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AN ELEMENTARY CHARACTERIZATION OF THE CATEGORY OF
RELATIONAL SYSTEMS

E. MENDELSOHN, Montréal

Introduction

In [2] F. Lawvere characterized the category of
sets by elementary axioms, using a language, with one
sort of variable symbols (mappings) and two unary func-
tions symbols (domain and codomain 1) and one ternary
relation, composition. A j—) B means f is a map
with domain A and codomein B . D. Schlomiuk,[5],
pvreaented a method of characterizing the category of
topological spaces by using the full subcategory of
discrete spaces; the fact that the functor, inclusion,
from sets to topological spaces has a left adjoint, to-
gether with additional axioms on a certain constant (the
two-point space ({a A}, {ai, {a,83) ). Lawvere also
characterized algebraic categories [1], using the spe-
cial properties of a certain constant, the free object
on one generator, and an adjointness condition. It is
conjectured that what one needs is a pfeviously charac-

terized reflective subcategory C and finitely many
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objects a, ..., determined up to isomorphism,

is

such that the full subcategory on C ya_‘; N

in the transitive closure of "adequate". We shall a-
dopt this technique in the present paper to the cate-
gory of relational systems.

In [31,[4), Hedrlfn, Pultr and Trnkov4 defined
morphisms to form the category of relational systems
of type 4 , R (4), and showed the usefulness in re-
presentation of abstract concrete categories as full
subcategories of a category of relational systems. The
definition of the category of relational systems of A
is the following: '

Let A=4im 3,
nals, and I is a set. Then the objects are pairs

<x;{R1‘.]1‘.eI) where R{_Exn".

where the m, are cardi-

) £ Y, {si}i,e.r ) is a morphism iff f is

(X, 1R},

1€l
n.

e function from X to ¥ such that “f(R;)ES; for

11 ¢« €I : wh if _L)X xﬂ"‘: 'nif.()a

a ; where if m, € . (g

-gf, m, s vy,

’

Although the present author was not able to find
a complete characterization of R (A) such that every
complete (categorically) model was naturally equivalent
to the R(A) of Hedrlin and Pultr, he did find ar; a-
xiom system denoted by RI such that if C is a ca-

tegory satisfying the axioms of RI and C is comple-

2
te then C is naturally equivalent to R(A) where



A = {m'«t ;-Le 1 @and one can determine the values of

the m; by a simple test in C, whenever I is a
finite set. For I infinite one needs infinitely ma-
ny a; to form the category in the transitive closure
of "adequate" for the generalization.

We shall start by stating the axioms for R,,
(where 1 is a oné point set) and then develop from

this the axioms for RI .

Characterization of i{1 .

Axiom 1. R, has an initial (0) , and terminal
(1) object, equalizers, coequalizers of pairs of maps,
products.and sums of pairs of objects.

Axiom 2. There is en object 1’ such that if G
is any object, G # 0 = 3f, i 6.

Definition: An object G is discrete <= J» ,
G-L 17 .

Axiom 3. G Y1 emaGcEs = u=v.

Definition: X € A (or X is an element of A )
= {25 A,
(Note the definition 1 5 A given by Lawvere,[1],
and Schlomiuk [5] is not applicable here.)

Axiom 4. 4“7 is a projective generator.

It is clear that if A =» B then £ is
i (==>VxeB,Iyp e A Byf = X ; £ is
mono'==> for every pair of elements X, %Y € A,

x+ g, xfdeayf.
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Definition: f is a bijection<e ¥ is mono
and eqne -

Axiom 5. Every non zero object has elements.

Axiom 6. Every element of a sum can be factored
through exactly one of the injections.

Axiom 7. For each object G there exists a dis-
crete object IG! and a bijection tG such that for
each discrete object S and each map S LN G there e~

xists a unique ¥ such that

IGl— @&

S commutes.

It is clear that Il is a functor, and If/mono=>
= fomono |, 1flepi = fepl .

Axiom 8, If C, A are discrete then there exists
a discrete object B® and a map C < B® €5 B such
that for every discrete object X and mapping C x x%s
458 there exists a unique mapping X LN B® such
that '

/CxX

f
Cxh
(xB—=2 $'R

commutes.

It is clear that the elements of B® are in one-
one correspondence with the maps from B to C in the
following way:

Let n4 e Bc , define () to be the unique map
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for which®

Te
(<1 ————>C
Cxy (ny)

Cx B2 5B commutes; if
Cc N B let [£] be the unique map such that

n,
(x4’ —E—>¢

Cx<LCf] £

CxB__ 2 5B commutes.

It is clear Bc can be extended to a functor
of two variable contravariant in the exponent.

Axiom 9. There exists a discrete object N and
maps 1°-2> N , N ~5 N such that for every discrete
object X, X, € X ) and each map X X, X there exists

a unique map N X% X such that

N ’
_—
=7 y
1 X X
k
X —2 5 X commutes.
Axiom 10. If C, B are discrete and C has e-
lements then for every map C 25 B there exists
B %> C such that fof = .

We now have the following theorem schema: If @

is a theorem of the elementary theory of the category
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of sets and §’ is obtained from $ by replacing "set"
by discrete object then &’ is a theorem of R,

Axiom 11. There is an object A of R such that
W AtsAa=s=A

2

(2) Al %0,
(3) 3¢, Ai—) GG is not discrete.

Definition: IAl= = .
We note that if A-—f—>G then rn,—'ﬂ—HGI and

thus there exists uniquely 4° -—l&) 1GI™ .

Axiom 12, V -objects G there exists a mono-
morphism R 2, |GI™ such that for all £ , A, 6 34

such that
m

1G]}
[V
v m

1

\l\ R commutes

and if m’ is any other monomorphism with this property

there exists a unique monomorphism m” such that

R—""__ 5 GI™

Thus if m, m’ both satisfy the two above pro-

commutes.

perties then we have
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R—" s I6I™

i/

" ’ )
thus m“‘m =m’', m'm’ = m  thus m"m"m’ m’=

commutes

= m , which by uniqueness gives ™" m""m" = m”
end as m" is mono, m”"'m" = g, - Similarly
m'm" = 4, .

Furthermore if Jb is an isomorphism R LN R' and an
satisfies the conditions of axiom 11 so does som . Thus
if we define (|Gl,m ) represents G to mean that
(1Gl,m ) satisfies the properties of axiom 12 with
respect to G, then if (|G|, m ) 1is another represen-
tation thenm = Hm where S is an isomorphism.

Axiom 13. In every discrete object H and every
monomorphism R ~n, H”™ there exists an object G such
thet 1Gl = H and (H, m) represents G,
furthermore if G’ is represented by (Hm), G is
isomorphic to G’ . .

Axiom 14. If G i—->H is ahy morphiam and G
is represented by (IGl,m ) and H 1ty (H,m') then
there exists a unique map f’ such that

R "5 1GI™
£ 1™

RI—m' o |HI™ commutes.
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It is clear that this is independani_ of the
choice of representatives mm , m' a8 can be seen from

the commutative diagram
— h
R——% s

M 1=nI"

§ 1™
, \
RI — ™ o |G

& 1=111"

Y A A
R —Bm 5 (GI™  uhere M,k are isomorphisms.

’

Axiom 15, If G, H are discrete and #»,m" are

4
monomorphisms R "> G™, R’ 2 5> H™  end £ is a map

G i—-) H such that there exists a unique map ¥’ for

which R m cn
_——-—-——.—)
’ £ £
4
R—™ o H™ commutes then

it G*, H*  are vepresented ty (G,m), and (H,m”")
reapectiyely, there exists uniquely a map G*—ﬂﬁ H*
such that J£*| = f .

Definition: The pair category Ff' is the cate-

gory whose objects are pairs (G,/m ) where G is
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discrete and R — G™ is = monomorphism; a morphism

(G,m)—L?(H,m’) is amapGi»H for which

there exists a unique map +’ such that

ip | l“

R o H™ commutes.

Meta-theorem I: Let A be any model of R, and
B be the pair category constructed from .A. . Then
there exists a natural equivalence A —L B with the
property that H is discrete <==> T(H) = (H, o, )
where 0 —D-H—b H™ 4, and TC(A) can be chosen to be
(m, [l 1AIJ) .

Proof: Axioms 12 - 15 insure the existence of
a natural equivalence. We need only show that the equi-
valence can be chosen with the two given properties.

Let G be discrete and (G, m ) represent G .
If m % 0 then R % 0 which implies R has ele-
ments; thus there exists X such that 1'%y R™> G™,
Now as (@ is discrete there are no maps from A ib H

thus the folloiing diagram commutea vacuously:

INEIDR
4'/ )
\

0

is a monomorphism m’' trom R to 0 ; thus we have

IHI™

By axiom 12 there

1° %25 R —”ll) 0, i.e. 0 has elements. Thus R = 0
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and m must be the unique map 0 l H™ . The converse
is similar.

Since A is determined by its definition up to i-
somorphism, and |Al= m by definition, we need only

that (m, [l 11) satisfies the three defining proper-

ties of A .
(1) 1 (m, L1 4,10) ~E— (0, L14,10) =F = 4,

Let £ be such a morphism, then we have the fol-

lowing commutative diagram:

Lhef3
19— = s ™

1' £

1" n” As 1’ is the only

e

’
map 1/ ——> . This implies that
m —=_sn

m +

n —=2 s m commutes i.e.
=, =~ 11,0 .
(2) I (m, 011, 1)1 #+ 0 is obvious as m = 0 .
(3) 3¢, lm, L4, 1D 155 (6,m)e= m + 0.

Let (G,/m) be an object in B . If m = 0,
and (m, Cl11,1]) -—i—#(G,m) , there exists ’ such

that
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(14,13
—_—

/ ~n
£ f
0 — @™ commutes, but there

are no maps from 1’ to 0. Thus (G,m) discrete =

there are no maps from (m, [11,(1) to (G ,m). 1f

m #0 eand, R 2> G"™ then R has elements. Let

)

(x’m) G

’
1 =5 R ™ G™ ., Then m 7% It is claimed that

(x'm ) is a morphism in B from (m,CI1, 11) to
(G,m). This will be true if the following diagram com-
mutes:

g LA e

x’ (xm)™
R—m™ o 6™

This is equivalent to the commutativity of

mn
1 xm
xm
m —C—a G which is trivial.

Meta-lemma I: In B (as in meta-theorem I),
l(G',fm.)’B = (6,0).
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Proof: It has been shown that the discrete ob-
jects of B are those of the form (G, o0) . It is
clear that (G,0) —%> (G, m) is a bijection and

the following diagram commutes

(G,0) —E&—— (G,m)
f'= f
.f'
(H,0) ; and £ is uniquely

determined by f .

Meta-lemma 2: Let B, C Dbe complete models of

a . Then there are functors BY 2, (% , @and

e e, pet such that Lawwvere =~ 1 and
verelow = 1 where Bd' ana Cc% are the full subcate-
gories of discrete objects of B and ( respectively.

Proof: This is a restatement of the principal

result of [2].

Meta-theorem 2: Let B, C be complete models of
R ,let B’ ) C’ be pair categories constructed from B,(C
respectively. Let |Al; = m, and IAl, = m,  then B’

/YLQ_.

and C’ are naturally equivalent iff Law~ (07.1) =
Ir B’ 9nd C’ are naturally equivalent the equivalence

can be given by Law ‘(G,m) = (Law (G) , Law (m)) .
Hence B and C are naturally equivalent > m, & m, .

Proof: If $ : B —» C is a natural equivalence
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then 1B, is a natural equivalence from BY to C*

and thus there is a matural equivalence &’ : B"—> C’
and 3'(H,0) = 1$(HWI, UAI 0) = J'IAI & m,

but (Al =m, thus m, = m, .

’

Conversely, we have Law~ : [ C'D‘ and
define Law’(G,m) = (Law (6), Law (m)>) . The fact
that Law’ is an equivalence can be seen from the com-
mutativity of the following diagram and its inverse.

( v»ee’ is defined similarly to Llasr” )

")id 8.

Larvvere (m)
R 6™ -2 Lamm(G)”"———-:‘-» Lawvere (G) ¢

BN 0
G G o)
Lmumm(k)—————*m) Lawvere G™ i > Lawvere (G)

where © is the natural isomorphism given by the equiva-
lence. If B’ and C’' are naturally equivalent then so

are B and C .

Remark 1. Ifm is finite one can characterize
R(m) completely by changing the axiom 11 - (2) to
IAl=m. ‘= ‘+ "+ * ... 7 (mtimes) .

Remerk 2. If R(m) is the usual category of re-

lational systems of type imi, end B is any complete
model of R in which Al = m ,

Law’ (G, m ) =Ux| * 231G}, m’) where m’ is defi-
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ned by m’(x)=xm’, x€e™ .

The Characterization of RI , 1 Zfinite

Let I =40,1,...m-13 . Then we have the fol-
lowing axiom system for R, .

Axioms 1 - 10 are the same as for R .

Axiom 11, For each object G , there exists ob-

e
6G

Jects VG|, G, ... |G|  bijections t,m' ,

b d

such that for every discrete object S , a@nd any map

5 £5 G there existe unique maps f; such that

G

t ¢

(Gl

(6l—ims (6], —2 > G
A
I
)
| £
1
§ ‘: f

S comautes where t, /I

are as in axiom 7.
Definition: G  is an 1i-object (==> O; = 1

Axiom 12, If 6, = 03-_ 1 # # then 61; = 0;

for all 1,3 and furthermore tG = 46 i.e. G is

discrete.

Axiom 141-'. For any 1 object H and any map

H-%> G there exists uniquely a map f* such that
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H commutes; moreover

I£1' = 1£*1 .
i

Axioms 15 - 19. . The t-objects satisfies a-
v v

xiom 11 - 14 of R .
Let G be any object, let (IGI, am; )  represent

el y (G, 1=1GI) as in axiom 14; . Thus we may

say (1Gl,m; ), represents G. If G S ST

then we have IG'L; ——'j—'i—blHl{_ and HPI; I=1f1,

2

thus we have the following commutative diagrams

R; ._1‘_9 lGl’n’.

'y l (#7%

R, — % 5 |HI

where m; = IA;I where A. is the object A in the

copy of R associated with 4 .

Axiom 20. (IGl,m;)._  represents G , and
7 4
(6y,m’), , represents G, thenm; = /h;'m,‘; where

the hﬁ' are isomorphisms.
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Axiom 21. If G is discrete and m, are mo-

m.: " . X
nomorphisme R —2x>|Gl ¥ +then there exists uniquely

up to isomorphism on object H , IHl = G and(G,m;);

1 1<7

represents H .

Axiom 22. If CGm$)1,<'ﬂ« 7 (H ml’i )

1< T

represents G*, H* respectively, and furthermore if

G £, H such that 3 lf; for which
er_"‘ m:
——G
R; G
’ m;
ﬂ; +
' m’ 2
R ——2x—> H commutes then the-
x
re exists f*, x5 H* j$*¥1 = £ ; furthermore

‘ ¥ P x| .
(G, &3 %_, ,H W) _  represent 1G*I; ana

| H*\a', respectively then f represents |f¥l. .

Definition: The m -tuple category Ny is the

category where objects are m -tuples (G, m; )£<m whe-

. m;
re R—T-JL»\GI TA ;|

, = my and G is discre-

£
te and <G7”"’4‘,)1;;,,{""’\(H7’k(; )1:<’n@> G — H and

for ell 4 , 3¢

7
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. R n;
R’. —_—¥ > H commutes.

initi : ?" = 2.
Definition: J» CG?’m:z)i«n (Gmj);_, where

’

' . . .
,m,;'—O 1 ¥+ 2 rm,a_—m;-‘,

Meta-theorem I°: Let A be any model of R; and
let B be the m-tuple category constructed from A .
Then there exists a natural equivalence T : A — B
— %
such that T(I1GI;) = LI (TN ,

TCA;)=(m; ,m,) where m;, =0 i#* 4

m. =LC1 . 11.
F4 Aé

Meta-theorem 2°: Let B, C be complete models

of R1
from them. Let IA,':IB =m,; and !Ailc = m; then B’

., Let B’,, C’ be the pair categories constructed

and (’ are naturally equivalent iff there exists a func-

tion £ ¢ I— 1 one-one, onto such that Lcwf‘(”b_;)g ’m:,gﬂ)-

If B’ and C’ are naturally equivalent then the equi-
valence can be given by Law(G,n,) =(Law (G), Lawm, ).
Tl



Hence B and ( are equivalent iff an £ with the
above property exists.
Remark. One can make the same remarks modulo the

appropriate changes about RI that one can make about

R .
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