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Commentationes Mathematicae Universitatis Carolinae 

11, 2 (1970) 

MODIFICATIONS OF CLOSURE COLLECTIONS 

Jaroslav PECHANEC, Praha 

Let if == { CSV, xu ) ', f>^ *, X I be a presheaf 

of closure spaces over X (i.e. p i (S^f XL.) ~* (&vftL^ 

are continuous maps), po -» CtC. j U I its closure 

collection. If for every U and every open covering V 

of U there is Xlf -» r Mm, tr . we call AUL pro-

jective collection. 

To every JLL there exists a finest projective 

collection AJL% coarser than AJL (see also £1J). The 

main result is Theorem (1.20) which shows how we can get 

the projective modification AJL9 of AJL in case of lo

cally compact X and finitely projective collection 

AJL , From this follows a method of construction of the 

modification *JL* to an arbitrary AJL and,moreover, 

the characterization of projective collections (see 

(1.22, 23). 

Notations. 

0.1. We denote by 35 ( X ) the set of all open subsets 

of a topological space X 

0.2. Let ( X ? t ) be a closure space, M its subset. 
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A) Every filter base of t, -neighborhoods of M i* de

noted by A < M } i ) . 

B) If T is such a filter in X that for every Te 

6 T there is M C F , we say that T is a filter 

round M . 

O The relation Ha closure AA, is finer than v w will 

be denoted by AA .£ or . 

0.3. In the set X 5
 le-t us have a nonempty family il 

of closures. The coarsest (finest) closure in X , finer 

(coarser) than every closure from il will be denoted by 
Mm, fl C Msm^ St ) • 

0.4. Let U e fl(X) , By the symbol TT̂  C TTJ > we 

denote the set of all open coverings (of all finite open 

coverings) of the set U • 

0.5. Agreement. When speaking about a compact set in a 

topological space X , we suppose that X is Hauedorff. 

§ 1. Projective modifications 

G.»-0 Notations. For a presheaf if * i(S^9^) J p w \ X 1 

of closure space let 

(1.2) <a m < r u j lie fi(X)i , 

or briefly >a <r J . A collection */, will bê  called closu

re collection of Sf or briefly collection. Further, we 

say that XJU ** if^l is finer than *A>* ait* 1 (brief

ly £A 6 p , f ) 9 if every tr̂  is finer than f' . 

If il # JX is a family of collections of the presheaf 

y 9 then by *&m, il resp. JLunv^ il we denote 

the closure collection 
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(1.3) Aj^mtSJm x*? 1 , r e sp . AJU1 m { JU*». *yTf ?, 

From the p roper t i e s of pro jec t ive ( inductive) l i m i t s i t 

follows eas i ly tha t (tc- m {t,__ 1 and (U?" m f tf* J 

from (1.3) are again closure c o l l e c t i o n s , i . e . t ha t the 

maps ? l / v . <«%,?£> — * ^ y , ^ ) * * *, .2 are 

all continuous. 

(1.4) Def ini t ion, no ta t ion . I f t i e # C X ) and 2 f c 

6 TTff , we have a co l l ec t ion of maps 

Then we c a l l fA, m {t j p ro j ec t ive , i f for every IX e 

e SCX) and Ve TTU 

(1.5) t u * r ^ r 
T T F Y 

with respect to the set of maps A ^ • 

For a collection /u let 

(1.6) XL ($4,) as -f^ j *> is a projective collection, 

(U, ̂  T> } . 

&•?> Proposition. <-«,' -* <**"** fltfU^ € SI (("-> . 

CL«8) Definition* The collection . *JL? will be called pro

jective modification of (U . 

We can see that to every AJL there e x i s t s i t s pro

j ec t i ve modification (see a lso t i l ) . 

CL«9) Notation. Let AM •* {'fcL 1 be a co l l e c t i on . For 

any U e # ( X ) l e t us set 

(1.10) ^ v - <gf*v tor VeT^, 
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(1.11) <V* m J&m, V^ y \ (U>*~ <V?<, tt C & (X ) 3 . 

^ v7\ 
(1.12) Proposition. W t ^ust it^ 1 be a collection. 

A) The maps p ^ , i ( £y , tz£ ) — • ^^7^y) ar« con~ 

tinuous and therefore (U* i« a collection. 

B) There is (U «* (J** -6 (U,9 . 

C) The equality ^u *» (U,f holds iff fu m pu* . 

D) If C (u* ) *• jO,* f there is (A,* -*= ^a/ . 

(1.13) Definition. We say that a collection fu m ff u ? 

is finitely projective, if for every U c & C X ) and e-

very V e TT* there is 

(1.14) fff • ^-^^ r v . 

(1.15) Proposition. To every collection /u there ex

ists a collection (A? such that 

(a) (A+ .£ (JL , 

(b) QA, is finitely projective, 

(c) if *p is a collection satisfying (a,b), then 

(d) if we denote JL C (u) — < »j (U- ** •>> , p is a fi

nitely projective collection J , 

then (CC* •» X*m> Si (^u) . 

(e) i f we denote XA+ am itfl J , then for every 11 e 

€ flCX) 

U WTrff u>r 

(!•!?) Definition. The collection (u* is called fini-
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te projective madification of (U , 

(1.18) Notation. For U € % CX ) 9 0, € 5 9 let 

(1.19) ®Ca,)«* lp~y(WV)}Ve H(U) , V c U i s com

pact, WV€A(pw(a)} %v )} . 

It is clear that ftCa,) is a filter base round 

O, in S1r . These bases form there a closure which we 

denote by %u . The set j& m { %u -} U 6 fi C X ) / is 

clearly a collection coarser than (U . 

(1*20) Theorem. Let X be locally compact, tfm fC-SL,^); 

/p» *, X ? a presheaf over X , and (A, m {tu ? its 

closure collection. 

It (U m (U,*) then (A,9 ss (J,* - £c , 

(1.21) Corollary. Let X ba locally compact, /u, a col

lection. Then C (4,+ ) * = *jj 

(1.22) Corollary. If X is locally compact, then the 

collection AA, can be protectively modified in two steps. 

First, we do the finite projective modification (4,+ fol

lowing (1.16), and then the modification (AA,*)* of (A,* 

by the help of the bases J3 (a,) from (1.19). 

(1.23) Corollary. If X is locally compact and/C*t mALA,' 

then for lie ft ( X ), a, € S„ the bases Si (a ) and 

A (a,$ Xu ) are equivalent. Therefore we have the fol

lowing description of the projective collections KA, for 

a locally compact X '* " (U, is projective iff it is fini

tely projective and the bases iiCcu) from (1.19) and 

A (a, $ tu ) « e equivalent for all UK JiCX)}a € S ". 
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(1.24) Example. Let «/>• {CSU?^U ) •, j o ^ ; E ^ ? be 

a presheaf of some se t s of continuous functions on l i e 

6. JSCE^) 9 t u the closure of uniform convergence. 

Then for â, m l/Cu ? one can eas i ly find that 

(a) (U, m (j+ % 

(b) (A* m fA* = { <fc£ J , 

where t?' for Lt e ACL^) is the closure of locally 

uniform convergence. 

It is clear that nothing will change in this ex

ample, if we take for X instead of E ^ an arbitrary 

localy compact topological space. 

R e f e r e n c e 

LH Z. FROLfK: Structure projective and structure induc

tive presheaves. Celebrazioni archimedee 

del secolo XX:Simposio di topologia,1964. 
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