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MODIFICATIONS OF éLOSUBE COLLECTIONS
Jaroslav PECHANEC, Praha

Let $¥={(S;,%, );@,3 X1 beapresheaf
of closure spaces over X (i.e. Py * (Su, ’b’u)-—*(sw’q,)
ere continuous maps), @ = ('til ; W# its closure

collection. If for every Ul and every open covering ¥

of U there is Y = ‘vf»; %, , wecall w pro-

Jective collection.

To every & there exists a fineat projective
collection (u’ coarser than (see also [1]). The
main result is Theorem (1.20) which shows how we can get
the projective modification ‘u.’ of fad in case of lo-
cally compact X and finitely projective collection

- From this follows a method of construction of the
modification (J.’ to an arbitrary « and,moreover,
the characterization of projective co}.lectiona (see
(1.22, 23).

Notations.

0.1. We denote by f3( X ) the set of all open subsets
of & topological space X

0.2. Let (X ,t ) be a closure space, M its subset.
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A) Every filter base of +t -neighborhocds of M  is de-
noted by A(M;t). 4

B) If # is such a filter in X that for every Fe
€ £ thereis M c F , we say that & 1is a filter
round M .

C) The relation "a closure a4 is finer than o " will
be denoted by 4 <€ 4 .

0.3. In the set X , let us have a nonempty family M1
of closures. The coarsest (finest) closure in X , finer
(coarser) than every closure from (). will be denoted by
‘_lh__rg n C_l_(_«'__m_’fl) .

0.4. Let U e B(X) ., By the symbol TTU (Tf&) we
denote the set of all open coverings (of all finite open
coverings) of the set U .

0.5. Agreement. When speaking about a compact set in a
topological space X , we suppose that X is Hausdorff.

§ 1. Projective modifications

(L.1) Notations. For a presheaf ¥ =4(S, , 7 );

o T s Py s X

of closure space let

(1.2) “=4i7,; Ue B(X)F ,

or briefly {ru 3. A collection “ will be_ called closu-

re collection of ¥ or briefly collection. Further, we

say that @ = {'t'ui is finer than (u' -.-{'z; } (brief-

’ > : : . } ]

Iy « € '), if every T, is finer than <7y, .

If ) % & is a family of collections of the presheaf
¥, thenby _m N resp. &m_ ) we denote

Ly
the closure collection
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(1.3) (u,"s-:{ Lim, 'c‘l‘;" § , resp. ‘u,’-{‘_‘%,zu‘“f.
E‘}i

From the properties of projective (inductive) limits it
follows easily that (uf - {'zt: 3 and (u" = {e"" 3
from (1.3) are again closure collections, i.e. that the
maps @ ¢ (%‘,z;) —_ (Sv,z.;,) i =1,2 are
all continuous.
(1.4) Definition, notation. If W € B(X) anda Ve
3 Tl'u ,
4,=4{p,; Vel @, (8§ 5)>(S5,%5)5.

Then we call @ = {’b‘ui projective, if for every U e
€ B(X) ana Ve T,

we have a collection of maps

(1.5) Ty = %w;_ %,
with respect to the set of maps A,”_ .
For a collection w 1let
(1.6) N (@)= {» ; » is a projective collection,
w =3,
Q.7) Proposition. (a.’ = JAdom N(w)e N(ee)

(L.8) Definition. The collection '(""’ will be called pro-

Jective modification of o~ .

We can see that to every &~ there exists its pro-
Jjective modification (see also [1]).
(L.9) Notation. Let w = {'c’u'! be a collection. For
any Ue B(X) 1let us set

(1.10) 'tu,v - ‘V‘f% %, for Ve Tlh ,
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(1.11) fqr- ﬂnﬂ-! 'ﬂu’v; (u,*- {‘5:; Ue NB(X)1.

Ve ,

(1.12) Proposition. Let = ‘f"&u ? be a collection.
. » * _

A) The maps O ¢ (su,'t:u ) — (§,,%)) are con

tinuous and therefore (a,* is a collection.

B) There is ‘ué(w* 6(4.’ .

C) The equality ¢ = @' holds iff (« = ‘u,"‘ .

D) If (*) = X , there is «*= .

(1.13) Definition. We say that a collection e = {7 7
is finitely projective, if for every U € B(X) and e-
very V e TTJ there is
(1.14) v, = _Lm
u V: v

(1.15) Proposition. To every cocllection @ there ex-

’t’v-

ists a collection (u."' such that

(a) @t 2 « ,

(b) (uf" is finitely projective,

(c) if » is a collection satisfying (a,b), then

@ £,

(d) if we denote ﬁ.((u) ={y;,;u&»,» isa fi-
nitely projective collection }

then ((,c*- h'm».ﬁ:((u) .

)

(e) if we denote (a,"' = {z; 3 then for every U €

?

e B(X)
(1.16) et = tm T .
u '1775’? w7

(1.17) Definition. The collection «* is called fini-
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te projective medification of @ .

(1.18) Notation. For U € B(X), a6 5 , let

(1.19) Bla) = fgt (W) Ve B), Vel is com-
pact, WVed(p, (a);x, )i .
It is clear that M (a) is a filter base round
a in Su . These bases form there a closure which we
denote by %u . The set @& -{%u; Ue B(X)? is
clearly a collection coarser than (¢ .

(1.20) Theorem. Let X be locally compact, = {(Su,’ru);

Oy X 3 a presheaf over X ,and @ = {2, 1 its
closure collection.

+ ’ ~
If(a.-s(,(.,then(.c.-.-(u, -«
(1.21) Corollary. Let X be locally compact, @ @ col-

*

lection. Then (w*)* = ¢’ .

(1.22) Corollary. If X is locally compact, then the
collection o can be projectively modified in two steps.
First, we do the finite projective modification w¥* fol-
lowing (1.16), and then the modification (wh)* of «t
by the help of the bases J3(@) from (1.19).

(1.23) Corollary. If X is locally compact and e -(a"
then for U e B (X)), a €S, the bases B(a) eand
d(a, %y ) eare equivalent. Therefore we have the fol-

. lowing description of the projective collections « for
& locally compact X : " @ is projective iff it is fini-
tely projective and the bases f3(a) frow (1.19) and
Aa, %, ) are equivalent for alllls B(X)ae Su .,
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(1.24) Example. Let :f-((su,zu )5 Puy s E,? be
a presheaf of some sets of continuous functions on Ue

¢ B(E,), Ty,

Then for ( = {'cu 3 one can easily find that

(a) @ = t

(v) 4;’ = f‘”‘== (‘t& 3,

where ) for U e 3(54») is the closure of locally

U
uniform convergence.

the closure of uniform convergence.

It is clear that nothing will change in this ex-
ample, if we take for X instead of 15,, an arbitrary

localy compact topological space.
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