Commentationes Mathematicae Universitatis Carolinae

Jaroslav Lukeš
On the topological extensions

Commentationes Mathematicae Universitatis Carolinae, Vol. 10 (1969), No. 3, 407--420

Persistent URL: http://dml.cz/dmlcz/105242

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1969

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae 10,3 (1969)

ON THE TOPOLOGICAL EXTENSIONS
Jaroslav LUKES, Praha
0. Introduction. In this note some topological extensions are studied. The notion of the q-topological extension is introduced and it is shown that every topological extension fulfilling the Myzis condition (Γ) is in fact a \nsim-topological extension $\left(T, \theta_{T}\right)$ is a topological extension of the space $\left(G, \theta_{G}\right)$ if G is a dense subset of the space T and if $Q_{T} / G=\theta_{G}$). In part 2 , the notion of the S^{Φ}-topological extension is introduced which is a special case of the q-topological extension. Part 3 deals with the notion of the C topological extension, which is a generalization of the Caratheodory method for compactification of a simply connected bounded plane domains and which applies also to general Moore spaces. Finally, in part 4 , the equivalence of the C-topological extension with the $S S$ topological extension for plane domains is demonstrated.

1. \uparrow-topological extension. Let (G, θ) be a topological space with the system θ of open sets; let Z be a set and $\nsim: \theta \rightarrow \exp (G \cup Z)$ a mapping such that the following axioms are fulfilled:

$$
\left(O_{n}\right): p(G)=G \cup Z,
$$

$$
\left(1_{n}\right): p(A \cap B)=\imath(A) \cap p(B) \text { for } A, B \in O \text {. }
$$

Then the system $\{\eta(H) ; H \in O\}$ forms the base of a certain topology on $G \cup Z$; this topology will be denoted by the symbol σ_{n}. The original topology of the space (G, Q) will agree with the topology induced on G if $\eta(H) \cap G \in O$ for every $H \in O$. This is certainly the case if

$$
\left(2_{k}\right): H \in O \Longrightarrow p(H) \cap G=H .
$$

Lemma 1. Let the mapping η fulfil the axioms (O_{n}), $\left(1_{n}\right),\left(2_{p}\right)$. Then the set G is dense in the space ($G \cup Z, \theta_{n}$) iff the following axiom (3_{n}) is fulfilled:

$$
\left(3_{\imath}\right): \imath(A)=\varnothing \Longleftrightarrow A=\varnothing .
$$

Let $(G, O), Z$ and $\nsim \theta \rightarrow \exp (G \cup Z)$ have the meaning described above and suppose that the axioms $\left(O_{p}\right)$ -- $\left(3_{p}\right)$ are fulfilled. Then the topological space $\left(G \cup Z, \Theta_{n}\right)$ is a topological extension of the space (G, O); we call this extension the \uparrow-topological extension (precisely the (\neq, Z)-topological extension).

Lemma 2. 1) $H_{1}, H_{2} \in O^{\prime}, H_{1} \subset H_{2} \Longrightarrow p\left(H_{1}\right) \subset$ c $\uparrow\left(H_{2}\right)$ provided η fulfils $\left(1_{n}\right)$,
2) $H \in \theta_{p} \Longrightarrow H \subset p(H \cap G)$ if ($2 p$) is fulfilled.

Definition. Let (R, \mathcal{S}) be a topological extension of the space (G, θ) (in the sense of the introduction). We say that ($R, \mathscr{\varphi}$) and (G, \mathcal{O}) fulfil the condition (Γ) (see Myßkis [4]), if

$$
x \in R, u \in e^{y}(x) \Longrightarrow[\text { there is a }
$$

$U_{1} \in U V^{y}(x), U_{1} \in U$ such that $y \in R-\left(G \cup U_{1}\right)$, $V \in e^{y}(y) \Rightarrow V \cap\left(G-G \cap U_{1}\right) \neq \varnothing 1$.

Lemma 3. $\left(G \cup Z, \sigma_{n}\right)$ and (G, O) fulfil the condition (Γ).

Proof. Let $x \in G \cup Z$, let $U \in \mathcal{C l}(x)$ be open in the topology θ_{k}. There is a $\mathscr{E} \subset \sigma$ with $U=\bigcup_{A \in \mathbb{E}}\{(A)$; let $x \in \not \approx(A), A \in \mathscr{L}$. If we put $U_{1}=\eta(A)$, then (Γ) is easily verified.

Theorem 4. Let (R, \mathscr{S}) be a topological extension of (G, Q) and put $Z=R-G$. Define the mapping \neq by

$$
\begin{aligned}
& p(H)=H \cup\left\{x \in Z \text {; there is a } U \in e^{\varphi}(x) \text { with } G \cap u \subset H\right\}, \\
& H \in Q .
\end{aligned}
$$

Then \uparrow fulfils the axioms $\left(O_{\eta}\right)-\left(3_{\eta}\right)$ and $\sigma_{\eta} \subset \mathscr{S}$; in addition,

$$
\sigma_{n}=\mathscr{Y} \Longleftrightarrow(R, \mathscr{Y}),(G, Q) \text { fulfil the condition }(\Gamma) \text {. }
$$

$$
\text { proof. One easily verifies that } \eta \text { fulfils }\left(O_{n}\right)-
$$

$-\left(3_{n}\right)$ and $\theta_{n} \subset \mathscr{S}$. Let now $H \in \mathscr{S}$ and assume (Γ). Then $H \cap G \in O$ and $H \subset \uparrow(H \cap G) \in \theta_{\uparrow}$. Let us fix $x \in H$; then there is a $u_{1} \in \operatorname{er}^{y}(x), u_{1} \subset H$ with

$$
y \in R-\left(G \cup u_{1}\right), V \in \varphi r^{y}(y) \Rightarrow V \cap\left(G-G \cap u_{1}\right) \neq \varnothing .
$$

It is easy to show that $x \in \notin\left(U_{1} \cap G\right) \subset H$, hence $H \in \theta_{n}$. The rest follows from lemma 3.
2. S^{ϱ}-topological extensions. Let again (G, Q) be a topological space, let $\mathscr{L} \subset \mathcal{O}$ be a system of open sets, $\varnothing \notin \mathscr{b}$. Suppose that ρ is a relation on $\mathscr{E} \times \mathscr{A}$ -
fulfilling the following axiom
$\left(1_{\rho}\right): \quad X, Y \in \mathcal{L}, X \rho Y \Rightarrow X \subset Y$.
An ideal element of (G, Q) is every nonempty system of open sets $\mathscr{S}_{C} \mathscr{\mathscr { L }}$ fulfilling the following conditions
$\left(1_{s}\right): \bigcap_{S \in S} s=\varnothing$,
$\left(2_{S}\right): S_{1}, S_{2} \in \mathscr{S} \Longrightarrow$ there exists an $S \in \mathscr{S}$ with $S \subset S_{1} \cap S_{2}$,
$\left(3_{S}\right): S \in \mathscr{S}, Q \in \mathscr{L}, S \rho Q \Longrightarrow Q \in \mathscr{S}$,
$\left(4_{S}\right): S \in \mathcal{S}=\Rightarrow$ there exists a $T \in \mathscr{S}$ with $T \rho S$,
$\left(5_{S}\right): A, B \in \mathscr{L}, A \rho B, A \cap S \neq \varnothing$ for every $S \in \mathscr{S} \Rightarrow B \in \mathscr{S}$.

Let $S^{\rho}(G)$ denote the set of all ideal elements of (G, O).

Lemma 5. 1) If $\mathscr{S} \in S^{\complement}(G)$ then each finite subsystel of $\boldsymbol{\mathcal { C }}$ has a non-void intersection.
2) For $\mathscr{S}_{1}, \mathscr{S}_{2} \in S^{\mathscr{C}}(G)$

$$
\begin{aligned}
& {\left[\mathscr{S}_{1} \neq \mathscr{S}_{2} \Longleftrightarrow \text { there exist } S_{i} \in \mathscr{S}_{i}(i=1,2)\right. \text { with }} \\
& \left.S_{1} \cap S_{2}=\varnothing\right] .
\end{aligned}
$$

For every $H \in \sigma$ we put
$p(H)=H \cup\left\{\rho \in S^{\rho}(G)\right.$; there is an $S \in \mathscr{S}$ with $\left.S \subset H\right\}$.
It is easy to see that the mapping $\nsim H \rightarrow \nrightarrow(H)$ fulfils
the axioms $\left(O_{n}\right)-\left(3_{n}\right)$,so that we may form the
$(\eta, S \rho(G))$-topological extension of the space (G, θ)
according to the preceding paragraph; this extension
will be called the S^{9}-topological extension (preciseby the ($\left.S^{P}(G) ; \mathscr{D}\right)$-topological extension) and the topology of this extension will be denoted by $O \rho$. For every $x \in G \cup S^{P}(G), \quad \mathscr{C}(x)=\{れ(H) ; H \in O, x \in \notin(H)\}$ forms the local open base at x.

Lemma 6. $\mathscr{S}_{1}, \mathscr{S}_{2} \in S^{P}(G), \mathscr{S}_{1} \neq \mathscr{S}_{2} \Longrightarrow$ there exist $U_{i} \in \mathscr{C}\left(\mathscr{S}_{i}\right)(i=1,2)$ with $U_{1} \cap U_{2}=\varnothing$.

Proof: According to lemma 5 there are $S_{i} \in \mathscr{S}_{i}$ with $S_{1} \cap S_{2}=\varnothing$. We put $U_{i}=p\left(S_{i}\right), i=1,2$.

In what follows we suppose that the relation ρ
fulfils the following strengthening $\left(\overline{J_{\rho}}\right)$ of the axiom $\left(1_{\rho}\right)$:

$$
\left(\overline{T_{\rho}}\right): X, Y \in \mathscr{L}, \quad X \rho Y \Rightarrow u X \subset Y
$$

(where μX denotes the closure of X in the space (G, θ)).

Lemma 7. $\mathscr{S} \in S^{\Phi}(G), x \in G \Longrightarrow$ there exist $u_{1} \in \varphi(\mathscr{P}), u_{2} \in \varphi(x)$ with $u_{1} \cap u_{2}=\varnothing$.

Proof: Suppose that $A \cap H \neq \varnothing$ for every $A \in \mathscr{\rho}$ and for every $H \in \varphi(x) \cap O$. Then $x \in \bigcap_{A \in S} \mu A$.Actording to (4_{S}) and (T_{ρ}), given $A \in \mathscr{Y}$ there is a $B_{A} \in \mathscr{Y}$ with $\mu B_{A} \subset A$. Thus $x \in \bigcap_{A \in \mathscr{S}} A$, in contradiction with (1_{s}).

Theorem 8. 1) The one-point sets in $S^{\rho}(G)$ are closed in the space $\left(G \cup S \Gamma(G), O^{\varphi}\right)$.
2) If (G, θ) is a $T_{0}\left(T_{1}, T_{2}\right.$ resp.) space, then ($G \cup S^{P}(G), O^{\rho}$) is a $T_{0}\left(T_{1}, T_{2}\right.$ resp.) space.

Further properties of the $S^{\mathbb{P}}$-topological extern-
sion are studied in [7]; J.C. Taylor demonstrated, besides other things, that the S^{ρ}-topological extension is even a compactification provided the relation ρ fulfils the following axioms

$$
\begin{aligned}
& \left(\overline{1}_{\rho}\right): A \rho B \Rightarrow \mu A \subset B, \\
& \left(4_{\rho}\right): A_{i} \rho B_{i}, i=1,2 \Longrightarrow\left(A_{1} \cap A_{2}\right) \rho\left(B_{1} \cap B_{2}\right), \\
& \left(5_{\rho}\right): A \rho B \Rightarrow(G-\mu B) \rho(G-\mu A), \\
& \left(7_{\rho}\right): A \rho B \Longrightarrow \text { there is a set } C, A \rho C \rho B .
\end{aligned}
$$

3. C-topological extensions. Let (T, Q) be a topological space, let $G \subset T$ be a domain (a nonempty connected open set). We say that an arc $\widehat{A B}$ in T is a cross-cut of G if $\overparen{A B} \subset G \cup\{A, B\}, A, B \notin G$. Let us denote by $Q(G)$ the set of all cross-cuts of G. For $q \in Q(G)$ put further $\dot{q}=q \cap G$; obviously \dot{q} is a connected set. $G \subset T$ is called a Q-domain, if for every cross-iut $q \in Q(G)$ there exist the separate domains $G_{1}, G_{2} \subset G$ with the property $G-q=G_{1} \cup G_{2}, q \subset H\left(G_{1}\right) \cap H\left(G_{2}\right)$ (the symbol $H(M)$ denotes the boundary of $M \subset T$ in the space (T, O)). Every bounded simply connected domain in the euclidean plane or, more generally, every nonempty domain bounded by a continuum in the Moore space fulfilling axiomsl-5 (see Moore, [6], theorem 34) is an example of a Q-domain.

In the remainder of this paragraph G denotes a Q domain in some topological space (T, O).

Lemma 2. a) Let $q \in Q(G)$ and suppose that the domains $G_{1}, G_{2}, G_{1}^{\prime}, G_{2}^{\prime}$ in G fulfil the condiions $G_{1} \cap G_{2}=\varnothing=G_{1}^{\prime} \cap G_{2}^{\prime}$,
$q \subset H\left(G_{1}\right) \cap H\left(G_{2}\right) \cap H\left(G_{1}^{\prime}\right) \cap H\left(G_{2}^{\prime}\right)$. Then G_{1}, G_{2} are separated and either $G_{1}=G_{1}^{\prime}$ and $G_{2}=G_{2}^{\prime}$ or $G_{1}=G_{2}^{\prime}$ and $G_{2}=G_{1}^{\prime}$.
b) Let $q_{1}, q_{2} \in Q(G), \dot{q}_{1} \cap \dot{q}_{2}=\emptyset, G-q_{1}=G_{1} \cup G_{2}$, where G_{1}, G_{2} are separated domains, $q_{1} \subset H\left(G_{1}\right) \cap H\left(G_{2}\right)$. Then either $\dot{q}_{2} \subset G_{1}$ or $\dot{q}_{2} \subset G_{2}$.

Let $q_{1}, q_{2} \in Q(G), \dot{q}_{1} \cap \dot{q}_{2}=\varnothing$. According to previous lemma the arc q_{1} separates G into two disjoint domains; the domain that has nonempty intersection with the arc q_{2} will be denoted by $G\left(q_{1}, q_{2}\right)$. Let now $q_{1}, q_{2}, q_{3} \in Q(G), \quad \dot{q}_{i} \cap \dot{q}_{j}=\varnothing \quad$ for $i \neq j$. We say that the cross-cut q_{2} separates the cross-cuts q_{1}, q_{3}, if $G\left(q_{2}, q_{1}\right) \cap G\left(q_{2}, q_{3}\right)=\varnothing$.

Lemma 10. a) $q_{1}, q_{2} \in Q(G), \dot{q}_{1} \cap \dot{q}_{2}=\varnothing \Rightarrow \dot{q}_{2} c$ $c G\left(q_{1}, q_{2}\right)$,
b) $q_{1}, q_{2} \in Q(G), \dot{q}_{1} \cap \dot{q}_{2}=\emptyset \rightarrow G-G\left(q_{2}, q_{1}\right) \subset G\left(q_{1}, q_{2}\right)$,
c) q_{2} separates $q_{1}, q_{3} \Longrightarrow q_{2}$ separates $q_{3}, q_{1} \Longrightarrow$ $\Longleftrightarrow G\left(q_{2}, q_{3}\right) \subset G\left(q_{1}, q_{2}\right) \Longleftrightarrow G\left(q_{2}, q_{1}\right) \subset G\left(q_{3}, q_{2}\right)$.

Proof: a) This follows immediately from lemma 9. b) We may write $G-q_{2}=G\left(q_{2}, q_{1}\right) \cup G^{\prime}$, where $G\left(q_{2}, q_{1}\right), G^{\prime}$ are separated domains, $q_{2} \subset H\left(G\left(q_{2}, q_{1}\right)\right) \cap H\left(G^{\prime}\right)$. On account of the relation $G^{\prime} \subset G^{\prime} \cup \dot{q}_{2} \subset G^{\prime} \cup H\left(G^{\prime}\right)$ we conclude that the set $G^{\prime} \cup \dot{q}_{2}$ is connected. Write again $G .-q_{1}=$
$=G\left(q_{1}, q_{2}\right) \cup G^{\prime \prime}$, where $G\left(q_{1}, q_{2}\right), G^{\prime \prime}$ are separated domains, $q_{1} \subset H\left(G\left(q_{1}, q_{2}\right)\right) \cap H\left(G^{\prime \prime}\right)$. We have

$$
G^{\prime} \cup \dot{q}_{2} \subset G\left(q_{1}, q_{2}\right) \cup G^{\prime \prime},\left(G^{\prime} \cup \dot{q}_{2}\right) \cap G\left(q_{1}, q_{2}\right) \supset \dot{q}_{2},
$$

whence $G^{\prime} \cup \dot{q}_{2} \subset G\left(q_{1}, q_{2}\right)$.
c) This assertion follows from the preceding part.

Definition. The sequence $\left\{q_{n} ; q_{n} \in Q(G)\right\}_{n=1}^{\infty}$ is called a C-chain of the domain Q, if

1) $q_{m} \cap q_{n+1}=\varnothing$ for every $m=1,2, \ldots$,
2) q_{n} separates q_{n-1}, q_{n+1} for every $n=2,3, \ldots$, according to lemma 10 we may replace the condition 2) by 2*) $G\left(q_{n}, q_{n+1}\right) \subset G\left(q_{m-1}, q_{n}\right)$ for every $n \geq 2$. If $\left\{q_{n}\right\},\left\{q_{n}^{\prime}\right\}$ are the \mathcal{C}-chains of the domain G, we define the following relations $\}, \sim$:
i) $\left\{q_{n}\right\}-3\left\{q_{m}^{\prime}\right\} \stackrel{\text { def }}{\Longleftrightarrow} \forall m \exists k\left(G\left(q_{k}, q_{k+1}\right) \subset G\left(q_{n}^{\prime}, q_{n+1}^{\prime}\right)\right)$,
II) $\left\{q_{n}\right\} \sim\left\{q_{n}^{\prime}\right\} \stackrel{\text { def }}{\rightleftarrows}\left\{q_{n}\right\} \prec\left\{q_{n}^{\prime}\right\}$ and $\left\{q_{n}^{\prime}\right\} \nsim\left\{q_{n}\right\}$.

It is easy to see that the relation \sim just defined is an equivalence relation.
Every equivalent class of the C-chains is called the end of the domain G. If E_{1}, E_{2} are the ends of G, we define

$$
E_{1}-E_{2} \stackrel{\text { def }}{\longrightarrow} \forall\left\{q_{m}^{1}\right\} \in E_{1}, \forall\left\{q_{m}^{2}\right\} \in E_{2}\left(\left\{q_{m}^{1}\right\} \sim\left\{q_{n}^{2}\right\}\right) .
$$

The primend of the Q-domain G is the end E of G with the property:

$$
E^{\prime} \rightarrow E, \quad E^{\prime} \quad \text { is the end } \Rightarrow E^{\prime}=E .
$$

Let $C(G)$ denote the set of all primends of the domain G. For $A \subset G$ we put $p(A)=A \cup\left\{E \in C(G) ; \forall\left\{q_{n}\right\} \in E \exists n_{0}\left(G\left(q_{n_{0}}, q_{n_{0}+1}\right) \subset A\right)\right.$. It is easy to see that the mapping $\eta: H \rightarrow \nrightarrow(H)$ fulfilf
the axioms $\left(O_{n}\right)-\left(3_{n}\right)$ (where θ is the system of all open subsets of a set $G, Z=C(G)$); we may form again the \nsim-topological extension of the Q-domain G with the topology θ; we call this extension the C topological extension (precisely the $C(T, G)$-topological extension).

For every Q-domain G of the topological space (T, Q) we define the system $\mathscr{L}(G)$ in the following way:
$A \in \operatorname{Lr}(G) \stackrel{\text { def }}{\Longleftrightarrow} A \subset G \quad$ is a domain and there is a $q \in Q(G)$ such that $G-q=A \cup(G-$
$-\{q \cup A\})$, where the domains $A, G-(q \cup A)$ are separated, $q \subset H(A) \cap H(G-(q \cup A))$.

Lemma 11. a) $A \in \mathscr{L}(G)$ iff there is precisely one cross-cut $\mathcal{Z} \in Q(G)$ with the property just introduced (we denote this cross-cut by the symbol q_{A}), b) $A, B \in \mathscr{L}(G), A \cap B \neq \varnothing \neq B-A, \dot{q}_{A} \cap \dot{q}_{B}=\varnothing \Rightarrow \dot{q}_{A} \subset B$. For $A, B \in \mathscr{H}(G)$ we define
$A \varrho B \stackrel{\text { def }}{\Longrightarrow} u A \cap G \subset B, \alpha_{A} \cap q_{B}=\varnothing$.
It is easy to see that the relation ρ on $\mathscr{O}(G)$ fulfils the axiom (\bar{T}_{ρ}) from the part 2 , so that we may form the S^{ρ}-topological extension of the domain G, too. The relation between the \mathcal{C}-topological extension and the SP-topological extension of a bounded simply connected plane domain will be examined in the next paragraph.

At this moment we remark only that already in the
simplest cases (where G is not a bounded simply connected plane domain) the C-topological extension need not be a compactification, for example if $T=\left\{[x, y] \in R^{2}\right.$; $y>0\} \cup\left\{[x, y] \in R^{2} ; y=0, x=\frac{1}{m}, n=2,3, \ldots\right\}$, $\theta=$ the euclidean topology, $G=(0,1) \times(0,1)$.
4. The equivalence in the euclidean plane. In the following part G denotes a nonempty bounded simply connected domain in the euclidean plane R^{2}. According to the previous paragraph we may form the C-topological extension of the domain G, we may define the system $\mathscr{L}(G)$ and the relation $\rho(\mathbb{L}(G)$ and hence we may form the S^{P}-topological extension of the domain G.

The relationship between C and $S \rho$-extensions is explained by the following

Theorem 12. The S^{φ}-topological exiension of G and the C-topological extension of G are homeomorphic and the corresponding homeomorphism can be so chosen that it reduces to the identity map on G.

Proof: First of all we construct a one-to-one mapping F from $G \cup C(G)$ to $G \cup S P(G)$. For $E \in$ $\in C(G)$ we define $F(E)$ as follows: $A \in F(E) \stackrel{\text { def }}{\Longleftrightarrow}$ there is a C-chain $\left\{q_{n}\right\} e$ $\in E$ and a natural number be such that $A=G\left(q_{k}, q_{k+1}\right)$. We shall show that $F(E) \in S^{P}(G)$. We must verify the axioms (1_{s}) - (5_{s}) from the part 2. The axioms (1s) $\left(4_{s}\right)$ are obviously fulfilled. We are going to verify the $\operatorname{axiom}\left(5_{s}\right)$; let $A, B \in \mathscr{L}(G), A \rho B, A \cap X \neq \varnothing$
for every $X \in F(E)$. According to [l] there exist concentric circles $K\left(B, \mu_{n}\right)$ with the centre h and the radii μ_{n} and a C-chain $\left\{k_{n}\right\} \in E$ such that

$$
k_{n} \subset K\left(s, r_{n}\right), \lim r_{n}=0
$$

We put $K_{n}=G\left(k_{n}, k_{n+1}\right)$. Clearly $A \cap K_{n} \neq \emptyset$ for every n. There are three following possibilities:
I) $A \subset K_{n}$ for all n; consequently, $A \subset{ }_{n=1}^{\infty} K_{n}=\varnothing$ - in contradiction with $A \in \mathscr{L}(G)$.
II) There exists an N such that $K_{N} \subset A$; then there are again two possibilities:
a) There is an $n \geq N$ such that $\left(k_{n}-k_{n}\right) n$ $\cap\left(q_{A}-\dot{q}_{A}\right)=\varnothing$. This implies $K_{m} \rho A$, whence $A \in F(E)$ and, consequently, $B \in F(E)$.
b) For no $n \geq N$ is $\left(k_{n}-\dot{k}_{n}\right) \cap\left(q_{A}-\dot{q}_{A}\right)=\varnothing$. If X, Y are the end-points of the cross-cut q_{A}, it follows in this case that either $\mu_{n}=|s-X|$ or $\kappa_{n}=$ $=|s-Y|$ for every $n \geq N$. But this is impossible on account of $\lim r_{n}=0$.
III) There is an N such that $A-K_{n} \neq \varnothing \neq K_{n}-A$ for all $n \geq N$; we distinguish two cases again:
a) $\dot{k}_{m} \cap{\stackrel{\circ}{q_{A}}}^{\prime}=\varnothing$ for infinitely many $m \geq N$; for those m we have $\dot{q}_{A} \subset K_{n}$ (lemma 11) and $\dot{q}_{A} \subset$ $c_{m=1}^{\infty} K_{n}=\varnothing$.
b) There is an $N_{1} \geq N$ such that $\dot{k}_{n} \cap \dot{q}_{A} \neq \varnothing$ for all $m \geq N_{1}$. We choose an arbitrary $P_{n} \in \dot{k}_{n} \cap \dot{q}_{A}$ for every $m \geq N_{1}$. The set q_{A} being compact we may choose a subsequence $\left\{P_{n_{k}}\right\}$ and a point $P \in q_{A}$ such
that $P_{\mu_{\text {半 }}} \rightarrow P$. Hence $P=s \in H(G)$ and at least 0 ne end point of the arc q_{A} coincides with B. In the case III b) there are three possibilities again:
$\left.I^{*}\right) B \subset K_{n}$ for all m is easily seen to be impossible. II*) There exists an $N_{2} \geq N_{1}$ such that $K_{N_{2}} \subset B$ and $\left.a^{*}\right)\left(k_{n}-\dot{k}_{n}\right) \cap\left(q_{B}-\stackrel{\circ}{q}_{B}\right)=\varnothing \quad$ for some $m \geq N_{2}$; it is easy to see that in this case $B \in F(E)$. $\left.b^{*}\right)\left(k_{n}-\dot{k}_{n}\right) \cap\left(q_{B}-\dot{q}_{B}\right) \neq \varnothing$ for all
$n \geq N_{2}$; an argument similar to that used in II b) shows that this is impossible.
III*) There exists an $N_{2} \geq N_{1}$ such that $B-K_{n} \neq \varnothing \neq$ $\neq K_{n}-B$ for all $n \geq N_{2}$ and
a*) $\stackrel{\circ}{\dot{R}}_{n} \cap \dot{q}_{B}=\varnothing$ for infinitely many $n \geq N_{2}$; as in III a) one can show that this is impossible.
b) There exists an $N_{3} \geq N_{2}$ such that $\dot{\AA}_{n} \cap \dot{q}_{B} \neq \varnothing$ for all $n \geq N_{3}$; as in III b) we have $s \in q_{B}-\dot{q}_{B}$ and we see that the arcs q_{A}, q_{B} are not disjoint (in contradiction with $A \rho B)$.

All possibilities have been exhausted and in every case $B \in F(E)$.
It is easy to see that $F\left(E_{1}\right) \neq F\left(E_{2}\right)$ whenever $E_{1} \neq E_{2}$. We want now to show that $F(C(G))=S^{\mathscr{P}}(G)$. Let $\boldsymbol{\rho} \in S \rho(G)$ and suppose that $F(E)=\mathscr{\rho}$ for no $E \in C(G)$.
Fo every $H \subset G$ we put
$\eta_{s}(H)=H \cup\left\{\mathscr{Y} \in S^{P}(G) ;\right.$ there is an $A \in \mathscr{Y}$ with $\left.A \subset H\right\}$,
$p_{c}(H)=H \cup\left\{E \in C(G):\right.$ for every C-chain $\left\{q_{n}\right\} \in E$
there exists an n_{0} such that $\left.G\left(q_{n_{0}}, q_{n_{0}+1}\right) \subset H\right\}$. According to lemma 5, for every $E \in C(G)$ there are $A_{E} \in F(E), S_{E} \in \mathcal{I}$ such that $A_{E} \cap S_{E}=\varnothing$. Obviously $E \in \eta_{c}\left(A_{E}\right)$, whence $E \in \mathcal{C}(G) R_{c}\left(A_{E}\right) \supset C(G)$. According to lemma 7, for every $X \in G$ there are the sets $U_{x} \in \mathscr{Y}(X), B_{x} \in \mathscr{S}$ such that $U_{X} \cap \eta_{p}\left(B_{x}\right)=\varnothing$ and, consequently, $\left(U_{x} \cap G\right) \cap B_{x}=\varnothing$. Obviously
$\bigcup_{x \in G}\left(U_{x} \cap G\right)=G$. The sets $\eta_{c}\left(A_{E}\right), U_{x} \cap G$ are open in $G \cup C(G)$ and

$$
\bigcup_{E \in C(G)} p_{c}\left(A_{E}\right) \cup \bigcup_{x \in G}\left(U_{x} \cap G\right)=G \cup C(G) .
$$

The C-topological extension of the plane domain G is a compactification (see Caratheodory [l]); there are $E_{1}, \ldots, E_{n} \in C(G), X_{1}, \ldots, X_{k} \in G$ such that

$$
\bigcup_{i=1}^{n} \imath_{c}\left(A_{E_{i}}\right) \cup \bigcup_{i=1}^{k}\left(U_{x_{i}} \cap G\right)=G \cup C(G)
$$

Hence it follows

$$
\stackrel{n}{n} B_{x_{i}} \cap \overbrace{i=1}^{n} S_{E_{i}}=\varnothing,
$$

in contradiction with lemma 5. Further we define F as the identity map on G. Then F is a one-to-one carespondence between $G \cup C(G)$ and $G \cup S P(G)$. It is easy to verify the following implications:

$$
\begin{aligned}
& H \subset G, X \in \eta_{c}(H) \Longrightarrow F(X) \in p_{s}(H), \\
& H \subset G, X \in \eta_{s}(H) \Longrightarrow F^{-1}(X) \in p_{c}(H) .
\end{aligned}
$$

We see that F is a homeomorphism.

References
[1] C. CARATHEODORY: Ueber die Begrenzung einfach zusammenhängender Gebiete. Math.Ann.73(1913), 323-370.
[2] E. CECH: Topological Spaces, Prague,1966.
[3] H. FREUDENTHAL: Enden und Primenden, Fund.Math. 39 (1952),189-210.
[4] A.D. MYSKIS: K ponjatiju granicy, Mat.sbornik 25 (1949) , 387-414.
[5] S. FOMIN: Extension of topological spaces, Ann.Math. 44(1943),471-481.
[6] R.L. MOORE: Foundations of point set theory, Amer. Math.Soc.Coll. Publ.XIII(1932).
[7] J.C. TAYLOR: Filter spaces determined by relations, I,II. Indag.Math. 25(1963), 7-40.

Matematicko-fyzikálni fakulta KU,
Sokolovská 83, Praha 8,Ceskoslovensko
(Oblatum 28.6.1969)

