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FREDHOLM ALTERNATIVE FOR NONLINEAR OPERATORS IN BANACH

SPACES AND ITS APPLICATIONS TO THE DIFFERENTIAL AND
INTEGRAL EQUATIONS

(Preliminary Communication)

Svatopluk FUCTK, Praha

1. Introduction. This communication deals with

the solving of nonlinear operators’ equations in Banach
spaces and with the nonlinear generalization of the
Fredholm alternative. There are obtained the theorems
of the following type: If T is an operator (generally
nonlinear) defined on a Banach space X with values in
a Banach space Y , then TX = Y  provided that the
equation TXx = e,y_ has the solution X = 6
and X, Y, T satisfy some additional conditions.

only

Similar results were obtained by S.I. Pochofajev
[15] for the real Banach spaces and for the homogene-
ous operators and, by J. NeZas [11], for the complex
Banach spaces and for the operators being "near to ho-
mogeneous" ones. Both preceding papers discourse on
the operators the domain of which is a Banach space
and the range in its dual space x* only. Hence, the
integral operstors defined on Lﬂ () (p % 2) with
values in Lﬂ(.fl) are not concluded in the abstract

theory established in [11] and [15]. Such a problem
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is solved in Section 7 on the base of Section 3.
Sections 4 and 5 deal with sufficient conditions
under which an operator ‘T and Banach spaces X ; Y

possess the assumptions of the main theorems in Sec-

tion 3.

2. Definitions

Definition 1. Let K > 0 be a real number,
X and Y be Banach spaces, {X, 7}, {Y, 7 be two
sequences of finite dimensional subspaces such that
XnC X,Y,c Y. Let @, be a bounded linear
mapping from Y into Y, , Q:‘, = @, (i.e. a li-
near projection) for each positive integer m .

We shall say that the couple {X,Y > has an
approximation scheme [{X ,3,{Y,3,4{8,3], for the
operators from X into Y (shortly speaking,(X,Y >
has an approximation scheme [{X,3,{Y,3, 4G, 3], )
if the’ following conditions are satisfied:

MW X, cX,€e. €X, € Xpoqg © cce
(@ Y, eY,c...c¥Y, €Yy S ... ,

=
3 U X,=X,

M1

(4) m X, = dim Y, (oém= dimension)

5) 18, 0,,,, < K, where (Y —Y) is the

space of all bounded linear operators from Y intoY,

(6) 2om llan*-ry,“y =0 for each

m~poo
yeY .
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Definition 2. Let X and Y be two Banach spa-

ces, {X,Y > has an approximation scheme [{X,7§ ,
{Y,3,40,31, and let T; X—>Y be an ope-
rator, the domain of T is X and the range is in Y.
Then T is said to be an A -operator with respect to
a given approximation scheme [{X,},{Y,3,1Q,%1,
(shortly speaking, T is an A -operator) if for any
sequence {m.?' 3 of positive integers with m_ — oo

+
and a bounded sequence {x 3,? with each X, . € X,,,j
such that M‘»&_‘vz i G’""i TXn, = % ly, = 0 for some
Yy eY ’ there exists an infinite subsequence {m,g-_“‘)}

and X € X such that TX =4 and

"‘{c%’r'” "x"’;'cm —xh - 0.

The concept of an A -operator and approximation
scheme is a slight variant of the conditions of S.I.
Pocho%ajev [15), W,V. Petryshyn [12,13,14], F.E. Brow-
der-W.V. Petryshyn [2] and D.G.de Figueiredo [5,6,7).

Derfinition 3. Let X and Y be two Banach spa-
ces, T: X— Y, [3(t) a real-valued strictly incre-
asing and continuous function defined on {0,00) with

f3(0)=0 and t%ﬂ(t)-_—oo.

a) T is said to be /3(t) -homogeneous if
T(taw)=R(t)Tar for each t > 0 eand alluc e X .

b) T is said to be B3(¢) -quasihomogeneous -
with respect to T, , if there exists an operator T ¢
: X— Y, T, is [3(t) -homogeneous ana if t,,V 0
(t, 2 tz 2..2¢, 21t 2...> 0 real numbers end

mm, t,=0) , m, —~ 743‘_&, ( — denotes
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the weak convergence in X ),ﬂ(t”)'l'(-‘{f )>g ey,

then T,u, = g ( —> denotes the strong convergen-
ce).,
¢) T is said to be (3(t) -strongly quasiho-

mogeneous with respect to 'l"° if there exists an ope-

H
rator T, : X—Y , T, is (3(t) -homogeneous
and £,V 0, 4, = w, imply B(t,)T(F2)—> Ta,.
If S: X—> Y is [3(t) -strongly quasihomoge-
neous with respect to S, , then S, is strongly con-
tinuous (i.e. X, — X, implies S,x,—> S, X, ).
If BCt)= t%(x > 0) and T: X—>Y isf(t)-
homogeneous, then T is (3(f) -quasihomogeneous with
respect to T provided that T is strongly closed

(i.ev. Ky,

X, , Tx,—> a4 imply Tx, =4 ). T is
(3(t) -strongly quasihomogeneous with respect to T
provided that T is strongly continuous.

Definition 4. Let X and Y Dbe two Banach spa-
ces, T,: XY ,85,: X—=>Y . B(t) -homogeneous
operators and A = 0 a real number.

A is said to be an eigenvalue for the couple
(T, ,S,) if there exists w, € X, 4,46 (6, is
the zero element of X ) such that AT, u«, ~ S «, = ey .

3. Main theorems
Theorem 1. Let X and Y Dbe two reflexive real

Banach spaces, { X , Y ) have an approximation scheme,

Ts X—Y beanodd ( T(-x)= - Tx for each

X € X ) (3(t) -quasihomogeneous with respect to T,
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demicontinuous (i.e. x, —» X, implies T.xn—-\ Tx, )
A -operator. Let S: X.-— Y be an odd completely
continuous (i.e. S is continuous and it transforms
every bounded subset of X on a compact subset of
Y ) eand [3(t) -strongly quasihomogeneous with res-
pect to S° . Suppose that there exists a constant ¢ >

- 4 =
>0 such that I Tee Iy > ¢ -IB3~"¢ )3~ tor
wlly BT,

each « e)(,u«-l-ex .lLet A 3 0 be a real num-
ber so that A is not an eigenvalue for the couple
(T, , S ) .

Then the operator AT — S transforms X onto
y .

Theorem 2. Let X and Y be two real reflexive

Banach spaces, (X , ¥ > have an approximation scheme.
Let T: X—> Y be an odd /3 (+) -homogeneous and
continuous A -operator. Let S: X— Y be a com-
pletely continuous odd and (3(¢)-homogeneous opera-
tor. Let A %= 0 be a real number such that A is not
an eigenvalue for the couple (T, S ) .

Then the operator AT — S is from X onto Y.

4. Approximetion scheme

Let X be a Banach space with a Schauder basis.
Then the couple (X, X > has an approximation scheme.
Moreover, if X is a reflexive and Y is a sepsral;—
le Banach space, then the couples (X , X* > and
<Y , X > have an approximation scheme.

If the couple { X , X ) has an approximation
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scheme, then under some addit.ional conditions the Ba-
nach space X has a Schauder basis (see [10]).

Hence a separable Hilbert space, CL0,1] ,
L), c*to,11 ,¢'o,11%)  (see £171) na-

ve the approximation scheme (they have a Schauder ba-

sis).
Let J be an open interval on the real line,
®) e
Wﬂk (1), W,:M(I) the Sobolev spaces. Then

©
W*:*')( I) and W_':”( 1) have a Schauder basis
for k& 2 1 eand o 3 1 ( f is an integer, nn is
a real number). I did not succeed to prove the Sobolev

o
space W":"’(.n.) has a Schauder basis.

5. A-operators
Theorem 3. Let X be a reflexive Banach space,

Y a Banach space, T: X~ Y, S: XY, £f: X— E,,
P: X—Y*.Let <X ,Y ) have an approximation scheme
({X,3,4Y,3,10,3]c . Let S be a completely con-
tinuous operator, f a weakly upper semicontinuous
functional, ‘F(Qx ) = 0 eand let & be a weakly con-
tinuous operator (i.e.x, — X, implies $x,— Px, ),
()] (Qx ) = GY* . Suppose that @, 7, are conti-
nuous real-valued functions on {0, 00 ) such that

4 Ct,)=0 implies t, =0, 7(t) 20, w(t) >0
for each t >0, @ (£) is a strictly increasing func-
tion. Let G% P(x)= P (x) for each positive inte-

ger m and all x € X, .
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Then T is an A -operator provided that one
of the following conditions is satisfied:
(5.1) T is continuous and
(Q(.x—/y.),"l‘x - T‘q«)#-f(.x-/yy))gr(lx-@llx )
for each X,y € X , where (-, - ) is the pairing
between Y and Y* .
(5.2) T is continuous and
(§(x-2p), Tx-Trg )+ @ (x-np), Sx- Sy )+ £ (x-4) 2 g -y L)
for each x, 4 € X .
(5.3) T is demicontinuous, ¢ is @ (%) -homoge-
neous, $(X) = Y* and
(@ (x~ng), Tx - Ty )2 ¥ (hx -yl ) for each x, y€ X .
(5.4) T is demicontinuous, ¢ is @« (%) -homoge-
neous, $(X) = Y* and
(Plx-4), T~ Ty )+ (P (x-5), Sx - Sy ) 2 p(Ix -y X )
for each x ye X .
(5.5) X has Property (H) (i.e. (1) x,— X, ,
Ix, lx—) ﬂxoﬂx imply x,—> X, and (2) X
is strictly convex), T is demicontinuoue, ¢ is
@ (¢) -homogeneous, $(X) = Y* end
(Plx-ny), Tx-Ty) 2 (@llx b)) ~pllny ) Ux b - fyl)
for each x, 4 ¢ X .
(5.6) X has Property (R), T is demicontinuous, §
is @ (t) -homogeneous, PX) = Y* and

(P(x-n), Tx- Ty)+ (P(x-a), Sx~- Sy ) 2 -
2 (¢ Ul V=g gl ) (Ixh - layl)

for each x,ny X

- 277 -



Bemarks. L@ () ’ .£1,, (£ > 1) have Proper-
ty (H). A Hilbert space has Property (H), too.

Let the approximation scheme [{ X, 3,6 {Y,3,
16,31, of the couple ( X, ¥Y> have the following
property: Q a4 = g4 for each positive integer m
and all g € ¥, . Set ¥ = X* and ¢ = the identity
operator on X . Then § satisfies the assumptions
of Theorem 3.

Let X be a Banach space with a weakly conti-
nuous duality mapping (see [5,6,71), for example
L, (1< p <00). Set Y =X eand @ = the duali-
ty mapping. Then ¢ satisfies the assumptions of Theo-
rem 3.

Theorem 4. Let X be a Banach space, [{X 1,
{X,3,€8,3) ean approximation scheme for <X, X),
T: X=X, T=1-5 where I is the identity ope-
rator and S is a contraction mapping with a constant
0& <4 (ie. 1Sx-Syl & Ix-ayl, ).
Let « K< 1 . )

Then T is an A -operator.

Theorem 5. Let X, S,K, o satisfy the assump-
tione of Theorem 4. Let U: X—> X be a completely
continuous operator and X a reflexive space. Set
T=1-5-U..

Then T is an A -operator.

6. The set of eigenvalues

Lemma 1 ([16]). Let X be a separable and re-

flexive Banach space, G c X an open subset,
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£:G — E_, a functional of the class C™ (i.e.
there exists the Fréchet derivative D% £ (x) conti~
nuous at X up to the order m - see [18]). Let the
following conditions be satisfied:

(6.1) m 2 max (£,2),

(6.2) dim Ker D*#(x) = £ < co , where
X e
Kex D*#(x)= {4; € X, (D*#(x),hu)=0 for

each we XY .

(6.3) D*(x)(X) is a closed subset of the space
(X —X*¥) for each x € X .

Set M={x;x€e G,Df(x h)=20 for
each € X} .

Then meas £ (M) = 0 (measd = the Lebesgue
measure) .

Theorem 6. Let X be a reflexive Banach space
such that ¢ X, X*> has an approximation scheme. Let
T: X— X* be an odd A -operator and 3(¢) -quasi-
homogeneous with respect to T, . Let S: X — X™* be an
odd completely continuous operator and (3(%) -strongly
quasihomogeneous with respect to S, . Suppose that the-

re exists ¢ > 0 such that Il Ta L, > e Ipc T:Tix 3"

and (Lau,u)>c- el '[/3'4(n1—i; 11" for each

u,e)(,,u,=i=9x. -

Let T, =quad £ , §, = grad g (for the
s (
definition see [18]). Set ?(x) = -%—(-;—;—- for X &
%+ ex and suppose that the functional ¢p satisfies
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the assumptions of Lemma 1 on some neighborhood of the

unit sphere in X .
Then there exists a set Nc E , meas N = 0

such that (AT - 8)X = X* for each AeE -N.

Theorem 7. Let X &and Y be two reflexive Ba-

nach spaces such that (X ,Y > has an approximation

scheme. Let T: X — Y be a t -quasihomogeneous with

respect to ’l; ’ demicontinuous and odd A -operator.

Let S: X~ Y be a t -strongly quasihomogeneous
completely continuous operator.
such that

with respect to S,
Suppose that there exists a constant ¢ > 0
>
I Tae ﬁyzcllu,ﬂx and ”'T;uly c'uﬂx for
each « € X . Let T, and S, be linear operators,
TX=Y.
Then there exists a set Nc E_, N is at most

denumersble and if N has a limit point A , then A =

= 0 and N is such that (A T~- S)X = Y for each

16}21-N.

7. Applications
a) Let fl be a bounded open subset of E’N . De-

note A the Laplace operator. Find the weak solution
4 of the Dirichlet problem

. S
{-RAM-M'T.;‘-‘i—‘i-lT—- =f (520,2%0)

w=0 on a.ﬂ. 2

i.e. let \:/2“’(.0.) be a Sobolev space (\:/2“)(..0_)
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is a Hilbert space) and f € (Wzm(.Q n*
We seek w« € \Aofw(.ﬂ.) such that

3 . -]
A/’z.aié_.g!f. J{—L%u.qr.dxnafﬁav—dx

f vz 1+

for each 2 € \:/zm(.(l) .

This equation has a solution for each

1)
fe (W; (QN* provided that the equation
N By '
Jvf%Tx"ax d\)‘ {M V'dx =
1)
for each v € W‘ (L£l) hes the trivial solution only

(see Theorem 1), i.e. for A = ‘4To<- , Wwhere {1 1%

is a spectrum for the Dirichlet problem and the equation

AU ~Auw = 0 .

To apply the main theorems to the more general
pertial differentisl equations one would have to prove
that the Scbolev spaces W(&) ) have a Schauder
basis (or an approximation scheme) for f1 + 2 (see
Section 4).

b) Let Az L, () — L, () (L >1) ve a 1i-
near bounded operator with the norm HAl . Let fe

€ L,(f) with the norm ll*Fl!” in L_(Q) and let
o = RAN- N0 -2 < 1 . suppose tnat K(x,a),

L (x , n#) are continuous functions on D: > ﬁ and-
S =2 0 . set

(L L Cx, ) an (ap) oy |®
A ¥ Y p - SK(x ;) (y)dy .
'1+l£1.,(a(,ry,)u (g)olyl £

- 281 -

Sw =




By Theorem 1 the equation
3
LW A-A(FZE—))~Su=F (A% 0)
1+ u?

has a solution L € l..ﬂ (£l) for an arbitrary Fe
€ L” (£1) provided that the equation

(2) A - A (Fu))- LK, gl (y)dy = 0

has a trivial solution only.

By Theorem 7 there exists a set Nc E N is
at most denumerable and if 2 is a limit point of !U,
then A = 0 and N is such that (1) has a solution
« €L, (f1) for each A e E,-N endall
Fel,(Q).

The proofs will appear later elsewhere.
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