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11, 1 (1990) 

ON THE CATEGORY OF FILTERS 

Vaclav KOUBEK, Jan REITERMAN, Praha 

In the present note the category of filters is 

studied. Denote by F0 the category, the objects pf 

which are ordered pairs £ A, Tl y where A is a set 

and tf a filter on A . The morphisms from £ A , & J 

to [ B 1 G, j are all mappings <?C : A —> B with 

<JC (G-) 6 f for every G e & . Denote by F the 

category which we obtained from F 0 by identifica

tions of those mappings oC f <*,' which are equal on a set 

F 6 f, Exact definition c.f. below. The note has four 

parts. The first contains the basio conventions and e-

xact definition of the category IF**. The second part 

contains the characterization of epimorphism and mono-

mo rph isms in F . In the third part the concretizabili-

ty of the category F is proved. The fourth part con

tains some examples of categories the concretizability 

of which follows immediately from the concretizability 

of the category F • 

1. Conventions from the set theory 

If A , B are sets, f a mapping -f : A —r B ., 

arid C a subset of A then f/C denotes the res

triction of i to the domain C . 
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If A , B are sets and Jb^ is given for every a, e A , 

then the set of all Jb^, a € A is denoted by 

i ^ ', &> e A } J the mapping a, —-• Jb^ is denoted by 

{JklcueAi. 
<ь 

Conventions from the category theory* If IK is 

a category, then K denotes the class of all its 

objects and K"*
1
' the class of all its morphisms. If 

Q/7 Sr £ K ^ then IK (Q,, Jb>) denotes the set of all 

morphisms from Q, into Jtr. If 

o,,>, c 6 Kr, f 6 K (<*,>>, q,e K(A;c), 
then the composition of f and <£* is denoted by 

(̂ o f . 

We recall the following definition: A category 

K is said to be coneretizable if and only if there* 

exists an iaofunctor from K into $ , where S is 

the category of all sets and their mappings. It is well 

known that a category K is coneretizable if and only 

if there exists a faithful functor from K into £ # 

Definition cf the category IF • Let u be the 

class jf all ordered peirs CA, T 1 ., where A is a 

set and f is a filter on A . A triple < $*, $>,cC > 

will be called a morphism from CA , $*] into CB ^ £ J 

if and only if oc is a mapping <K : A —• B such that 

G 6 ^ <*-* (G) e r . 

We define composition of two morphisms as follows: 

<$,#,.*>• <K fy, <x->"<?,X, /2*<*> . 
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Denote by F 0 the category such that WQ ** C and 

Ff* is the class of all morphisms described above 

with the composition defined above. We define an equi

valence on F as follows: 

<%**<* «i >~ <% f £*> <** >s <*;-$>* 

* < $ } * Qi>* < 3 F « S ^ X o ^ / F - r o ^ / F ; , 

It is easy to see that *** is a congruence on f0"m' 

and consequently it defines a factorcategory JF , morph

isms of which are equivalence-classes of morphisms of 

F 0 with respect to *^s . We shall denote the morph

isms of the category F by 43 q^^Jh^... , 

We shall write ot 6 4 7 whenever < f \ Q>, oc > e 4 

and we shall say that the mapping cG designates the 

morphism 4 • 

2. 

Lemma 1: .A. morphism 4 6 FC[Ai $"±9 £B,£J)is an 

epimorphism if and only if the following holds: 

(l) (Voce-P )CVFe T)CocCF)e Q,) . 

Remark: The condition (1) is equivalent to 

the condition (l'): 

d') (3* e4)CVFe T)(oc(F)e(^) , 

Proof of the remark is evident. 

Proof of Lemma 1; Let us assume that the condi

tion holds and f is not an epimorphism- i.e. 

<3tC,tf Js F^)(3^}JheF([Bf(^lftCf^})(^Jhs^^^^ 
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The last equality implies 

(Vocef )(VfSeq,)(Vre<**>)(3Fe?)(ft*<x</F*s2r*<K,/F). 

It means that ($/<£, (F) ** f/cc (F) f consequently A -

=• ty> which is a contradiction* 

Let us assume that the condition (1) does not 

hold. Then there exists F € f such that aC(F) $ 

£ G*. . On the other hand the set B *~ oC C F ) is not 

a member of ($, because (cC CB ~<fc CF))) r\ F sr 0 . 

Denote: 
£,* <Gn <x.(F); G € Q,} , 

( ^ » iGn C B - o t C F))j G e Q. ? . 

It i s easy to see that &, (or Q, ) i s a f i l t e r on 

a set ocCF) (or /3~otCF . ) respectively)* Let C * 

- Q, u CL u C- > where Q, are disjoint sets 

such that 
ctuod C^ a? naxdu oc C F ) , 

COMXL C% = e«a*<£ Ĉ  « ca**i C& - oc C F ) -

Let &>: oc CF)~» Ĉ  , Ti; : (B~<* (F))-*C&t\: CB-*CF))^ Cg 

be arbitrary bijective mappings. 

Define the f i l t e r 96 on the set C as follows: 

( X e a e ) s (oT^CX A Cj) e Q^A TT;"fCX n C%) c 

e ^ A TT/'cX n C3) € £ 2 > * 

The mappings £, y /cc i B —.* C defined by 

e/ocCF)= ^ / o c C F ) « ^ e/CB~<*CF))~Ti;., <u-/(B-*c(F))=Tl 

designate the morphisms a, Jv such that cy =¥ 4% 
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^ o f s M.c f # 

Consequently, f is not an epimorphism. 

Lemma 2: A morphism f £ t F ( C / \ , ? 3 , C B . , £ J ) is a 

monomorphism if and only if the following holds: 

(2) (Voce f >(3Fe iTKV-x^cF)^*/^-^ <K(X)* (*,(<&)) > 

Remark: The condition (2) is equivalent to the 

condition (2'): 

{2l(3^€f)(3Fef)(Vx^eF)C^^^^^Co<)^ixCy,)). 

Proof of the remark is evident. 

Proof of Lemma 2: Clearly, if (2) is satisfied 

then f is a monomorphism. .Let us assume that the con

dition (2) does not hold, i.e. 

(30te*)(VFerX3o^,ir;eF^^ . 

Put C-tCa^^l j F € 7]. Let 36 be a filter on 

the set C a base of which is the set of all 

*CaF,i£]; Fcfri, where G* € T . 

The mappings g, 9 <tc : C ~* A defined by 

Z(Lo,p9JlrFl)*a>Ft <u,(Ca,F,&rl) ~ % 

designate the morphisms q^7 Jh, of fC f 96 J into 

C A , 7 J such that 

fy 4- M, , - f ^ ^ - f o / H . 

Consequently, the morphism -f is not a monomorphism. 

3. 
Definition: Denote by <%l the full subcategory 

of F the objects of which are all fA ? 7 J where 7 

is an ultrafilter. 
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Convention: Let T .be the class of a l l cardi

nal numbers. For every i g T choose a set X, 

with CCULCL X -=• •£ . The sets X+ wil l be fixed in 

the sequel. 

Definition: For every object LA7TJe F put 

{trum, QJOUUL F -=- 9 L A . $J t . The number B L A 7 &J \\ 
Fe^ 7 

will be called essential cardinality of the f i l t e r 5". 

Lemma 3: There exists a skeleton 4t of % 

with the following property: i f lA^&J € (Ql1 then 

A ' X%IA,TJ% 

Proof is evident. 

Lemma 4: The category <2t is concretizable. 

Proof: It is sufficient to prove that "IL^ is 

concretizable. 

1) First we prove that: 

tx^rx^gj*^ 

Assume that there exist -f c %.Ltl(+9f2f L X^ f Q,J ) . 

If ot G f , F e & , then oc (F)e Q* * For, Q> i s an ul-

traf i l ter and <*r1CX^ - oc CF)) n F « -^ . Thus, 

ea**i oc CF) = ^ while cxvcd F » £ -< AJU # That 

i s a contradiction. 

2) Consequently, 

The right side hand is evidently a set, which implies 

that % is concretizable because we can use the 
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Mac-Lane's representation for the category 1L* dual 

to % . 

Definition: Let IK be arbitrary category. 
DC 

Define the category H as follows. The object of 

the category H are all sets of objects of the ca

tegory IK # Let Q/y Jlr be the objects of the cate-

gory H , Morphisms from Q, to Xr are exactly all 

collections i f I trn € o, 1 where f^ € K (/m, 7 N^^ ) , 

N L € Jlr . We define the composition: 

Remark: It is evident that H is a category. 

Lemma 5: If the category IK is concretizable 

then the category H is concretizable. 

Proof is evident. 

Theorem: The category F is concretizable. 

Proof: 1) The category H is concretizable. 

2) Now we shall construct a functor "Sf : F — > H 

For every lA7?]e IF0' define Y £A, IfJ as the 

set of all [ A., 26 J ? where 96 is an ultraf ilter on 

A and f c af (i.e. F€ f '** F € 2e ). if 

* e F c c A , r j , t & , g j ) , * € * , c A , a e j € y £ A , r j , 

then the set { o & C H ) ; H € d C } i s a base of an ultra-

f i l t e r on B which wi l l be called * (M) .fThe ul

traf i l t e r f ( dt ) does not depend on a choice of at e 

€ -P /) Define: 

Y « ) - < f c A , 9 e 3 ' C A f * J € y C A , r j J , 
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*»ere ffA me'UClA97tl 7 IB^CM)! ) such that 

oC € -f. A .„, whenever oc i s a mapping ot; A -> B 

with oc £ -f * 

3) How we prove that V i s an isofunctor from F 
At —, 

into H # The mapping ¥ / F is one-to-one becau

se 

9 ** n 26 

for each f i l t e r & on A * We shall prove that for 

each a,,£reF0', a » f A, « , * » r B,£J, tyr<M4i8 

one-to-one. Let I , ^ be two morphisms from a to >&*/ 

• * 9^, Choose oo £ f 3̂ 6 ^ and set 

C » «C x £ A ; <* (x ) 4* /3 Cx ) } . 

Since f 4* y C f\ F ± 0 holds for each F e T. 

Consequently, - f C A F j F f i ^ J is a base of a f i l t e r OL 

on A . Let 3£ be an ultraf i l ter on A with 96 z> 

Z> a . Since Ol o ?, 9t € f I A, 2"J , i t i s easy 

to see that H n C t i ? for every H e dt . Therefore 

*LA,mi* 9iA,m >ccm8e(*uently VC*) * HTC )̂ . 

4) The assertion of the theorem follows now immediately 

from 3) and 1) . 

4* Some examples 

1) We recall: a directed set is an ordered pair 

IA,H,1 y where A is a set and ft a partial order on 

A such that 
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(\/a,e A)(V£reA)(3ceA)(ct,H,c8t Xrtic) . 

Let [A„./fc.3 [A^,/trtJ be two directed sets. A trip
le 1 1 2/ 2. 

le < It ? /c* <TC > will be called a morphism from 

[ A 1 ? &- J into [ A 2 , /t^ J if and only if oo is a 

Hl~ H>2 compatible mapping, at: A —> A ^ , i.e. <*t is 

a mapping from A into A* such that 

a,, > e Â  , a/^^-^^ra.)^^^; . 

We define the composition of two morphisms as follows: 

< \ , / t 3 , ^ > e < / t
1 , / t

2 7 * > - < ^ , / t S J l 3 ° * > * 

It is clear that directed sets as objects with morph

isms just described form a category. Denote this cate

gory by R , Denote by IR the factorcategory of R 0 

with respect to the congruence 'v/ where *v> is defi

ned as follows: 

<^^2,^eR0CLAi9^l9tA27/cz])9 1-1,2 , 

<"><,*1,*i>~<*i,*t,«jL> = 

= C3#e A/f)(Vry>e A^ )(xtt><1<y> =*> oc^C<&)~ cc^ty)) , 

2) Denote by P the class of a l l tr iples [ t , T , T 1 

where [ T^ T 3 i s a topological space and t 6 T . A 

continuous mapping f from iT^Tl into [ S , t f 3 wi l l 

be called a morphism from [ t , T , 7" J into [-6, S,tf 3 

i f and only i f -f C t ) » fi> . The composition of morphisms 
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is the usual composition of mappings. Clearly, elements 

of P as objects and morphisms just described form a 

category. Denote by TQ this category. Denote by X 

the factorcategory of T 0 with respect to the congru

ence ^y where «~> is defined as follows: 

ot?/3 e T0 (Lt9T,Tl, £/fe, S?yj) , 

oc- /3 sCJU€%f)foc/U ~ filU) . 

( °US denote the system of all neighborhoods of the 

point t in the topology T . ) 

3) Let ft be the class of all ordered pairs CM,(C^3^ 

where M is a set and /U a non-trivial measure on 

M . If £ M l ( u J € (k , let us denote by D^ (or 

D o su ) the system of all (UL-measurable sets (or 

the system of all N c M such that p C W ) « 0 f res

pectively). A mapping at : M 1 — > M2 will be called 

a morphism from £ M 1, (t*̂  J into [ M^ f pLg 1 if and on

ly if 

( N e D ^ ^ < * - % ) 6 l > ^ ) & C N £ ; D p ^ 

The composition of morphisms is the usual composition of 

mappings. It is easy to see that elements of Q> and 

morphisms just described form a category. Denote this 

category by IMlc . Denote by Ml the functorcatego-

ry of |MI0 with respect to congruence ^y^ where *ss 

is defined as follows: 

[ M ? (M,3,CN,»]efi, <*,/3elMI0iTM,(t*;i,rN,A;>, 
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(ot'%'/3)s (at *s (b <u - cdbmxrbt enteH/yrtrfavta,) * 

Proposition: The categories R , T , IMI are 

concretizable. It follows almost immediately from the 

fact that the category F is concretizable. The ca

tegories R If IMI c a n De represented as subca

tegories of the category F -
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