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Commentstiones Mathematicae Universitatis Carolinae 

10, 4 (1969) 

HIGHER ORDER DIFFERENTIABILITY OF NONLINRAR OPERATORS 

ON NORMED SPACES - Part II 

M.Z. NASHED, Beirut 

This paper is a continuation of [55] • The number­

ing system for equations, definitions, theorems and re­

ferences is sequential to Part I. The purpose of the en­

tire paper was stated in Section 1. 

For motivational purposes, we have so far restric­

ted our discussion to second order Fre*chet differentials. 

Various notions of mth order Fre*chet differentials may 

be considered similarly. One may also consider mixed 

higher order differentials. For example, we may introdu­

ce a third order differential obtained by first finding 

the Fr^chet differential of F , then, the pointwise 

Fr^chet differential of cL F Cx • M,); and finally the par­

tial Fr^chet differential &x 3*F(x $ M^ , M,% , 4v^ ) . 

Properties of mixed differentials may be obtained from 

the properties of the various differentials. 

3*3. Notions of mth Order O&teaux Differentials 

Let FJ X - ^ Y ^ where A is an open subset of 

the product space TT . The Gateaux partial differential 

at AJL* .. # --^ of F with respect to ,x\ exists if 
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and only i f there exists a bounded linear operator 

1.K F ( ^ ... <Ufo ; * ) r £^ —> V such that 

where 

(6) 4«m. R ^ i - ^ ; t % ) „ £, , 

D^FCvU^ • * • AJL^ • >fi£ ) is called the Gateaux partial 

differential• The operator F is said to be totally 

G&teaux differentiable at X0 if F considered as a 

mapping on X C IT into Y 7 is Gateaux differenti­

able at x0 . This means that 

where L is a continuous linear operator in ^ -

* (J15.... A . ) , and 

(7) ^ ^ ^ R C ^ - - ^ j t ^ , . . . , t / ^ - 0 -

Clearly F has a Fre'chet partial (total) differential 

at X0 if and only if F has a Gateaux partial (total) 

differential at X0 and (6), (respectively (7)), holds 

uniformly with respect to M,* € E: on the set lib. 1» 

* 4 ( iv. .. , A ^ on the set I-#L, 1 * * -• * - II ii^ 1 -» 

Suppose for mv £> 2 the Gateaux differential of 

order tnt - 4 has been defined as a continuous C/m.-'f)-
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-linear operator Tf^FCX; to^... Hm^), D^FiX; -,, ) £ 

B ̂ ^ ^ X . - x E ^ j y ) / for each X B X * 

Definition 4 G. If J)'m"'*F (x 5 • ) , considered as 

a mapping on X into - - ^ ^ f ^ X «•• -*-̂ n..* > y ) has a 

Gateaux derivative at X0 y we denote this derivative by 

J3T F (x 0 '7 • ) and call it the mth order Gateaux de­

rivative of F at ̂ 0. Thus Jf^FiXo* • ) 6 - ^ C £,,*-.-

... X £•„,-/, y ) - The mth order Gateaux differential is 

denoted by D"* F6x s <fo. . . . Jb ) . Jh,- e E- . We 

have by definition: 

Definition 5 G. F is said to have at «xo a point-

wise Gateaux differential of order /m if F has a point-

wise Gateaux differential of order /m. - \ and there ex­

ists a continuous mt -linear operator L (x0 • • ) such 

that for each fixed M,A * - - ^ m / . . i ; 

gm,t'<IIVm-1FUe+tA^ >,**,... ^ „ , > - T)m'1F(xo;h, ~ 

\~(X0 ; • ) is called the mth order pointwise 

G&teaux derivative and is denoted by dT F(X0 y • ) • 

The mth order partial Gateaux differential (Defi­

nition 6G) and the mth order total GSteaux differential 

(Definition 7G) may be defined in an obvious way and are 

denoted by D^D"*'"* F(x0 ; .*-,••• M,^ ) and DP^'VCx;; 

A^--- A»-< 1 &X, &*tH7"'iA*hnt-4 } respectively. We re­

mark that D xD
m^F(*X 0 j A % . . . Kmt ) is continuous 
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and linear in Jh^ but is not required to be continuous 

or linear in h^m ..., to>m^ • However, if D'"*"'1 FCxc -7 

^l *' * ^W-f ^ *8 aS8umed to De linear and continuous 

in A,,, . . . . Jh^^i , t h e n ^ F C o c ^ ^ - \ . ) is auto­

matically linear (but not necessarily continuous) in 

Definition 8G. F is said to have at x a 

strong Gateaux differential of mth order if there exists 

an operator T(xa) E -£,*,,( E4-< ••• *> ^n'7 Y) such that 

for each £ > 0 there exists n, -> 0 - where 

II D**"1 F(x0+tJfc; - ) - jr*-'F<: .x0 -*- A>k; *) -

-TfxD>(. ; (t-*)&>! -fe £ lt-*l 

for each M/ e E^ and each pair of numbers A>j t with 

|A>I -= tt and It I -̂  /t • Tf*X0) is called the mth or­

der strong Gateaux derivative and is denoted by 

D^F*(xo; ° • 
The continuity implications of these notions are 

stated in the following theorem. The proof is a trivial 

modification of the proof of Theorem 3 using appropriate 

results on continuous and directionally continuous mul­

tilinear operators discussed in Section 1. 

Theorem 5. (a) IfD^FCx/, ^ . . . K^ ) 

exists, then Vm'"iF(x ; Jh^ ... -fyrrLm.i ) is directionally 

continuous (Definition 3d) at .Xq . 

(b) If D^FCx ; Jhu •" Jh'*» ) naa a pointwise 

Gateaux differential at JcD . then D^F(M-. tv^ ... M,^) 

is directionally continuous at ^,; hence also point-
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wise directionally continuous (Definition Id). 

(c) If P mF(,xj M,^ .. . M,^ ) has a partial Ga­

teaux differential at x , then Tf* F ( X : iv. ». - -h^ ) 

is jointly directionally continuous (Definition 2d) at 

(d) If D * " F C J < ; -&.„ ... M,^ ) has a total G&-

teaux differential at XQ 7 then D'YW" F C x • b i . < f % . . . M,^ ) 

is jointly directionally continuous at (<XQ;&iu"" fy^' 

(e) If D/wvFC»x; * ) has a strong Gateaux differential 

at x0 7 then for some M > Q 7 

IID^FC* +t*,; 0-]>mFfce0+,vfe; O I U &Mlt-*l 

for all *t A> in some neighborhood of zero* 

Theorem 6* (a) D ' m F(x j • ) has a Gateaux dif­

ferential at XQ if and only if D ^ F<T.x ; i ^ *- -. A ^ ) 

has a pointwise Gateaux differential at XQ and 

(8) JUffit-*iJ>'m'FCxo+tJk,iJh,4.'. M^) -

-D~*FCv, ̂  ... ̂ )? - Sf+'FCx. s V " K>& > 

holds uniformly with respect to M, on the set l.4til~ 4. 

Consequently, Jf^FC*', * ) has a Fr^chet differen­

t i a l at X0 i f and only i f (8) holds uniformly with 

respect to Je, and M, . . . Jh^ on the set ft *&• ll -» 

= U ^ l l - . . . = IIA,^ H * 1 . 

(b) D'"1, F < »x 5 A^ »• # A ^ ) has a pointwise G&teaux 

differential at o<0 i f and only i f P ^ F U j K^ ... h>^) 

has a Gateaux partial differential at X0 and the l a t ­

ter i s jointly continuous in %%. * * - i v ^ 
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(c) If jy** F O j it-j - * - Ji^ ) has a pointwise 

Gateaux differential at xc , then D^Fix ; to^ *•• H^) 

is totally differentiable at «xo and the total diffe­

rential is given by 

%V"F(xmiMH... K,'JAx)^l)^F(^^hl1^z^\t) 

(d) If D ^ F (X'7 ' ) has a strong Gateaux differen­

tial at x0 , then jy*-*'1 F(x.; • ) exists. 

The proof of Theorem 6 is a simple modification of the 

proof of Theorem 4. 

3.4. Strong Differentials. 

Definitions 8 and 8G dealt with higher order Fr£-

chet and Gateaux strong differentials. One may also de­

fine strong pointwise differentials, strong partial dif­

ferentials, etc. The notion of the strong derivative of 

a function of a real variable was first introduced by 

Peano [35] who felt it "portrayed the concept of the 

derivative used in the physical sciences more closely 

than does the usual derivative*. Let -f be a real func­

tion whose domain is an open subset of the real line* 

Then f is strongly differentiable at X0 if 

CxvX1)-*(x0,xo') X i ~ *4 

exists. This notion has been recently reconsidered and 

generalized by Leach 136], Esser and Shiaha [37] and 

Nashed [38]. Relationships among the Gateaux and Fr£~ 
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chet strong differentials and side conditions under 

which a Gateaux variation or differential is a strong 

differential are given in [38J. We remark that the 

distinction between Gateaux strong differential and 

Fre*chet strong differential is only pointwise, i.e., 

the existence of a strong Gateaux differential on an 

open set implies the existence of a strong differential 

on that set. The notion of strong differential is also 

closely connected with uniform differentials as defined 

by Vainberg [43. Among other results on differentiabi­

lity of convex functionals it is shown in [38J that if 

the one-sided Gateaux variation V^-fC^ 5 M,) of a 

convex functional *f defined on an open subset X is 

a Fr^chet differential, then V~-f> (xo ; <fa) is automati­

cally a strong differential. 

Strong differentiability at a given point x0 im­

plies a smoothness condition in a neighborhood of xo 

which is a desirable property in many applications, for 

example inverse function theorems and Newton's method 

[361. 

Let D denote the subset of X on which 

df^FCx^Jh, ••• tifo) has a Fr^chet strong pointwise dif­

ferential and let J)' denote the subset of X on which 

d^FCx ', M,M .. • h, ) has a Freshet pointwise diffe-

rential. Clearly J) C D' and in general either or 

both of these sets may be empty. 

Theorem 7. If d/"1, F ( *x ', A i • # * A ^ ) is strong­

ly pointwise Fr^chet differentiable at »X0 ; then for 

each $1^ • * - ̂ -tL+i ; 
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Sim, dm^F\x)H,...h,*L..) -

x e D -, 4*» S^^FCx . . .^ . . . .K.-.+.,) -
•X—V «X0 

•x ejv 

whenever both limits are meaningful. 

Proof. Let e > 0 be given. Since d™ FCxj • ) 

i s strongly pointwise d i f f erent ia te at x0 7 for each 

fixed Jhu "* h/^ there exists cT'.>> (.7 such that 

" *1 ~ ^o " < ^ and II x^ - x 0 II < cT and ,x 4* .x^ 

imply that JC y .X € X and 

(9) ldT'FCxx;\...Aimi)-dr'F<xi%hH... *,„)-

Let -x £ D' where ll.x-*X0 ft -= -g- . Then .X i s a per­

missible value for ,x in (9). Now l e t * be any fixed 

nonzero element of Em+A • Then i f l i I < -z ... J- i t fo l ­

lows that J-x + t^e -«X0 II < c/*' and hence tX -H t * 

i s a permissible value for .x^ in (9) provided I "fc I ^ 

2 11*11 * T n e n 

l l d ^ F i * - r t * 5 ^ , . . ^ ) - ^ -

- a ^ ^ F ^ j A , . . . ^ . tJe)ll A e « t * II . 

But since d"** r(xo * * ) is homogeneous, this is e-

quivaleht to 

II i- {rfT FC.X 4r tk,% ..h,..,• h^)-<rF(*;\... \ , ) 



- d""+1Fit*.;Jlkl...Jh^Jk.)1 II ±e l U t l , 

from which i t follows that 

But * e D' so that «rt*<FfJc: A , . . . * < . . * . ) exists 

and i s equal to (9 c^FcT.*.; A# - . ^ A ; . Thus X e $' 

and II * - Xa II < £-" imply that 

llcT+<Fc;.x; A, . . . HJ*)- ?n-+iF(i(a.jki...fivmJk,n±slM. 

Thus for each Je, ; 

(10) ^ W ^ R * ^ , . . ^ * ^ 
ye]? ' 

Now assuming that ^^yd^^F^.U .*.Jh^M>) ex i s t s , 
J\ "~"-r »X«j, f «f /ff*< 

Mn, d™*iFH*Jto...to,k.)*> Um, d""+<F(Xi*kt...Jim,J*) 

since d*"** F* and d^^F are identical on D . 

But then it follows that 

(11) , W d^F\*.Jhu...\Jk,)- JUm, d^iF(x-,Jhi...JhJk,) 
xel> *e,D' 

since D c J)7 . (10) and (ll) give the desired result. 

Theorem 8. (a) If dun'F(Xii to,A . * * Jh, ) is 

pointwise Frexhet d i f ferent ia te at XQ and dtm*iF(&0
9 

fy • * * ^ V ^ t + i ^ * s jointly continuous, then 

<i F(«X j ^ , . . / ft^ ) has a strong pointwise Fr^chet 

differential at xo . 

(b) Let S^ denote the ball H .x It < H>. Then d£n'F(x ; 

M, », . Jh,^ ) i s strongly pointwise Fr^chet differen-

tiable on S- if and only i f &m+AF(x; to. ... to, J 
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is jointly continuous. 

(c) cLTCx-, Jh^*.. H^ ) is strongly Frexhet diffe-

rentiable on S^ if and only if df^FCx.; • ) has in 

S^ a locally uniform Frdchet differential C41 and that 

d,"*1* F(x ; • ) be locally bounded in S^ . 

Proof, (a) follows easily from the inequality 

lcL"F(xx.*H...A,„)-drFUliH1...*,^)-S~*<FC*oi 

S'~ K«"> *-~*<,H ~ i-*m'F-V» K'' ^-d^FCx, ; 

K---h«.)-d"***FU-Jhu...Jb ,^-.x.)ll + 

+ ldm*1F(x'Jh...H ,x„-*J-^F(X',Jh....Jh,x-j<)t. 
1 * 1 in*? .2. 1 0 * 1 '**,'> CL 1 

(b) follows from part (a) and Theorem 7. 

(c) follows from Theorem 4.1 in Vainberg C43, and an ob­

vious modification of part (b). 

3.5. Remarks on Higher Order Hadamard Variations 

and Differentials 

The notion of Hadamard differential which was in­

troduced in [39] takes the following form in the setting 

of normed spaces. A continuous operator F' X —> Y is 

said to have an Hadamard differential at x0 if there 

exists a linear mapping JUL : £ —•• Y such that for 

any continuous mapping a: C0; A J—> X for which a(0)^ 

» .X0 and g! (Q*~) exists, the mapping SCi) =* 

«FC^-Ct)3 is differentiable at t « 0+ and S'C0+•)« 

-s A*v(af (0*)) . The mapping A*L is called the Hadamard 

derivative of F at ^ . Variants and generalizations 

of Hadamard differentials have been studied by many 
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authors [2,pp.151-152;40,41,42,43,44,451. Connections 

between Hadamard differentiability and other notions 

of differentiability are readily available. If F is 

Hadamard differentiable at x0 7 then F is Gateaux dif­

ferentiate at .x0 and the two derivatives are equal, 

but the converse is not necessarily true. Let -?(x0np^ 

3 

=r •* ̂  2 if (x, ML) * CO, 0) and *(0,Q) = 0 . 

Then -f is Gateaux differentiable at (0,0), DF(07Q<, 

K, Jk,) * 0 . Define q,(t) ~(t, t1) tor t e £0,11 . 

Then q,(0)=(0,0), ty'(0+) ~ (1,0) and S(t) -=• 

*fl&(tn=: t* + % < Then S'(0+) - f while 

juulfyf(Q*)l^ 0 . Thus i is not Hadamard differentiable 

at (0,0) . Fr^chet differentiability implies Hadamard 

differentiability. The converse is also true if the spa­

ce £ has finite dimension. 

A continuous map a, on the subset [ 0,11 x .. * 

...x.C0; 11 of R^ into X is called an n-trajectory if 

q, (Qy,Q)~ x0 and the Gateaux derivative Dg^ of g<> 

exists at (0*,..., 0**.),We say that F has nth order 

Hadamard variation at XQ if there exists a mapping 

/U,: £ x . , . . x E - » V which is homogeneous in each of 

the variables such that for any n-trajectory g^ , 

dt,. . lt„ exi8t8 at *.. = •*• - ** - ° 
and is equal to AA, 11)0,(0*,... , 0 )1 . It is easy to 

show that if F has nth order Hadamard variation at 

X0 , then F has nth order Gateaux variation at x^ * 

Various notions of higher order Hadamard differentials 
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may be introduced and related to the notions of higher 

order differentials studied in this paper. This will 

be undertaken in a subsequent note. 

Several notions of variations may be obtained al­

so by varying the "difference quotient" in the defini­

tion of the Gateaux variation. We introduce, for in­

stance, the variation analogs of the Sindalovskii C46J 

and Murav'ev [473 derivatives. Let 6" be an operator 

defined in a neighborhood of zero such that &(t<h)-> 9 

as t —-> 0 for each fixed h, . We define the Sindalov­

skii variation by JU#n, t'\FLx- 6CtSh,)l-FZx~G<th)-thl). 

t-ro 

Let G be any continuous operator. We define the Mu­

rav'ev variation of F (with respect to G ) by 

JUATV t'1 { FCx+tH GCx )1 - FCx ) } . The Gateaux varie­
t y 
tion is obtained as a special case of the Sindalovskii 

and Murav'ev variations. Other properties of these va­

riations follow readily. 

For an excellent survey of various notions and 

properties of derivatives of a function of a real vari­

able, see [48]. 

4. Peano and Taylor Variations and Differentials 

The existence of an m-th order Gateaux variation 

or of an m-th order Gateaux or Fr^chet differential of 

an operator F at a point xo f provides a local repre­

sentation of the operator in a neighborhood of <x0 . 

Such a representation gives, in this neighborhood, an 

approximation of the operator by a sum of homogeneous 
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operators or by a polynomial operator. The sense of the 

approximation depends on the notion of variation or dif­

ferential that is used, and is an order condition on the 

Mremainderw. 

The usual Taylor theorem in functional analysis 

(cf. [2,5J ) gives such a representation for F(xQ + Jk) 

when F has an m-th order differential along the segment 

\»x0 +1H: 0 -= tr -£ 4 i . What we need here, however, 

is a representation theorem which requires only the e-

xistence of an n-th order variation or differentials at 

a point. This is available in a variant of Taylor's theo­

rem, which was given for real functions by W.H. Young 

£49J. The generalization to operators is stated in the 

following theorem which can be easily established by in­

duction. 

Theorem 9. Let F- X —» V ; when X is an open 

subset of £ • 

(a) If <fm'F(x0 • M, ) exists, then the following expan­

sion holds. 

(12) F6< 0 + A ) - F(xo) + dTF(x0;Jh,) + ... + 

^^cT^F^^K) 4- R„,(x0', *i>) , 

where Jtvrn, R~<««» **> -* 0 . 

(b) If the n-th order Gateaux differential 3^F(^0 - H) 

ex is t s , then the expansion (12) holds, where the varia­

tions cf^FC^ 5 M, ) are now replaced by V^(^c ; ^ ) 

for At ** 47 df 4.. 7 (Yt * 

(c) If the n-th order Fr^chet differentiald/^FC-V, A ) 
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ex i s t s , then the following expansion holds 

F(x0 + H) ** FCx0) + dF6<0* A ) - . - , . - -*-

where 

+Jr<r-F(x0.A) + R^(x.-f Jh,) , 

W.H. Young [49J states that if a function has an 

expansion such as 

4(a+ h,) m iCo,) + aM+.,. +cMJh'"'+ R. (a}it) 

Q. R^icLfJh) n 

where J^k "Z^ ** 0 ; then the n-th order deriva­

tive of f at a exists. Graves L9J was first to obser­

ve that this is not necessarily true by giving a simple 

counterexample: -PC_x)«o< Mm.~f x 4* 0 ', -f CO) -» 0 . 

The failure of the converse to Theorem 9 to hold motiva­

tes the following definitions. 

Definition 9. An operator F : X ~*~* V is said 

to have an n-th order Peano variation at _xo e X if the-
tn, A 

re exists a homogeneous form ^C«xo', /0O.--.2, jV Ĥ  Cx0 - &t)? 

where H^Co^ccH ) =» at/* H^dx0 j it> ) for each real 

number oc such that for a l l Jh, with xc + A e X ; 

(13) F C ^ 4 . 4 t ) - F C ^ ) * ^ C j c 0 > ^ ) + V ^ ^ 5 ^ ) , 

and 

(14) t ^ . - - -£ - (V . 

Note that if a representation such as (13) - (14) exists, 
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it is unique. H^ C.xo'7 M, ) is called the Peano vari­

ation of order m of F at ^ . 

Definition 10. An operator F: X —> Y is said 

to have an n-th order Peano differential at x0 if the­

re exists a polynomial ^ C«x0 )/£-*) = . 21 JJ \~i %v± ? 

such that for all Stv with xc •*• M, e X , 

(15) FC^+^.)-FC .x0)= %, CM. ;*>,) + W^ix0;H) 

where 

(16) 

L-^^u y which is uniquely determined, is called the 

Peano differential of order nrv . The Peano directional 

differential is defined by replacing the condition (16) 

for the representation (15) by the weaker condition 

(17) t^y l ^ f f o t A ) l - o . 

The existence of a first order Peano variation 

(Peano differential) is equivalent to the existence of 

the G&teaux variation (Fr^chet differential). However, 

this is not necessarily true for second or higher order 

Peano variation or differentials. For example, let -PCx).* 

-» 0 if x is rational and K,x) - ex'*"1"1 if X is 

irrational. Then f has n-th order Peano differential 

at 0 J r^ CO-, Jv) * 0 for all Jk, while f*(0) does not 

exist• 

In the definition of Peano variation of order m } 

we have not stipulated the existence of any G&teaux va-
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riation of order greater than one. This motivates the 

following: 

Definition 11. Let F : X - ^ Y have at «xc a Ga­

teaux variation of order m - A . If 

fcW4^CFftc0 + tjfc)-FC*,> -t-*o t * 

< i 8 ' &&*>**.,*»» 

exists, we call it the n-th order Taylor variation of F 

at *0 and denote it by VT^FC^ •- ^ ) • The n-th order 

Taylor and Taylor directional differentials are defined 

in an obvious way. 

Several notions of Taylor differentials may be 

obtained by using the various notions of n-th order Fre*-

chet differentials introduced in Section 3. 

It is easy to show that the n-th order Peano varia­

tion is homogeneous in Av of degree /tv *• Implication -

relations among the Peano variation, Peano differential 

and Peano directional differential follow readily. 

Theorem 10* (a) If the n-th Taylor variation (dif­

ferential) exists, then the n-th Peano variation (diffe­

rential) exists and the two are equal. 

(b) If the n-th Gateaux variation (Gateaux differential, 

Fr^chet differential) exists, then the n-th Taylor va­

riation (directional Haylor differential, Taylor diffe­

rential) exists and the two are equal. 

(c) If F has n-th Peano variation (differential) at 

X0 and if the (m, ~/f) -st Gateaux variation (Fr^chet 

differential) of F at X0 exists, then the n-th Taylor 

variation (differential) at x0 exists. 
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Proof: (a) From Definition 11, 

F(x + iv)-FC .O + crFfK;A) + ...+(--4->7 crn~1FU',JM 

+£r V*FCx;*i) + W„ U; Jh.) , 

where 

From the uniqueness of the representation (13) - (14)9 

it follows that the n-th Peano variation exists and is 

equal to VJTYtfj A ) . 

(b) follows from Theorem 9* 

(c) follows from the uniqueness of the representation 

(13) - (14). 

Remark• The Peano and Taylor variations and diffe­

rentials provide a different approach to higher order 

differentiability that is most useful in approximation 

theory and the calculus of variations. They may be used 

to derive sufficiency conditions and higher order ne­

cessary conditions (that is, other than the Euler equa­

tions) in the calculus of variations. The second order 

directional Taylor differential suffices for the purpo­

se of the theory of the second variation in the calcu­

lus of variations. Many of the results of £50], for in­

stance, may be derived using this approach. Necessary 

and sufficient conditions for Peano and Taylor diffe­

rentials to be Frlchet differentials corresponding to 
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the various notions studied in Section 3 , as well as con­

nections with difference-differential (including Riemann 

dif ferent ials , smooth operators and direct differentials) 

are given in Cll. 

Remark. Oliver 1511 showed that a Peano derivati­

ve of a function of a real variable which exists at eve­

ry point of an interval i s of Baire class 1, possesses 

the Darbeaux property and is equal to the ordinary n-th 

derivative on a dense open set . If the n-th Peano deri­

vative i s bounded either above or below, then i t coinci­

des everywhere with the n-th ordinary derivative. In the 

case of a function of a real variable, the Peano deriva­

t ives were referred to by Denjoy [52] as differential 

coeff ic ients . The notion also occurs in the work of de 

la Valine Poussin 1531. Taylor derivatives of functions 

are also studied by Butzer 1541. 
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