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Commentstiones Mathematicae Universitatis Carolines 

10, 4 (1969) 

AN ELEMENTARY CHARACTERIZATION OF THE CATEGORY OF 

RELATIONAL SYSTEMS 

E. MENDELSOHN, Montreal 

Introduction 

In [2] F. Lawvere characterized the category of 

sets by elementary axioms, using a language, with one 

sort of variable symbols (mappings) and two unary func­

tions symbols (domain and codomain ) and one ternary 

relation, composition. A — * B means f is a map 

with domain A and codomain 3 • D. Schlomiuk,£5J, 

presented a method of characterizing the category of 

topological spaces by using the full subcategory of 

discrete spaces; the fact that the functor, inclusion, 

from sets to topological spaces has a left adjoint, to­

gether with additional axioms on a certain constant (the 

two-point space ({o/^Jy^ {o,i {Q,9&-1) ). Lawvere also 

characterized algebraic categories £13, using the spe­

cial properties of a certain constant, the free object 

on one generator, and an adjointness condition. It is 

conjectured that what one needs is a previously charac­

terized reflective subcategory C and finitely many 

1 
An object is a map which is a domain and a codomain* 
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objects cu .. 0 cu^ determined up to isomorphism, 

such that the full subcategory on C AA, \JO*J\ ., is 

in the transitive closure of "adequate". We shall a-

dopt this technique in the present paper to the cate­

gory of relational systems. 

In L33,U3, Hedrlin, Pultr and Trnkov6 defined 

morphisms to form the category of relational systems 

of type A , R (A) , and showed the usefulness in re­

presentation of abstract concrete categories as full 

subcategories of a category of relational systems. The 

definition of the category of relational systems of A 

is the following: 

Let A * km*. \. ^ T where the m. are cardi-

nals, and X is a set. Then the objects are pairs 

C X
,

 {RJieI )
 *

h e r e R
*
 s X

^ ' 

CX; ^Riliel) -*-* CY?lSikeJ ) i s a m o rPhism i f f f i s 

a function from X to y such that f ( R± ) s S^ for 

a l l i e l j where i f m^ -&+ X e *"* , \ C9J -

ъ*> * І *U y . 

Although the present author was not able to find 

a complete characterization of R C A ) such that every 

complete (categorically) model was naturally equivalent 

to the R(A) of Hedrlin and Pultr, he did find an a-

xiom system denoted by R* such that if C is a ca­

tegory satisfying the axioms of R and C is comple­

te then C is naturally equivalent to R C A ) where 



A = {m. I. T a n d o n e c a n determine the values of 

the m,> by a simple test in C . whenever I is a 

finite set. For I infinite one needs infinitely ma­

ny -*̂  to form the category in the transitive closure 

of "adequate" for the generalization. 

We shall start by stating the axioms for R. 

(where 1 is a one point set) and then develop from 

this the axioms for R • 

Characterization of R. . 
1 

Axiom 1. R^ has an initial CO) 7 and terminal 

(4) object, equalizers, coequalizers of pairs of maps, 

products and sums of pairs of objects. 

Axiom 2. There is an object 1' such that if <x 

is any object, G & 0 => B* , 1' -*-+ & . 
Definition: An object & is discrete <=£ 3-ir 7 

Axiom 3. G ¥+ V and 6 ^ V «*• ̂  =- v . 

Definition: X € A (or X is an element of A ) 

<=«-> 1 ' -^-> A . 

(Note the definition 1 — > A given by Lawvere,Ll3» 

and Schlomiuk L5.1 is not applicable here.) 

Axiom 4. 1' is a projective generator. 

It i s clear that i f A -*-* B then -f i s 

efii <—*> V* € B, 3<^ c .A B^f ** X 5 -f i s 

murn<r<psM,> for every pair of elements .X * ^ ^ ^ 7 

x 4* /^ , «*f + *̂P • 
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Definition: f is a bijection <-==-> *P is murrur 

and ef^ • 

Axiom 5. Every non zero object has elements. 

Axiom 6. Every element of a sum can be factored 

through exactly one of the injections. 

Axiom 7. For each object (r there exists a dis­

crete object ICfl and a bijection t & such that for 

each discrete object S and each map S —*• G there e-

xists a unique f 

commutes. 

I t i s c l e a r that II i s a functor, and \f\fmono*& 

*=-£ -f rmorur I f I epi = £ "f -efU > 

Axiom 8 . I f C7 A are d i s c r e t e then there e x i s t s 

a d i s c r e t e object B and a map C x* B -^-> B such 

that for every d i s c r e t e object X and mapping C .x X~> 
•f . a ' . ., JK. „c 

* -2» the*re e x i s t s a unique mapping X > o such 

that 

^ tt commutes. 

I t i s c l ear that the elements of E> are in one-

one correspondence with the maps from & to C in the 

following way: 
C 

Let nj. e & f define (n+) to be the unique map 
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for which* 

c*r 
tv 

-> c 

» 

Cн eř-

c^) 

-> в commutes; if 

B l e t L-f 3 be the unique map such that 

Cx4' > C 

CxC-FJ 

C*Є>C 
-> B commutes. 

It i s clear B can be extended to a functor 

of two variable contravariant in the exponent. 

Axiom 9. There exists a discrete object N and 

maps 1 ' - £ + N , N - ' 

object X , xo 6 X and each map X 

a unique map N -^-> X such that 

/ 

N such that for every discrete 

—> X there exists 

N •-> N 

4', X 

"< > X commutes. 

Axiom 10 • If C, D are discrete and C has e-

lements then for every map C — > B there exists 

6 -*-!• C such that f^f a f * 

We now have the following theorem schema: If $ 

is a theorem of the elementary theory of the category 
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of sets and $' is obtained from £> by replacing "setH 

by discrete object then $' is a theorem of R̂  . 

Axiom 11* There is an object A of R such that 

(1) A-^-» A =-*>* « A , 

(2) IAI =* 0 , 

G<=> G 

Definition: IAI 

We note that if A JL-> G then m, 

thus there exists uniquely V •- > I (r I 

(3) З f , A i not di crete. 

fľl, ø 

f Ш •HGI and 

Axiom 12. V objects G there exists a mono-

morphism R -S-^ IGV*' such that for all -f , A ^ G 3«x 

such that 

i&r 

R commutes 

and i f .m' is any other monomorphism with this property 

there exists a unique monomorphism rm" such that 

R commutes. 

Thus i f flrif an both satisfy the two above pro­

perties then we have 
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^ commutes 

thus /mJ"mv -*» m%\ mv"mv' -= sm, thus fm,"mv"mv$/m! * 

a» /nv , which by uniqueness gives mrt" m%m/rrv" -* W 

and as /m." is mono, /m>' ̂ n," -» f *• Similarly 

/m* mn « 1 R . 

Furthermore if jh, is an isomorphism R —•* R# and *m 

satisfies the conditions of axiom 11 so does Hm . Thus 

if we define ( \G\9mv ) represents G to mean that 

( KT(,.TO. ) satisfies the properties of axiom 12 with 

respect to & . then if ( IGI , m ) is another represen­

tation then m> = h./m where jfe, is an isomorphism. 

Axiom 13. In every discrete object H and every 

monomorphism R > H"* there exists an object G such 

that IGI -• H and ( H , /m ) represents G ̂  

furthermore if G' is represented by (H,mv) 9 G is 

isomorphic to &'. 

Axiom 14. If G — » H is any morphism and G 

is represented by (IGI, mn ) and H fey (H^/in/) then 

there exists a unique map f' such that 

R "* > icr 

commutes* 

- 577 -



It is clear that this is independent of the 

choice of representatives nn. 7 an! as can be seen from 

the commutative diagram 

-и&r 

Љ, Ą = И Г 

тn, ->l<7 ľłV 

V 

Jfo 

R'- /m ->i&r 

ITГ 

í - H ľ 

^|G| where Jh/^Jk/ are isomorphisms. 

Axiom 15* If G, H are discrete and /my rm' are 

monomorphisms R ^2L> g ^ £ ' J 2 ^ \\^ and f i s a map 

f 
G 

which 

H such that there exists a unique map f for 

commutes then 

if G * H * are represented by (Gf/m,) 7 and (H9/m') 

respectively, there exists uniquely a map &* > H* 

such that If *l ~ f , 

Definition: The pair category F̂  is the cate­

gory whose objects are pairs ( G, nn, ) where G is 
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discrete and R > G^* is a monomorphism; a morphism 

4 *f 
( Gr rm,) •* ( H , <m' ) is a map (r —* H for which 
there exists a unique map V such that 

commutes. 

Meta-theorem I; Let A , be any model of R1 and 

B be the pair category constructed from A • Then 

there exists a natural equivalence Ji > & with the 

property that H is discrete <-•--*> T ( H ) -» (Hf o„ ) 

where 0 > H"1 ; and T ( A ) can be chosen to be 

(it, C M A U > . 

Proof: Axioms 12 - 15 insure the existence of 

a natural equivalence. We need only show that the equi­

valence can be chosen with the two given properties. 

Let G- be discrete and (G-, nn> ) represent G- 0 

If rm, -j-» 0 then R -# 0 which implies R has ele-

ments; thus there exists * such that 1 -=-• K — A vx , 

Now as & is discrete there are no maps from A — > H 

thus the following diagram commutes vacuously: 

'0 By axiom 12 there 

is a monomorphism rm' from R to 0 • thus we have 

4 ' — > R • 0 y i.e. 0 has elements. Thus K • 0 
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°N H* The converse and rrrv must be the unique map 0 

i s similar* 

Since A i s determined by i t s def ini t ion up to i -

somorphism, and 1/41= nv by def in i t ion, we need only 

that CrrVjLl iJ 3 ) s a t i s f i e s the three defining proper­

t i e s of A • 

(1) If 0* f CI <AIJ)—*~.> (<n7L\1A\J) *.>* = 4^ . 

Let i be such a morphism, then we have the fol­

lowing commutative diagram: 

map 1 

As 1' i s the only 

L 

OГЪ commutes i . e . 

(2) I C ^ , C M A I 3 ) I ** 0 i s obvious as rrv -?-* 0 . 

(3) 3<f, I fat, C M A U ) I - ^ Cfr,/in)«--» /m, * 0 . 

Let CGj/m) be an object in B . If rrrv = 0 9 

and (m7 CI ^ 1 3 ) T > (Gy/m) f there ex i s t s V such 

that 
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П.J-ľ — * — * • ф,m/ 

r 
-s> G " commutes, but there 

are no maps from \0 to 0 . Thus (G, /wt) discrete -=-»> 

there are no maps from (m,7 Lltyl ) to CG 7*nt). If 

/m, & 0 and, R ^^ Q^ } then R has elements. Let 

4 - * ^ R 22^ $«* # T h e n ^ i*^ e # i t i s claimed that 

( x ' /m- > i s a morphiam in B from Cm,., CI 4A IJ ) to 

(G-j/m.), This wil l be true i f the following diagram com­

mutes: 

y -Ңдi- -*• /ia 

(xw)" 

IŤV -*. fr" 

This is equivalent to the commutativity of 

1 

nь 

•X ЃñП/ 

* G which i s trivial* 

Meta-lemma I: In B (a* in meta-theorem I ) , 

1 C<r, /m,)lB » C6-, o ) . 
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Proof: It has been shown that the discrete ob­

jects of B are those of the form (Or y o) . It is 

clear that (Cr^o) — ^ ~ » (<j7rm) is a bisection and 

the following diagram commutes 

(Cr>0) ^ > (G,™> 

Tf'-f 

CH7o) -, and f i s uniquely 

determined by f . 

Meta-lemma 2: Let B, C be complete models of 

P t*cL Li/uf r\dL . Then there are functors B > C and 

CoL V<**> > &«* such that LcxMfvvt* -^ 1 and 

<*/. A 

IHAJLLOAAT & 1 where B and C are the f u l l subcate­

g o r i e s of d i s c r e t e objec t s of B and C r e s p e c t i v e l y . 

Proof: This i s a restatement of the pr inc ipal 

r e s u l t of C2J. 

Meta-theorem 2: Let B^ C be complete models of 

R , l e t B' C' be p a i r ca tegor ie s constructed from B, C 

r e s p e c t i v e l y . Let IA L -* nt and IAL == m then B' 

and C are natural ly equivalent i f f Law (m^ ) » m.^ • 

I f B' and C are natural ly equivalent the equivalence 

can be given by LCUAT'CCT 7mt) ** CL/ouwCGr) , Lcuur (&*.)) . 

Hence R and C are natura l ly equivalent £=> m^ & m, 0 

Proof: I f § % B —> C i s a natural equivalence 
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then $ I B, i s a natural equivalence from B to C* 

and thus there i s a natural equivalence $' .* B ' — > C 

and §'(ti,o)~ l$<H>l, $ ' O A I , o > S $'JAI -^ /rt,, , 

but 1AI « /УV» thus /7Z — m-2 

„^ Conversely, we have Law : B'°^—• C'"" and 

d e f i n e Lcuur' (G7<rrv) =• CLOAAT CG), Lcuur Crm)) «, The f a c t 

that Law' i s an equivalence can be seen from the com-

mutat iv i ty of the fol lowing diagram and i t s inverse. 

( v4te,' i s defined s imi lar ly to Law ' . ) 

P ^ G * - --Ž-> Lcvunwu, CG )"**- ^ LOAAHHMJL CQ-) 

LaлweЛfrCЮ > Laлiн>eш>(т 
ìi Ч -І> LaллУiУЄX&C ) 

UxMtWtíbOh) 

where 0 i s the natural isomorphism given by the equiva­

lence . I f B' and C' are natural ly equivalent then so 

are B and C . 

Remark 1 . I f ax, i s f i n i t e one can characterize 

RC<TV) completely by changing the axiom 11 - (2) to 

IA \ = rrt • ' - '**• / + * ' •* • ' Cm. tum&b) . 

Remark 2. I f RCnv) i s the usual category of r e ­

l a t i o n a l systems of type im\ ^ and E> i s any complete 

model of R in which 1AI « m , 

Law''C(T7fm,}'*Lix\ ' -*L+\G\l,<m,') where mf i s d e f i -
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ned by /m/(x ) * Mrm,'7 X € 6" 

The Characterization of R. I finite 

Let J - {I},'!; ».. /n,--/f j , Then we have the fol­

lowing axiom system for R^ . 

Axioms 1 - 1 0 are the same as for R * 

Axiom 11. For each object (r there exists ob-

jects !<r|0 7 ,6*)^ ... I(rl^ ? bisections tj !&/• # 

such that for every discrete object S 9 and any map 

S —•> G there exists unique maps f; such that 

coffiinutes where t.,11 

are as in axiom 7. 

Definition: <r is an i -object <»•> 0> 

Axiom 12. If &1 • ^ i ̂  ^ then ^ * ^' 

for all -t 7 ̂  and furthermore t- -» 4 i.e. <x is 

discrete. 

Axiom 14* . For any i object H and any map 

H * (r there exists uniquely a map f * such that 
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commutes; moreover 

i-fľ - if.*i . 

áaUPJËS 15^ - 19 The i-objects sat i s f ies a-

xiom 11 - 14 of R . 

Let G be any object, l e t (IGI, nm^ ) represent 

\<J\± 7 CIIGl^l -» IG/) as in axiom 14^ . Thus we may 

say (IGL/tfV. )* represents Cr . If G — H 
rfl. then we have l<xV '* > IH|. and J /f |. / « / * | # 

thus we have the following commutative diagrams 

Ri ! — > IGI * 

•T 

«* 
W * 

l-fl 

-*. ІШ 

where /n * - I A. I where A * is the object A in the 

copy of R associated with 4/ » 

Axiom 20. C I G/
f
 /m^ ) ^

< / n
, represents (r

 ?
 and 

O 0" I, /wiA )
%
'

< / r t
 represents ^ , then rm^» -» M^/m.^ where 

the Ai * are isomorphisms. 
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Axiom 21. If G is discrete and cm.^ are mo-

nomorphisms R- — ^ I G I % then there exists uniquely 

up to isomorphism on object H , I HI - G and^?anrt^)i<^tr 

represents H . 

Axiom 22. If ( & rm^ )± < ̂  , C H/m.^ ) ̂  ̂  ^ 

represents G*7 H * respectively, and furthermore if 

G -£-» H such that 3 I f'• -for which 

<*>tv^ 

*< 

commutes then the­

re exists f*, G* ** > H * I**' * * \ furthermore 

(G,Jfet). , (H Jh£ ). ̂  represent I G*l • and 
7 «* -t*<>»V ? J 1« 1, < OV r ^ 

l H*,^, respectively then f represents l f * V . 

Definition: The /n, -tuple category fi- is the 

category where objects are tn, -tuples (G-^trn^ X-î /yt- whe-

re R —-*-->lGI ., IA • I -*• /n,- and VJ is discre­
te -f 

te and <G, /m-. ). -—-^CH,^. >.. <=> G > H and 

for all -i , 3 4' 
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commutes. 

Definition: d^CG^tm,). -» c<x rm/- )• ̂  ^ where 
-v * 4 Kofi t> i <. m. 

ґ7ГЪ- ==* 0 <i Ф jr 

Meta-theorem I
#
: Let «/l be any model of R j and 

let B be the m-tuple category constructed from JL . 

Then there exists a natural equivalence T ; JL — • B 

such that TCI6V ) ** d£CTC<r)) , 

T (A * ) ~ On* , /?n. ) where /m. ** 0 i 4s i* 

« V - - i ^ i - . 

Meta-theorem 2*: Let B 5 C be complete models 

of R. , Let &' C be the pair categories constructed 

from them. Let IA 
•-i'в /n,. and l A ^ I ~ nri£ then ft' 

and C are naturally equivalent iff there exists a func­

tion f : I—¥ I one - one , onto such thatUMir(/rt,.)& /m'4o£V 

If B' and C are naturally equivalent then the equi­

valence can be given by IOAW'(Gr} /*̂  ) ̂ CLawCG")^ Low m, ) # 



Hence B and C are equivalent iff an f with the 

above property exists. 

Remark. One can make the same remarks modulo the 

appropriate changes about R* that one can make about 
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