be a surjection, Ac Y,
A+ g B=+7(A). Denote by i;: B+ X, {: A—>

— Y  the inclusions. Then there exists a mapping @.:
!B~ A with 1'.A cg = fo ig , which implies F'(B)Xc

cLF(#)I7(F(A), ) . Conversely, letze [F(£)1™"
(F'(A)y). We have to prove 2z € F(B)x . Let Z Dbe the
set received from YI , Y? (where Y1 and Y2 are
copies of the set Y ) by identification of every point
of A’ with the corresponding point of A% ; let i :
:Y—= Z or 1'.2_: Y— Z be the embeddings of Y
onto Y7 or Y2 . respectively. Then A 1is the diffe-

rence kernel of 1',1 and ¢, and B 1is the difference

’

2
kernel of 1:1 o £ and -izo\‘. We have [F (£ (z) €

eF‘(A)Y , which implies [F (4 «f Ux)=[F(3,-f)](2) .
‘Consequently X € F(B)X .
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Examples 2.,2¢
a) The question, whether a preservation o all diffe-
rence kernels implies a preservation of proimages of

all sets, remains open. Nevertheless, it is evidently

true for all functors F with F () = & .

b) Example of a separating functor not preserving pro-
images: Let » : Ga ~—> F be the epitransformation such
that

P Kx,, Xy, %,3) = 2% Kayqyyss Yy >)
if and only if X, = .xz =Y, = 4y, -
Then F  has the required properties.

¢) The converse of Proposition 2,2 does not hold. The
functor which we receive from (}, by identification
of every couple (x, ) with the couple (24, X )
preserves proimages. It does not preserve difference

kernels.

3.

Definition 3,1: Let F be a functor. If A, X are

sets, A c F(X), denote by f-'“’,o the following
subfunctor G of F: for every set Y G(Y) 1is the
set of all 4 € F(Y) such that o = [F(#)1(a) for
some ae A, f:+ X—Y; if g: M— P 1is a nap-

ping, then G(g): G(M) —> G(P) is the domain-range-
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restriction of F(g_) .

Definition 3,2: Let F be a functor. Every couple
(A,X) with A C F(X) 1is said to be a reaching
couple of F if either F=C, or A* @ and
F¥ = CFy 0™
If there exists a reaching couple of a functor F , then
F  is said to be gmall.

Definition 3,3: Let F be a small functor. The smal-
lest couple (s, ## ) of cardinal numbers (in the le-
xico=-graphic well order of the class of all couples of
cardinal numbers) such that there exists a reaching coup-
le A, X)> of F witheaxdAsss cand X = ,will
be called the gharacter of F . Then s will be called
the first character of F and denoted by 1{’. ; M
will be called the second character of F and denoted
by z}[F .

Proposition 3,1: Let (A, X > be a reaching coup-
le of a functor F. Then Y keard A, % _ 4 carct X.

Proof: The first inequality is the immediate conse-
quence of the definition, the proof of the second one is
easy.

iti 22
a) A functor F is small if and only if either F= C,
or F* is a factorfunctor of a (¢>/:r a, * .
(5

b) %c, =0= %C‘ ;5 1f F* is a factorfunctor of

( V. Gy )*, then k,ém«d% %Fé;:«g,mde .

LET L
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c) Let F be small; if ’ZF =0 then F=( ;
J,M_ sere sets, cand I 2 - =0 and card M,
;%F then F* is a factorfunctor of (L}/7 GMU y*.
Proof is easys
Note 3,1: A functor F  is small if and only if
the image of the category S has a generator, or, if

and only if either F= (, or F* is a direct limit

v K

of a diagram (over a small category) of functors Q*.

Convention 3,1: If F 1is a functor, X 1is a set,
=x _
Ye X, we put Y= F(Y) z%yF'CZ)X .

Proposition 3,3: Let F be a functor preserving
© @ifference kernels. Let «?: @, — F be a natural
transformation with “m (eM) e MM , Then « is a
monotransformation.

Proof: Let ‘a,y(‘o)z(a,y(&) for some @, 6 €
€ GM(Y). Then .© = [Q, (p)ICe,), 6=[Q,(6)1Ce, ) -

Consequently, if we put 2 = @«  (€,) , then[F(p)l2)-

=[F()](z); thus  1is an element of the difference
kernel of F(p) .and F(&). Denote by D  the diffe-
'rence kernel of @ and 6, Then x€ F(D),, which im-
plies, together with x € ITVI.M, M=D.

Definition 3,4: A functor F is said. to be re-
gular if every monotransformation w*: ) — F* can
be extended on a monotransformation @« : C, — F .

Note 3,2: A functor CP,ft,M is regular if
and only if n is a surjection.
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Lemmg 3,1: Let w: G — F  bve a monotransforma-
tion, f: X — Y be a mapping. If either X # 4 or
G is regular, then there is no x € F(X) with

() [FIx € @, (GYN - [F(#)I (@ (6(XN) .

Proof: I. First suppose X = @ and G regular.
If for some x € F(X) the assertion (%) holds then ne~
cessarily ¥ % g . Put g =LF(£)1(x) . There exists
a monotransformation v : C: — G* such that < -

'>)y M=a. It D: C_,——)G’ is an extension of ¥,
X= (>3 (1), then 4 =LF(£)1x) €
€LF(#)1(@, (6(X))) which is a contradiction.

II. Nowlet X = 0 . Let £ = 9,-14., where #:
: X —Z 1is a surjection, g: Z — Y is an injec~
tion. If for some X ¢ F(X) the assertion (%) holds,
then z=L[F(h)I(Xx)e F(Z) - «,(G(Z)) .
Then necessarily [F(g)]z) e ‘ay(G(Y))-[F(g)J («, (GEM.
Choose some x : Y —> Z with g =¢€,. Then x =
=[F(reg>)l(z) € [Fr)]1(w, (6(¥))) =

= (g (LG(RII(GYN) e @y (G(Z))

which is a contradiction.

Lemmg 3,2: Let F  preserve intersections. Then F
is regular.

Proof is easy.
Legme 3,3: A regular subfunctor of a functor pre-

serving difference kernels anmd intersections preserves
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difference kernels and intersections.
Proof is easy. Use Lemma 3,l.
Convention 3,2: Let F be a functor preserving in-

tersections. For every set X and every xz € FCX) put
x

x = n y .
Ye X
ze FCY)y

ExRX = X
Then evidertly z € *X*, FX)= O ¥Y* .

Lemps 3,4: A functor preserving difference kernels
and intersections is small.

Proof: Let F preserve difference kernels and in-
tersections. Suppose that F 1is not small. Then F & (, .
Choose a set X such that eaxd X = ecaxd F(2) . Choo-
se aset Y4 g and ¢ge FC(Y) such that there are
nod: X—>Y and x € F(X) with[F{H{)1(x) = a.
Put M=?Y. Then card M > card X . Denote by iM s
:M — Y the inclusion and by nm  the element of
F(M) with[F(i,)l(m)= 4 . Then me MM ; con-
sequently the natural transformation < : @.M — F  with
“m (eM) =m is a monotransformation. Thus
card B, (2) & cawd F(2) which is a contradiction be-

cause caxd F(2) < eard 2X 4 ca/cd.GM (2) .

Lemma 3,5: Let v: V. &, — F be an e-
tey M
pitransformation such that all domain-restrictions "2. H
:@, —» F of 2 are monotransformations. If g &
B
€ O.ML(X), gp'GG"U(X), P (@) = 3 (9’) , then
gIM) = (M,

Progf: If *h~wa oviats some 44 € g'CMU)- VCM‘_),
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choose a mapping 6: X — X such that 6(X) = X
whenever X € ?(M‘_), 6(y) # o . Then &(cy’)n

=3 (@)= (6+0)=3 (0 -57); this contradicts the
fact that 1{, is a monotransformation.

Theorem 3,1: Let F  be a functor. The follo-
wing statements are equivalent:
(1) F preserves difference kernels and intersections;
(i1) F  is small, regular and either F = C, or for
every X, x € F(X) the functor F:,u,’x N is natu-
rally equivalent to Co’,, or to some QM 3
(i1i) there exists an epitransformation v.-‘_\‘/,am# F

such that all domain-restrictions 1) : GM — F of ¥
(A

are monotransformations.

Proof: (i) ==> (i1i): F is small and regular as
it follows from pervious lemmas. Let F & (, , X be a
set,x € F(X). If X =4, then R, o, = G, = C .
1t X#+0,°X=0, then Ry o, = €, . Let X+
*O, M="X 4 . Put G= Fey xy - Leti:M—>X
be the inclusion. Denote by a the element of F(M)
with [F(4)]1Ca) = X. Then ae M" <{ai,M)>
is a reaching couple of G . Let H be the functor with
H* = G* H(@) 1is the set of allze F(P) with
[F'(q},, J(z)€ G(1) . Since H 1is a regular sub-
functor of F , 1t preserves difference kernels and in-
tersections. Hence the natural transformation a): QM—?
— H with vM (e,)=a is a monotransformation. The

restriction »*:; Q% —> H* is an epitransformation.
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Since M = @, there exists no monotransformation e :
: C¥ —s H* . Consequently, H(@') =&  which implies
G=H=@Qy -

(11)== ({i1): If F=C , put I=2 . Let F + .
Let (A, X) be a reaching couple of F, A # & . Denote
by B the set of all @ € A such that R, «y is

naturally equivalent to some G"d M,*+0. IfaecA-

~ B , then either 5«'!,” = OF Frasxs =

Co'1 . Since F is regular, there exists some a’ €

€ F(P) with [F(})1l@) = @. For every x € F(&) deno-
te by (a."': Cq —+ F  the monotransformation with
(/,: (1) = 2 . The definition of the epitransformation

PNV B Vv Y, (G F

with the required properties is evident.
(111) == (1): I£ »: /@, — F is an epitransfor-
Ley L

mation such that all ),  are monotransformations, then it
is easy to prove that F preserves difference kernels. We
prove that F preserves intersections. Let {X ;o< € Af

be a non-void collection of subsets of X, ¥ = f}‘ Y,
e

x e‘f"\AFQQ)x . Choose 24 € GM"CX) with ) (y)= Z.

For every o« € A  there exists g € GM" (Y, )x such
<

that 3} ()= X . Lemma 3,5 implies g (M, ) '%(M‘u)'

‘Since YulM ) C Y, there is i ¢ @y (Y )y . Thus 4 €

e‘/‘) GquY‘),(=QML(Y),( , hemce z € F(Y), .
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Note 3,3: The following proposition needed later
can be proved analogously to some parts of the proof of

the Theorem:

Let F be a functor which preserves difference kernels
and intersections, F (@) = @ ; let (e, 4 > be the
character of F . Then there exists an epitransformation

v:¢¥7 QM°-+ F  such that
a) Mb-tﬁ for all L € J ;

b) all ), are monotransformations;

¢) candl I =m Py caxd M, = m .

4.

Definition 4,1: Let X=X _; X 6 Ai be a non-
void collection of sets. A couple K X; {§.;x e A3>,
where X 1s a set, § ¢ X —> X, are mappings, is said
to be a gubdirect product of X if,

a) whenever X, a4 € X, X = g , there existsax€ A
such that § (x) * §, () ;

b) if all X_ are non-void sets, then all §  are sur-
Jections.

If moreover for every o € A and every X € X o«x€A
there exists some X € X with §, (x)= X, for all o €
€A then <)(;{§_‘;o<,eA3) is called, as usu~
al, product of X .

The definition of functors preserving subdirect products

or products, respectively, is evident.
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Lemmg 4,1: Let a functor F  preserve subdirect
products. Then F  is small. If F preserves products
1,
then Y. £ 1.

Proof: Let F =+ C, .
a) Let F preserve subdirect products. For every M c
c F(2) choose, whenever it is possible, a set X, and
a point X, € F(XM) such that for every m € M the-
re exists f: X,, — 2 with [F(£)1(xy)= m . Put

X= YXM let 4,
put a, = LF(c,,)1(x,, ). Let A be the set of all

We prove that (A, X) 1s a reaching couple of

5 : )(M —> X  be the embedding;

Ry, o
M
F . Let Yo @&, gge& FCY). Denote by &  the

set of all mappings g : Y — 2 ., For every g € G

put 29 =2. LetiP;{m, ;g€ G3) be the product

of the collection {29_; g€eGi; let y: Y P

be the mapping with s ey = g . Put n=LF(yII(gy).

Let M, be the set of all £F(:rr9,)J (L) . For every

g€ G choose some f,,: X — 2 with
EF'({,)J(a.M.)=[F(::r9;)J (1) . let ¢ X— P be the
mapping with M= f"_ for all g € & . Since

(F(P); {F(Jg,); ¢ € G ?> 1is a subdirect product, then
necessarily [F(g)l(ay,6) = 12 . Now it is sufficient
tochoose : P — Y with 7oy = € Then
LFregilay,) = 4.

b) Let F preserve products. For every x € F(2) put
2, = 2., Let {P;{m ; xe€ F(2)}> be the product

of the collection {2  ; x & F(2)7. Denote by @ the

0% .
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point of F(P) such that [F(m )l(a) = x for all
X € Ft2). The couple {{aj, P> 1is a reaching couple
of F, the proof is analogous to al.

Lemma 4,2: Let a functor F preserve subdirect pro-
ducts, F # C, and let F  have no non-trivial separgting
subfunctor. Let : Q’:a — F* be an epitransformation.
Then F* == C,,* .

Proof: If R+ &, =z, 2"€ Q) (R) , then the
fact Y ()= Vg (2*)  will be written by = ~ z”.
Let A,: M~ 2 or &1: M —> 2 be the constant mapping
on O or 41 , respectively. Since F has no non-trivial
separating subfunctor, A ~ 2.1 . We prove A ~ A, for
an arbitrary A : M— 2 . Put M, = 2~7c0), M, =
=a"1) . Let X ={a,&,c,d 3} bvea four-point set,

yd)=1.
Then ( F(X);{F(g), F(y)3> 1is a subdirect product. Let

@, ¥ X — 2 be the mappings with (@)
=0,g9lc)~xp(d)=1,y(a)=y(c)=0, y(&)

e, oM — X pe the mappings with plx)=a, ;D’(.x)-lr
whenever x € M, . ©(x)=c, @(x)=d  whemever
X € M,,.Then P, p’éiaM(X) and
[QM (q)J(P):ycpz A = ?a[D’: EQM (?)J(ro’) )
[a"f‘l}f).](p)= W'!D = 2,’\/14 = W.PI= EQM("}’]J (P’) P

consequently © ~ @’ . Let 6: X = X be the mapping
with 6(a)=a, 6cc)=c, 6’(#) =4 =06(X). Then ne-

Cessarily @ = 6o ~ 6 (o’ . Hence A = Po P~
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~ge€e®’= A, . Thus ecard F(2)= 1., The rest of the
proof is evident.

Lemma 4,3: Let F preserve subdirect products and
let it have no non-trivial separating subfunctor. Then
F=x where either P=¢& or f2 is a sur-

P, M
Jection.

Proof: Let F =+ C,. F 1is small, consequently
there exists an epitransformation »: ("M Q"p Y¥— F¥,

Then ;)LCQ:L) o 01* for every L € J ; thus F* =

~ *
CM for some M .

Lomma 4.4:
@) Let F preserve products; then either F = C_, or
F = C,M or F x C1 or F 48 separating.
b) Let F preserve subdirect products; then either

=4 o~ G
F cl’«f»,M where i is a surjection, or F (,",,Mv

where 6 1is separating and preserves subdirect products.

Progf: Express F as F = Fy v F,  where £
is separating and F;_ has no non-trivial separating sub-
functor and use the previous Lemmas.

Lemma 4,5: Let F be a separating functor which
preserves subdirect products. Then F preserves diffe-
rence kernels and intersections.

Proof: I. First prove that F  preserves differen-
ce kernels. Let @ 6 X —> Y  be mappings, A be their
difference kernel, 4 : A —» X the inclusion. Since
@ei=6odi then FAyc {ze F(x);

[F(p)lzy=[F(6)ICz) ] . Let <X Yidm w5

H
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be the product of the collectior {X, ¥}. Let 1? X
FXxY,45: X~ Xx Y be the mappings with fr;,(x)s

=AX,P(X)) , fo(x) = <x, 6(x) > for allxeX.

>
The following equalities hold evidently:

(*) ”X.t?- ex Iry"?’P
:f;.-ib,-ex era»i‘.sd'

Ir [F(;D)J(z) =[Fe)l(z) for some 2z e F(X),
then necessarily =z € F(A)x . " For, if we put zp =
=LF(4,)1(x), zg [F(4)1(2) ,  the assertion (%)

1mplies [F (o )1(2) = [Fom )3z, [FmI@E,) = LFCm, ) (zg),

consequently Zp = Zs; € F(X)_‘.’n F(X)‘; . Now use Corgl -
lary 2,1. Thus 2z, € F'(A).". i , comsequently 2 €
€ F(A),{' .

II. Now we prove that F preserves difference ker-
nels of stars. Let 9-{<p",6'b>~,be J3 be a
star with @ | 6 : X — )"' . Denote by<Y; {:r‘_ ; LE
€ J3)> the product of the collection {Y ; L € JJj.

Let @ 6: X — Y  be the mappings with & @ = @

17" o 6= 6‘" . Denote by

A ........ the difference kernel of &,

B .csee0.. the difference kernel of F¥ |

C eeeeeess the difference kernel of the mappingsg’ and 6,

D +ecves.s the difference kernel of the mappings F(p)
and F(o),

Then evidently A = C , I. impliesF(C) =D, B =D 1s

satisfied for subdirect-product-preserving functors. Thus

F(A)x = B.

Now use Note 2,1,
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Theorem 4,1: The following properties of a functor
F are equivalent:
(1) F opreserves products;
(11) F =€, or Fa(, orF=C( or F pre-
)y 4
serves difference kernels and intersections and 41'__.- 1.

(111) F= € or F=(,, or F= Ay for some set
M.

Proof: (1) =) (ii) follows from Lemma 4,4, Lemma
4,5 and Lemma 4,1.

(11) ==> (4ii) follows from Proposition 3,3.

(411) ==> (1) is evident.

S5e
Definition 5,1: A natural transformation »: @&y Vv
1

VQM —>F 1is said to be glementary if

2

a) M, *J %M,

b) the domain restrictionsy): @y — F, »,: @y —> F
of 1 are monotransformations;

¢) there exist a set P and surjections m, : M1 — P,
m,: M, — P such that the following assertion is sa-
tisfied: the equality ))y (GP,,) = 1& (gv,_) R with g, €
€ (9.,.,‘,(>’),g@l €8y, (Y) , holds if and only if there

exists a mapping f1: P — Y  with ¢ = pne m_,

qz = 11 o rmz .
Note 5,1: It is easy to me: Let »: Gm v GMz—' F
be an elementary epitransformation. Then there exists a

non-void set P and monotransformations A, GP-—? Gy ,
1
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Az s @p—* @y, such that F is the direct limit of
the diagram <{@,, aM1, @Mz 3, 4, A, 0D .
Note 5,2: We recall that if mn,: M, = P, m,:

M, — P are surjections and

4, M
b
2?\;M,/§2

is a pullback diagram in the category S , then it is
also a pushout diagram.

Lemma 5,1: Let F be a separating functor with
cand F(1)=1, %F = 2 ., Then the following properties
of F are equivalent:

(i) F preserves subdirect products;
(ii) there exists an elementary epitransformation

)):QM1 v QMz-_’ F 3
(iii) F is a subfunctor of some a‘- .

Proof: (i)==p (ii): I, There exists an epitransforma-
tion @ an v (,1,.,,1 —> F  satisfying a) b) from Defi-
nition 5,1. This follows easily from Lemma 4,5, Lemma 4,6
and Note 3,3. We prove c).

II. Let X be the set of all cardinal numbers 4«
with . % carol (M, v M, ). Denote by X the set
of all couples <7 ,9, > vwhere ,: M —> Z o;:

: Mz —> Z are mappings omto some Z€ X and @)=
=3 (2;). Then J 2 £ because eatd F(1) = 4 . Let
A or ~2 be equivalences defined on M, or on M,,

respectively as follows:
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{ ’ )e.‘J’
@1~Q; Cm> ?“,'(a,.').e'x,'(a_4) for Bll( 3;
a"-& a’;"—? %:.€2,)) =7, (w;) ror alllP;, 72 veJ.

Put51=m4 , 5= M2/ et 6: M —+G, ¢ 6 MG
be the projections. Let %,: S35V S, , 5 _>
—+S5,v' S, be embeddings. We can suppose that Y b
are inclusions. let b, € 5 € 5 we P“t"»rgbz

for some
if and only if 4 = 6, (a,), /bze q Cdaz )

' for all
a,eM  a,eM, with ¥ (a)=7,(2) fora

<7:!175>5 J. Let R* be the smallest equivalence on

S
S, v S, containing R.Put P= S v 2/Rx ,let

or:S vS, ~—» P be the projection. Put M, = Mot 6,
m, = e 112 ¢ 6, . We prove that P’mﬂmi have the re-

quired properties.

III, Now we prove vr(m17 =3, (m,) . It is
easy to see that for every L=<%;,7,%€J, % :M—=>Z ,
M, — Z there exists a mapping @ _*¢ P-*
- Z with @ em, =9, @ °m, = 7, and
(P;{p 5 L € 3> 1is a subdirect product. Then
LF(Q )1 (2 (m))) = 3 (@ ") =3 ()= P (%)=

-, (Pc.' mz) = [F(p )16}, (m, )) . Consequently
(m)su(nn, )and»(ﬂ-m,,)—ﬂ (renmy,) for
every pn: P — Y.
IV. Evidently m, (M )um,(M,) = P . Since
m,,CM,)=mz(M2> (use Lemma 3.5). m, and M, are
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surjections.
V. Let ¢ ¢ M1—-> Y, &¢ Mz — Y be mappings,
V, (g,)=3, (%) . Then ¢, (M,) = (M,). letZe X,
t:Z—= Y,r:Y—>Z satisfy t(Z)=F (M), rot=
=€, . Ten (,=<neg , Lo )e J ,  hence g=

4
=teg -m, q’z"t°fo¢.,' My *

(i1) = (iii). Put H = Gt,.,1 v Gy, - Let

M
l_ji/ﬂ 1\\\:%P
N, m,

be the pull-bzck-push-out-diasgram. Let X ¢ H — Q‘_ be

the natural transformation with 2, (eM") = .{, ,
1

Am, (€y, ) = £, . Then for g, €@y (¥), ¢, € Gy (¥)
the equality .7Ly (¢, z.ﬂ.y (@) holds if and only
if v, (¢,)=» (cyz) . Consequently there exists a mo-
notransformation w : F —» @ with A = ©eo ».
(1i1) = (i) is evident.

Theorem 5,1: The following properties of a func-
tor F are equivalent:
(1) F preserves subdirect products;
(11) F = CP,»tL,M , where fr is a surjection, or

F = C,,“ v G , where G 1is small, separa-

ting and if G = (, , then for every X = £,

X,y € G (X) the functor G«x,y},x) is a
subfunctor of some Gy v GM’. 3
(1i1) F = CP’F’M . where .;2 1is a surjection, or
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= v G , where = G~ and every G¥
F C"’”" ) G xc\G/«) v G

satisfies the following assertions:
1) G*(1) = {x}¥;

2) there exists an epitransformation v: M Qy — G~
with card 7 2 2 and for every (,U € J, L+
the domain restriction Yok QM‘_ v a“'u - G¥

of » 1is elementary.

Note 5.,3: The assertion about G from (iii) can
be formulated as follows: G 1is a direct limit of a spe-
cial sort of a diagram composed from functors & . The
description of the sort of the diagram is easy, use Note
5,1.

Broof: (i) => (i1): Let F=F; v G , where G
is separating and ":L has no non-trivial separating sub-
functor. F; end G are small (Lemma 4,1), = (p  m
(lemma 4,3) where either P=@ or st is a surjection.
If G # C, then necessarily P = & . Let X #* &,

3: X2 1,x,4eG(X), x+ g . IL(GFII(X)=

=[G@G)I(y) then G}“’,,,x, is a subfunctor of so~-

me @ (Lemma 5,1); in the other case G«“"V-’v"'>
= QM1 v Q“z . .
(11) =9 (iii1) and (ii1)==> (i) are easy to prove.

Note 5.4: The notion of the preservation of sub~-
direct products is near to the one of the preservation
of separating systems. A couple <X3;{§, ;x€ Al>,
where X 1is a set, s‘ t X = Xec are mappings, is

said to be a separating system if the assertion a) from
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Definition 4,1 1s satisfied. The definition of functors
preserving separating systems is evident. Denote by S¥
the category of 211 non-void sets and all their mappings.
It is easy to se:

1) A functor F : §* —% S*  preserves separating
systems if and only if it preserves subdirect products.
2) If a functor F: $* — S* preserves subdirect
products, then the functor G : 5 — S with G* = F,
G(Z) = g , preserves subdirect products.

3) If a functor F: S — S preserves separating sys+
tems then either F = C, or F* is some of the func~
tors G¥ , where G satisfies the conditions from the

Theorem 5,l.

Thus we receive the following characterization of
functors preserving separating systems:

A functor F preserves separnating systems if and only if

F ¢ v G, where 42 is an injection, G(@) = &

P, 1M
and G preserves subdirect products.
Note $,5: In [31 functors filtrafing products

are considered. These are precisely functors preserving
separating systems but not preserving products. Thus, the
characterization of functors filtrating products follows
easily from Note 5,4 and Theorem 4,l.

Examples 5,1:
a) The functor F in the Example 2,1 preserves differen-
ce kernels, intersections of finite collectionrns and pro-
ducts of finite collections. It does not preserve inter-
sections and subdirect products.

b) The functor £ in the Example 2,2 c¢) is separating,
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preserves intersections but it does not preserve diffe—
rence kernels.

¢) Now we describe a separating functor F  which pre-
serves difference kernels and intersections but which
does not preserve subdirect products: Let N be the set
of all natural numbers, Q:‘ and G: be two copies
of @, . Points of Q:, (X) or va (X) will be de-
noted by (.x”.xz,,,,)1 or(.x”x”,_,>2 , Tespectively.
We receive F  from Q:v v Qf, by identification of
every <x.,,x,,...>1 with <.x1,x,,,.,>2 whenever the=-
re exists m € N such that x, = X, for all m =
am .

6o

Every subfunctor of some GM preserves subdi-
rect products. The converse is not true. The discussion
of the problem is given in the present part.

Lemmg 6,1: Let F be a separating functor which
preserves subdirect products. Let @ : 2 —> 2 be the
mapping with ‘a.(O)z 1, (1) = O. Then FG@) has
no fix~point.

Proot: The set of all fix-points of F(@) 1is the
difference kernel of F(e,) and F(). The differen-
ce rarnel of €, and @ 1is empty am F preserves
différence kernels.

Lemma 6,2: Let F be a separating functor which
’4’[; < 2,

preserves subdirect products, let
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canol F(1)= 41 . Then there exists an epitransformation

:J:“\{ G% —> F  such that

1) 2ll domain restrictions ¥ a,ﬁ — F of v are

monotransformations;

2) 1t v, e J, L 4, then V. (g) = ¥ (g,

with ye@zb(X) ,_c,’e Qzu(X), if and only ifg

and ¢’ both are the constant mappings on a point x & X.
Proof: Let (A, 2)> be areaching couple of F.

Let B be the set of alla e A with 2 = 2, Then

4 b’ X > 1s also a reaching couple of F . Choose Jc

c B such that if QP 2 — 2 is the mapping withp(O):

=1,0(1)= 0, then

1) for every &€ B either $€J or [F(p)l(8)e T

2) for no L € J there is [F(©)I(L) e T .

Then the epitransformation ) : L>/7 sz —» F  with

%(ez ) = (L has the required properties.

v
Theorem 6,1: Let the first character or the second
one of a separating functor F be less than or equal to

2. Then F is a subfunctor of some &y if and only

if it preserves subdirect products and card F(0) = 1.
Progf: The case %F & 2 follows easily from

Lemma 5,1.
Lek JZF & 2, cancl F(1) = 4 and F preserve subdi-
rect products. If 17[: = 1 , then evidently F=1.
# ’x; = 2, use the epitransformationﬁ:‘x @3"——} F
satisfying the assertions 1) 2) from Lemma 6,2. Then it

is easy to®e that F 1s a subfunctor of @, , where



M= y\{.‘l 2, -
Example 6,1:

Now we give an example of a separating functor F preser-
ving subdirect products, ecard F(1) = 41 md such that
F is not a subfunctor of any @p . The character of

F is <3,3):
Denote by Q; , @2’ Q; three different copies of the

functor Q@ Points of G; X) will be denoted by

, .
(.x”x“.xg)“ . In Q; v Q; v a; we make the fol-
lowing identifications:

(X4, Xq, "‘z>1~ $X,, X3, X, * o,
< $r ¥
Y%, % Y2 Yy, Y21 Y2 )

(z;, %,, x,¥ ~ ({z,, %,,2,Y .

Theorem 5,1 implies easily that the functor F ,
received by these identifications, preserves subdirect
products. Now we prove that F 1is not a subfunctor of
any ax . Suppose that it is and let F— @ ve
& monotransformation. Then necessarily cakd X 2 3.
Choose three different points a, 4, ¢ of X, put A=
= {a,t,c}. e points <a,b, e >, <=1,2,3
are three different points of F(X); put o; =
=ulCa,be¥), te. a; =X 3 X.

i) We prove that e.(X)=A: If6: X — X 1s a map-
ping with 6°(X) # X exactly for X =@ or X = &
or X = ¢ , respectively, then [F(6)] Ka,&,c ) &
* (a, l, ¢ > , consequently o, #[Q (6] (a;)= 6o a,,
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Now if @": X — X is a mapping with 6(x)# x exact-
ly for x ¢ A, then [F(O)1(<a, & e > =(a,b,c)%,
conscquently o, = 6 ¢ X .

2) Yow let ©,6,7: X — X be mappings with pla)=

=6a)=pW)=x,,6 @0C)=6)=6()=x,, z@)>xX),

Ty = v(e) = x,, X, % X,. Then
[Fp)]l (a,b,ed) = [F(OI (Ka,bed?y ,

[FE) Ka, t,c)*) = LF©)] Ka, b)) ,
[F(P)) (Ka, £, e Y) = [F@)] Ka, &, eX)

This implies
(x) ppac1=6’.oo2, ok, = 6o, Pex, = Tox, .

Choose x € X with o, (x)= @. The assertion (k) im

plies easily: G o o, (X)= X consequently o, (X)= @,

12

hence 6 o o(.’(.x)= X, 3 thus oc,(.x):a,. Butp-x,(.x)a

= x“ o gcq (X) = xz r which is a contradiction.

Hote 6,1:The following characterization of subfunc=
tors of @ ~functors can bec proved easily:
A functor F is a subfunctor of some @y if and only
if either F=C, or F =( or F= C, or there
exists an epitransformation 9 : o\e/:r GM" — F such
that
1) all ML are non-void sets; the domain restrictions
» ¢ GM‘ ~— F of ¥ are monotransformations;

2) there exists a set M and surjections m; M—’Mo
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such that the equality ;)y(q)-uy (q') with @ €
€ Qm (), g’e @”u y) holds if and only if
q o m‘, = q, o m‘-’ .
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