Commentationes Mathematicae Universitatis Caroline

Milan Roman

On nonplanar graphs with the minimum number of vertices and a given girth

Commentationes Mathematicae Universitatis Carolinae, Vol. 11 (1970), No. 1, 9--17
Persistent URL: http://dml.cz/dmlcz/105262

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1970

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinas 11, 1 (1970)

ON NONPLANAR GRAPHS WITH THE MINIMUM NUMBER OF VERTICES AND A GIVEN GIRTH

Milan KOMAN, Prana

By the girth of a graph G we mean according to H. $-J$. Nos [2] the length of the shortest circuit included in the graph G. According to the well known theorem of G. Kuratowski [1] an arbitrary graph is nonplanar if and only if it includes a subgraph which is homeomorphic with the complete graph K_{5} (Fig.l) or the regular bicomplete graph $\mathrm{K}_{3,3}$ (Fig. 2).

Fig. 1

For example the so called Petersen graph P (Fig.3)
which is not a planar graph contains aubgraph home morphic with the graph $K_{3,3}$ (in Fig. 3 the edges of this subgraph are denoted by thick lines). The graph K_{5} is nonplanar graph with a girth
$t\left(K_{5}\right)=3$; the graph $K_{3,3}$ is a nomplanar graph with a girth $t\left(K_{3,3}\right)=4$. Petersen's graph P is a nomplanar graph with a girth $t(P)=5$.

Now the natural question arises: Which is the minimum number $v_{n}(n \geqq 4)$ of vertices of nonplanar graph G which have a girth $t(G)=n$.

The answer is given in
Theorem _1. The minimum number $v_{n}(n \geqq 4)$ of vartices of all nonplanar graph e G which have a girth $t(G)=m$ is equal to
$v_{n}=\left[\frac{9(n-1)}{4}\right]+d_{n}, \quad(n \geqq 4)$
where
$d_{n}=0 \quad$ if $m \not \equiv 3(\bmod 4) ;$
$d_{n}=1$ if $n \equiv 3(\bmod 4)$.
Proof: a) First we shall show that
$v_{n} \leqq w_{n}=\left[\frac{g(n-1)}{4}\right]+d_{n}$.
Therefore we shall construct a nonplanar graph G_{n} of the given girth m which has exactly w_{n} venices. The number w_{n} can be expressed in the form

$$
w_{n}=6+9\left[\frac{n-4}{4}\right]+r_{n}
$$

where

$$
\begin{aligned}
& n_{n}=0 \quad \text { if } n \equiv 0(\bmod 4) \\
& n_{n}=3 \quad \text { if } n \equiv 1(\bmod 4) \\
& n_{n}=5 \text { if } n \equiv 2(\bmod 4) \\
& n_{n}=8 \quad \text { if } \quad n \equiv 3(\bmod 4)
\end{aligned}
$$

Now let us construct the graph $K_{3,3}$ (Fig.2). On each of the edges h_{i}, where $i=1,2, \ldots, r_{n}$ we choose $\left[\frac{n}{4}\right]$ new vertices. On each of the remaining edges $h_{j}\left(j=r_{n}+1, r_{n}+2, \ldots, 9\right)$ let us choose $\left[\frac{n-4}{4}\right]$ new vertices. In this way we obtain the graph G_{n} which has w_{n} vertices. The graph $K_{3,3}$ contains only quadrangles and hexagons. The quadrangles of the graph $K_{3,3}$ turn into polygons with at least n vertices in the graph G_{n} (see Table 1). From the hexagons of graph $\mathrm{K}_{3,3}$ circuits of a shorter length than $6\left[\frac{n}{4}\right]$ cannot develop in graph G_{n}. Which is always at least n for $n \neq 7, n \geqq 4$. If $n=7$, then every circuit of the graph G_{n} which develops from the hexagon of graph $\mathrm{K}_{3,3}$ has the length of at least il. Besides the circuits which have developed from quadrangles and hexagons in the graph $K_{3,3}$ there no other circuits in the graph G_{n}.

So the inequality $v_{n} \leqq w_{n}$ is proved.
b) We shall prove the equation $w_{n}=v_{n}$. We can apparently suppose that the nonplanar graph G_{m}^{*} with a girth m which has the minimum number of vertice: v_{n} is itself homeomorphic with the graph K_{5} or $K_{3,3}$.

Sable of lengths of circuits in the graph G_{n} which are induced by the quadrangles of the graph K_{313}				
Quadrangles induced by	$n \equiv 0$ edod	$n \equiv 1$ $\bmod 4$	$n=2$ $\bmod 4$	$n \equiv 3$ $\bmod 4$
$h_{1} h_{7} h_{2} h_{6}$	n	$n+1$	n	$n+1$
$h_{2} h_{9} h_{3} h_{8}$	n	$n+1$	n	n
$h_{1} h_{4} h_{8} h_{6}$	n	n	n	$n+1$
$h_{3} h_{4} h_{7} h_{9}$	n	n	n	n
$h_{1} h_{7} h_{9} h_{5}$	n	n	n	n
$h_{1} h_{8} h_{6} h_{5}$	n	n	n	$n+1$
$h_{1} h_{4} h_{3} h_{5}$	n	$n+1$	$n+2$	$n+1$
$h_{2} h_{7} h_{4} h_{8}$	n	n	n	$n+1$
$h_{2} h_{6} h_{5} h_{9}$	n	n	n	n

Let us first suppose that the graph G_{n}^{*} is homeomorphic with the graph K_{5}. Therefore we can construct the graph G_{n}^{*} from the graph K_{5} so that we choose $v_{n}-5$ new vertices on its edges. Then on every triangle of the graph K_{5} we must choose at least $n-3$ new vertices. In the graph K_{5} there are, on the whole, 10 different triangles, while every edge be-
longs to three triangles. So the graph G_{n}^{*} develops from the graph K_{5} by adding at least

$$
\left[\frac{10(m-3)+2}{3}\right]
$$

vertices. Therefore

$$
\left[\frac{10(n-3)+2}{3}\right] \leqq v_{n}-5 \leqq w_{n}-5=1+9\left[\frac{n-4}{4}\right]+n_{n} .
$$

Because the inequality

$$
\left[\frac{10(n-3)+2}{3}\right] \leqq 1+9\left[\frac{n-4}{4}\right]+n_{n}
$$

has no solution for $n \geqq 4$, it is therefore proved that the graph G_{n}^{*} cannot be homeomorphic wath the graph K_{5} -
So the graph G_{n}^{*} is homeomorphic with the graph $K_{3,3}$. In other words it develops from the graph $K_{3,3}$ so that we choose $v_{n}-6$ new vertices suitably on its edges. Simultaneously we must choose at least $n-4$ new vertices on each quadrangle of the graph $\mathrm{K}_{3,3}$. In the graph $\mathrm{K}_{3,3}$ there are, on the whole, 9 different quadrangles, while each edge belongs to four quadrangles. The graph G_{n}^{*} therefore develops from the graph $K_{3,3}$ by adding at least $\left[\frac{9(m-4)+3}{4}\right]$
vertices. Therefore

$$
\left[\frac{g(n-4)+3}{4}\right] \leqq v_{n}-6 \leqq v_{n}-6=9\left[\frac{n-4}{4}\right]+r_{n}
$$

holds. It is easy to find out that

$$
9\left[\frac{m-4}{4}\right]+\pi_{n}-\left[\frac{9(n-4)+3}{4}\right]=d_{n} .
$$

Hence for $n \not \equiv 3$ ($\bmod 4$) it follows that $v_{n}=w_{n}$ and for $n \equiv 3$ ($\bmod 4$) it follow that either $v_{n}=w_{n}$ or $v_{n}=w_{n}-1$. We shall show that $v_{n} \neq w_{n}-1$ holds even for $n \equiv 3$ ($\bmod 4$). Let us, on the contrary, suppose that $v_{n}=w_{n}-1$. The edges of the graph $K_{3,3}$ which contains less than $\left[\frac{n}{4}\right]$ new vertices (ie. verties which must be added to the edges of graph $K_{3,3}$ for it to become graph G_{n}^{*}), induces in $K_{3,3}$ a subgraph Q which has at least two edges and does not contain a quadrangle. For should the graph Q contain - quadrangle F, then in the graph G_{n}^{*} there would exist a circuit of the length $m-3$, and that is: a contradiction. It is easy to find out that the subgraph Q must be isomorphic with some subgraph which is induced by these sets of edges of the graph $\mathrm{K}_{3,3}$ (see Fig.2):

$$
\begin{array}{ll}
E_{1}=\left\{h_{1}, h_{2}\right\}, & E_{5}=\left\{h_{1}, h_{*}, h_{8}\right\}, \\
E_{2}=\left\{h_{1}, h_{6}\right\}, & E_{6}=\left\{h_{1}, h_{2}, h_{3}\right\}, \\
E_{3}=\left\{h_{1}, h_{6}, h_{4}\right\}, & E_{1}=\left\{h_{1}, h_{6}, h_{7}, h_{8}\right\}, \\
E_{4}=\left\{h_{1}, h_{4}, h_{7}\right\}, & E_{8}=\left\{h_{1}, h_{4}, h_{6}, h_{7}\right\},
\end{array}
$$

$$
\begin{array}{ll}
E_{9}=\left\{h_{1}, h_{3}, h_{6}, h_{7}\right\}, & E_{12}=\left\{h_{11}, h_{4}, h_{6}, h_{7}, h_{9}\right\}, \\
E_{10}=\left\{h_{1}, h_{3}, h_{6}, h_{9}\right\}, & E_{13}=\left\{h_{1}, h_{4}, h_{5}, h_{6}, h_{7}\right\}, \\
E_{11}=\left\{h_{1}, h_{3}, h_{6}, h_{7}, h_{9}\right\}, & E_{14}=\left\{h_{1}, h_{3}, h_{6}, h_{7}, h_{8}, h_{9}\right\} .
\end{array}
$$

Let us denote by $x_{i}(i=1,2, \ldots, 9)$ the mumbet of new vertices which we must choose on the edge h_{i} of the graph $K_{3,3}$ if we want to obtain the graph G_{n}^{*}. Let us further denote

$$
\begin{aligned}
& x_{i}=x_{i}-\left[\frac{m-4}{4}\right], \text { if } x_{i} \notin Q, \\
& y_{i}=x_{i}-\frac{m-4}{4}, \text { if } x_{i} \in Q .
\end{aligned}
$$

Obviously for all permissible i
(N)

$$
x_{i}>0, y_{i} \leq 0
$$

holds. Further
(R)

$$
\sum_{x_{i} \phi Q} x_{i}+\sum_{x_{i} \in Q} v_{i}=7
$$

holds. Because on the edge of every quadrangle F of the graph $K_{3,3}$ there are at least $m-4$ new vertices, the inequality
(F)

$$
\sum_{\substack{x_{i} \in Q \\ x_{i} \in F}} x_{i}+\sum_{\substack{x_{i} \in Q \\ x_{i} \in F}} y_{i} \geqslant 3 \text {. }
$$

also holds. If the quadrangle F is induced by the edges $h_{r}, h_{h}, h_{t}, h_{k}$ then we shall further dinote the inequality (F) shortly by (rotc) .

Now we shall show that all 14 possibilities for the
graph Q lead to a contradiction.

1) Let the graph Q be induced by one of the sets of edges $E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{7}, E_{3}$. Then from the inequality/ (R), inequalities (N) and inequalitice (1267),(1468),(2478) we obtain contradictory inequalities

$$
6 \leqq 2 x_{3}+2 x_{5}+2 x_{g} \leqslant 5 .
$$

2) Let the graph Q be induced by the set of edges E_{6}. Then from the equality (R), inequalities (N) and inequalities (1267),(1345),(2389) we get the contradictory inequalitiee

$$
6 \leqq x_{4}+x_{5}+x_{6}+x_{7}+x_{8}+x_{9} \leqslant 5
$$

3) Let the graph Q be induced by one of the sets E, $E_{11}, E_{12}, E_{i s}, E_{\mu^{2}}$. Then from the equality (R), inequalities (N) and inequalities (1468),(1579), (3479), (3568) we get

$$
2 \leqq 2 x_{2} \leq 2
$$

or $x_{2}=1$. Simultaneousily the inequalit y_{1} (1267) must hold, i.e. the inequality

$$
y_{1}+x_{2}+y_{6}+y_{7} \geq 3 .
$$

It is, however, with respect to the equality $x_{2}=1$, in contradiction with the inequalities (N).
4) Finally let the graph Q be induced by the set of edges E_{10}. Then from the equality (R), inequalities (N) and inequalities (1267),(1468),(1579), (2389), (3479), (3569) we get

$$
3 \leqslant x_{2}+x_{4}+x_{5} \leqslant 3
$$

so that $x_{2}=x_{4}=x_{5}=1$. Simultaneousiy the inequality (1345) must hold, i.e. the inequality
$y_{1}+y_{3}+x_{4}+x_{5} \geq 3$.
But that is, with regerd to the equalities $x_{4}=x_{5}=$ $=1$, in contradiction to the inequalities (N). So the possibility $v_{n}=w_{n}-1$ is excluded even for the case $m \equiv 3(\bmod 4)$. So the whole theorem is proved.

From Theorem 1 the following simple result folIows:

Reault. If G is an arbitrary graph which has lese than v_{n} vertices and has a girth n, then this graph is a planar one.

References

[1] KURATOWSKI G.: Sur le problème des courbes gauches en topologie, Fund.Math.15-16(1930),271283.
$\left[21\right.$ VOSS $\mathrm{H}_{0}-\mathrm{J}_{.}:$Some properties of graphs containing k independent circuits, Theory of Graphs, Proc. Colloq. Tihany, Hungary, 1966, Akede miai Kiadó, Budapest(1968),321-332.

Pedagogicka pakulta KU:
ul.Rettigové 4
Praha 2
Ceskoslovensko
(Oblatum 30.10.1969)

