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11,3 (1970)

GRAPHS WITH SMALL ASYMMETRIES x)

Jaroslav NESETRIL, Praha

§ 1. Introduction. With every graph X (here undi-
rected, loopless, without multiple edges) we can asso-
ciate the group G (X) of its automorphisms, i.e., tﬁe
group of all permutations of V(X)) which preserve the
adjacency relation (for notation we follow [5) ). If
G(X) is the trivial group, then the graph is called
asymmetric.

The structure of asymmetric graphs was studied by
Erdds and.Rényi in [1) using the notion of the agymmetry
A[X] of the graph X ; thie is defined as the smallest °
number of edges necessary for symmetrization of the
graph. In {1]) bounds are given for the asymmetry of a
graph in terms of the number of its vertices and edges;
using probability methods, it is shown ‘that the bounds
are asymptotically best possible.

Let us define the function A(f1,q): laxd x(ard — Cand
by Al q)=max {AIX); IVl =p, IECO =g 1 if p>0(5)2
2920, A(p,q)=0 otherwise. The introduction

x) This is a part of author thesis writton at McMaster

University Hamilton, Ontario, Canada.
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of the function A is motivated by [4] in which an ex~
tremal prodblem for asymmetric graphs is investigated;
Theorem 1 in [4] ’uyu that if p €5 then A(pn,Q) =
= (0 and further the numbers My M ' are found such
that if n =26, and g <m, or g >M,, then
Alp,g)= 0 whileAlp,m)>0 Alp,M,) >0

(A tinite). \

Here we obtain (in § 3) a characterization of the
support of the function A using a result about asymmet-
ric extensions of a graph; then (in § 4) we résolve the
analogous question concerning the set {(ifb,qv);qu,g)s"j-

In § 2 we summarize basic observation about func-
tion A and completely determine A(.fu,g) where 5 ise
infinite.

In § 5, we relate the results of §§ 3, 4 to those of the
papers [1],[4], in particular we determine the numbers

F(f,2) which is proposed in [2] .

§ 2. Asymmetry of a gg‘ph (infinite case).

‘ Let pn,q € ('g') be cardinals. Denote by OZ‘n' (OC%%
respectively) the class of all asymmetric graphs with .n

vertices (1 vertices and g edges respectively). Let

A graph X with 1V(X)l= nlE(X)= g is shortly
called a ﬁ,q»-graph.

Definition. Let X be a graph | V(X) =.n .We define
ALX )= min £1ACE(X LEN; VX = VCY), Yé A,
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AXI=minCIACEX), E(; VX)=VY), XS Y & X, 1
A IX) = min {IACECX), ECY; VOX)=VOY), X2 Y ¢ AL, 3,

where A(A,B) is the symmetric difference of the sets
A,B end X €Y means V(X)SV(Y), E(X)& E(Y).
(This definition coincides with the definition of A[X]
in {11 and definitions A*[X1, A"[X] in [4].) Let us
define analogously as in the introduction the functions
At (n,9) A (n,q). ‘

We will investigate these functions simultaneous-
ly; if the same statement holds for A, A~, A* | we shall,
for the sake of brevity, use the symbol A° .(.fl«, ) -

Finally, let ‘“CC denote the class of all graphs
for which A[XI = 4 .

Clearly 4 = " 5 %0 > ... .

The following lemma gives us first information about
the functions A%, A", A :

Lemma 1. (i) ALX]&mim (A*[X] , A“[X]), hence
Aln,g ) €min (At(n,q), A (n,2)) ;
(11) X = UX;=> A°[(X] &min A°LX;]
(UX,; means disjoint union),
(iii) A*(p,q) = A (.ﬂ.,(";)- ),
A (n,9)= A, (D) - g,
Alp,g)=AnD)r-g)

)
whenever the right hand side is meaningful (4, g, finite),
(iv) Aln,q) > Ocd AT (11,0) >0md A" (2,0) > 0
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For proof of (i) - (iii) see [4] , Lémma 3.1,p.72,
end [1], Lemmas 1,2, pp.295-6.

(iv) 68 obvious since all three statements express
the same thing, nemely that 6441,%'5& g .

Let us give the following simple sufficient condi-
tion for ALX12 % .

Lemma 2. Let X be a graph, P the set of all per-
mutations on the set V(X), U the set of all unor-
dered pairs of elements of V(X)) ..

For fe P let f*: U — U be given byf*(ﬂx,a*])=
s[$x),fly)], [(x,y]e U . 1f
lACF¥E(XN | 2 2.4
for every f € P, f 4 4d , then ALX] 2 fe .
‘ Proof. Suppose A[X] < A .Then there are edges
{e,...,e,} CE(X) andfe),...,e, INE(X) =/
such that m + m’ < zk, and the graph Y with

E(Y)=(E(X)U{e],..., e, 3) - {e,,...; e, ¥
'is symmetric. Thus there is anfePNG(Y) , f 4 id .
Now split E(X)-f¥E (X) into two disjoint sets M =
= (E(X)-#*E(X)) n’E(Y) and N=(E(X)-*E(X)-E(Y) .

N is contained in E(X)-E(Y), hence IN| & m , The map
e+f*"e  is an injection M E(Y) - E(X), hence
IMI€ m’ . Thus IE(X) - $*E(X)| € m + m’ . Similer-
1y, one shows that PE(X)-EQVI & m + m’ , 80 that

1A GPE(X),E(X)| € 2(m +m’) < 2.4 .

" Let us solve now the case of infinite graphs.
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Theorem 1. Let . be an infinite cardinal. Then
Alpg)>0&> n =g , moreover A°(p,ft) = f1 .

Proof. It is obvious that if X is an asymmetric in-
finite graph then JE(X)l=1V(X)] (since otherwise
there would be in X two isolated vertices), hence
Alp,Q) =0 if g=# n .

We now give a construction of a graph X‘ﬂ‘ with
AlXpl = p .

Let ¢+ mean the set of all ordinal numbers less-
than o .

Let fi = u&)ﬂ-M" , M I=pn, M~ pairwise dis-
Jjoint.

Define E (X, )= {[{,4);i<3, 3 SLL,J‘.' M_ % . We pro-

ve (using Lemma 2) that A[(X] = .LletfeP, f & <d .
(We again denote by P the set of all permutations on the
set v .) *

Let N={4i;f(i)# 4} , 1let i, be the first
element of N (with respect to natural ordering of s2 ).
Since both f(4,) and ra (4¢,) belong to N it fol-

lows necessarily that £(i,) > 4, and #-1 () > 4, .

Suppose first that £(4,) £ ¢! (€) .11 U M -

]

L€,

- ¢ .Y M )l = n, then f satisfies the premise of
. .

Lemma 2, by definition E (Xj,). Similaerly if
1 U, - - .
L>1, M-f (uyv"(i,) M"” L
Assume € does not satisfy any of these equations.
We prove that it is impossible. From the first inequality

we have | M’“.) N f.‘u;')i., M_)| < n, from the second
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lM«i,)n“»v-‘G,) MO =n. BM»H},Mu:»‘?)-‘u,) M
this is a contradiction. Similarly if #-7(4,) & ().

Hence every f € P satisfies Lemma 2, consequently

Al Xﬂj = 1.

Let us finish this part with the following observa-
tion:

Proposition 1. Let p< ¥, a.; =max A°(fr,9) . Then
the function A°(f1, d") assumes all integral values in
the interval [0, Gf;‘, ] .

Proof. This fact follows from the property of the
functions A°(fr, d") thatlA®(p,q+1)-A°(p,@) | &1 +
This is clear since every (4&, L+ 4)-graph is obtained
by adjoining some edge to some (1», g)-—graph and vice
versa.

Corollary. On every sufficiently large set, there is
a graph with asymmetry 4 (4 € Caxd ) .

Proof. If & < “. then by {2 Theorem 2 there ia
a p, such that n > g, =d @, >4 . By the above pro-
position we have the existence of a graph with ALX] = fe
on every finite set of cardinality > f, . In the infi-
nite case (and infinite A ) it is enough to observe
that the graph X% constructed in the proof of Theorem 1
is f1 -connected if X is a finite graph then A[X U X J=

=ALX] and ALX, g U Xped = min vy, 1)
Since the case of asymmetric infinite graphs is sol-

ved by Theorem 1, from now on graph will mean finite graph.
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§ 3. Asymmetry equal O :

We are returning to our central problem of determi-
ning some values of the functions A° (p, q,) .
We will need the following simple lemma: .

Lemna 3. For every pn,q A° (;p,', ) > 0 implies
A(p+1,9+1)>0.

Proof. It is enough to show that we can adjoin to e-
very asymmetric graph X a single point and edge in such
a way that the new graph is also asymmetric. Let x ¢ V(X),
define the graph Y:V(Y) =V(X)U{x}, E(Y) = E(X)U
ULx,yl,where 4 is an arbitrarily chosen point if X
has no points of degree 1, and ng is a vertex of the grea-
test from all points of degree > 2 otherwise. Y is ob-
viously asymmetric, since f € G(X ) implies f (x) = X
(degree and distance are invariants under automorphisms).

We will first characterize the support of A° .

Theorem 2. A°(p,q ) = O if and only if either
n<6or B>p26, a<m, , g >M, or p infi-
nite f & g (for My M,,,, see [4], Theorem 1 or the
proof below).

Proof. For the infinite case, see Theorem 2, Chap-
ter 1. |

The sufficiency of the condition was shown in 41,
Theorem 1.

Let 8°>41.26,m1‘£ q € Mﬁ_ . We have to
show that 0"1‘% + 0. N

Case 1: Let m,p‘r Q % 1 -1 . We need to write down
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the construction of the numbers My, (see [4], pp.62-63):

’
m = m, =6, 6 and for p 2 8 m, =n- m,  where

N
9
my - 2y + W

o where a, is the number of non-

b
isomorphic asymmetric trees with m vertices (computed
by Harary and Prins [2]) and the numbers N,w are defi-
N m+1 N
. £ +ar (N+1)+
ned as followshg"a.wm—n <m§1a,»n, ‘f"mng,,,’"'

+n (02w<a,

Nt O2x < N+4).From this we see that

s ) 9 . ’ ?
either Mg ™= My (if 0&x < N )or Mg = Moy
(if2r=N).

In [4] it is proved thatA(,p.,m”) > 0. From this
also follows that if m, +1 <., thenA(f»,mf‘+4)>0

since we can take a forest X € L (see [4],pp.62-

nymn )
63) and form the forest Y by omitting one component of
X (say with m points) (since my, < - 1, X is dis
connected) and enlarging the “"greatest" of the remaining
components by m points (for instance as in Lemma 3):

Now by Lemme 3 we have A (n,q) > 0 =
=> A(n+1,9+1)>0.

Th.us, supposing A(,p,,g)> 0’ m,,‘q, < .n,_ , Wwe
obtain A(p+1,9)> 0 for m,+1 £ g < f +1 ,

but by the above observation m, + 1€ m _ + 2 and we

v % ]
know alreedyA(4t+4,mﬂ+1) >0. Alp+1, My oq +4)> 0.

We have also A(p,9) >0 for (g)—ﬁ& q,é(?)-M,,.
by Lemma 1 (iii - iv) and by Mﬁu(?) -m, (see [41).

Case 2: 4»‘%6(2)-—41«.
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We use induction again. In [1], Chapter 1, it is
shown that A(6,6)=A(6,¥) = A(6,8)=A(6,9)=1.

?) = 42 . Then

Suppose thet A(pn,q) >0 for pn £ g £ (
we have again by Lemma 3 that A(p+4,9 ) > 0 for

41,+4éq’é("2‘)—¢»4—4. But

) -med=F (p-3)44>% gt (it

for every f 2 ?” and if fi = 6’ then(g)-6+4= 10 =
=[ -5 ]. Hence, using Lemma 1 (iii - iv) we have
Alp+1,9) >0 for4;+4éQé(?)-4L-4.

By Lemma 1 (iv) the support of the functions A%, A”
coincides with that of the function A .

§ 4. Asymmetry equal 1.

We give a particular result concerning the set
{0,V 1A°(f, ¢ ) =1}, the full characterization of
this set is in [3]. In connection with it we have to dis-
tinguish more carefully between the functions A, A"', AT
because we do not have the analogy of (iv) Lemma 1, § 2
for A°(n,q) 2 1.

In the sufficiency part of our theorem we will use
the following lemma:

For 4 is natural, X greph let D, (X) =
-«fx-,d.(.x,X) =13 .

Lemma 4. A°[X] =4k, 4 +4 &k then

(1) V(D,,X)ND, =0,

V(D;,X) N V(D X) = 0

L)
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(i1) it 4 + 3 <4, then mim {10, 1,12, 1} & 1

Proof. (i) By [4], Lemma 3.2, A~ [x]) £ Doy »
where A.x - is the cardinality of symmetric difference
of the neighbourhoods of the points x|, N .

In fact A*[X] € min s, v also holds (if

k]
Ax’ < M , then the addition Ax’,,_
[x,2] zeV(y,X)=-V(x,X) and [y,z] z€V(x,X) -

- V(ay, X) will produce the symmetric graph).

edges

It is easy to show that if one of the conditions
in (i) is not satisfied, then also there is
x,n Ax’"‘_ < A .

(ii) is obvious, since Ax < A , for every two

"%
vertices.

Lemma 5. (i) T Thee =» A°LTI1&1
(1i) X unicyclic ==p A°LX) €1,

(iii) X bicyclic == A°[X1 €1 ,

(iv) If ACX]) > 1 end C is the union of all
cycles in X , then xe V(X) = @(x,C) & 1

Proof, (i) A"(T) %4 is part of (1], Theorem
5. By Lemma 4 if A*[TJ]> 4 then the tree does not
contain two endpoints which are connected with the same
point ‘and every endpoint is connected with the point of
degree > 2 . It is easy to show that this is impossible.

(ii) end (iii) is [1], Theorem 7.

(iv) is the essential part of the proofs of (ii)
and (iii).

Let x ¢ C and x, € C such that P (x, x,) =
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=9 (x, C).It is clear that X, is determined uniquely.
It is also clear that X, is a cut point of X and that
the component T of X~ x, which contains x is a tree.
1r p(x,;s) > 1, we can apply (i) to T and get a
contradiction. )

To characterize A°(fn,q ) =1 we begin with

Proposition 2. A%(p,g)=1 for m, £ g £ 1,
B -n<qs<em, -

Proof. We use a well known connection between the
cyclomatic number N (X) , the number of components c(X)
and the number of edges and points of a graph X.

Let X be a pn, g -graph, g £ . Then

NIX)=gq-p +c(X).

If all components X‘- of X are.ﬂzg‘.' -graphs, we ha-
ve

NOQ =g, -p,+1 7,

NOX) = SN(X) = Z(g-p;)+e(X) £ c(X) .

Hence there is a component for which N(Xi) €1
(otherwise N(X) > ¢ (X) ).

By Lemma 5 (i) - (iii) and Lemma 1 (ii) A°[X] &« 1,
therefore A°(f1,9 )< 1. But by Theorem 2 A°(pn,q) =1,
Qg Zzm,. The statement for (?)- n % q €M, weob-
tain by Lemma 1 (iii).

Remark. We show that this bound is best possible
for a large enough ¢ (N = 18 ) by exhibiting a bicye~
lic graph X with no point of degree 1 (which is of

course a necessary condition for a graph with ALX1=22

4
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to have an isolated point (see Lemma 4)). For smaller va-
lues of p this can be improved (see [3]). Investigating
the n,q -graphs for small g — .y we use the concept of

subdivieion of a graph with the following notation.

Let the graph X be a subdivision of the graph X »
D, (XY= 0. (At this point we admit X to be & multi-
graph.) For every [a,£]; (the i-th edge connecting a,
in X ) we denote by W, (a, ) the path in X which a-

rises by subdividing [a, &],

; , end f; (@, &) the number

of points of degree 2 belonging to W; (a, ) (i.e.
£ (a, )+ 1 is the length of W, (a,£)) .
Lemma 6. Let X be a connected 2, + 2 -graph,
D, (X)=0, A°LX]=2.Then X is a subdivision of K, eand
[1,31% (5, k1D 4 +nlG, k) for <, 5, % € V(K,) .
Proof. Let X ©be a graph satisfying the hypothe-

sis. Then the cycle base of X consists of the three cyc-
les C,C,, C, by the formula N(X)=g~-1 +c (X) used
in the proof of Proposition 2.

Since X is an asymmetric 1,2 +2 -graph with
Dy (X) = 0, we have that for every i = 41, 2,3 , the-

N o 3 . . R > .

re isa 3 & 1 auchthatlc‘ncél 1 .
Now there are only four possible multigraphs for X (we

write only edges):
X,=lap), 4 =1,2,3,4 ,
X,=la,4] [a,b], 4], [0, el,la, el ,
Xsa [a.,blq’[a.,a&lz, [c,d]1,£c,d.12,[a., el, (4 d]

X‘r" K,, , the complete graph on the four verti-
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ces a,b,c,d .

Every subdivision of X4 is obviously symmetric. It can
be shown that every subdivision of Xz can be made sym-
metric by deleting or adjoining one edge. The same holds
for the graph X3 and thus the graph X is neéessarily
a subdivision of K, .

Let us suppose by way of contradiction that
nla,)=n(a,c) for &+ c.1f d’ € Wia,d) is such
that [(d’,dlJe E(X) then X-[d,d’] is obviously sym-
metric.

We show that we can get a symmetric graph also by
adjoining one edge. Let;p,-mi,n,{/p,(b;d),ﬁ(c,d_)} say
fv < p (&r,d ) (since by asymmetry necésaarily{»(!f,d)#
+ fn (c,d)); let d”e W& a) be such that|W(a”, &)=
=sq+1. Then X uld,a”] is again symmetric.

Proposition 3. Let X be a connected 41.,41,+2-graph,
D(X)=10. Then A°[X]=2=bp =18 and for every
4+ = 18 such a graph exists.

Proof. By Lemma 6, X is a subdivision of K,' .

We use the following observation:

A°LX] = 2; X a subdivision of K, implies fla, ) >
> 0 for everya % &€ K, This is obvious, since if
la,&]eE(X), a,&eD(X),then X~[a,¥]lisa
subdivision of [e,d ], le,d]),lc,d]; and thus a symmetric
graph. One can find also points X,y € X such that
Xulx,y] is a symmetric graph.

By this and by Lemma 6, we have 42 2 16 . There is exact-
ly one such graph with 7= 16 and this is symmetric.
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Up to isomorphism, there is also exactly one graph for
p=t¥(ple,b)epnled)=l, pla,cl=nd)=2,na,d)= 3,
A (L,e) = 4). This graph can be made by deleting
the edge [d,d’] , where d’e W(a,d), and by adjoi-
ning the edge [d’, ¢’], where ceW(&,c),plc,c’)=2.
Define the graph X18 = X as the subdivision of
K,'_ with nla, &)= nic,d)=4,nla,c )-ﬁ(&d)-2,4l«@d)=
=3 nl,&)=5.Ten AT[X]=2 vecause
1o p(x,n )% (% %)+ (Z,y) for every Xd= 44 o=
% :%(x)and hence X - [a,,*b], where « € _'D3 (X) is
asymmetric; :
2-§w,t}ﬂDs(X)- O=> (F€G(X~L[w,t])=pflu,t} =
={w,t} and feG(X).
¢ By the same method we can prove that
the graph X & subdivision of
K, defined by n(a,&)= n(c,d)=
=, nla,c)=pn(bd)=2,na,d)=3,
18 o (G ¢)m m=13 satisties A”[X, =2,
A*[LX,1=2 can be easily pro-
a &  ved in view of the fact that

(.I;(X“)xﬁs(xn)) NE(X,) =/ and thus every graph
X Ulx,g] nas at most 3 points of degree 3 which are
in relation.

Let us add one remark. We were led in previous con-
siderations roughly by the connection between A (g, f1)=
=g~ and A°(p,q). Now we show that, limitwise,

constant difference A characterizes only the values
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1 and 2 of the functions A° .
Proposition 4. & £ £ then Lim A°(fi,g)& 2 .
R
The proof is essentially the proof of Erdds-Rényi [1],
Theorem 6 where it is shown A(,ﬂ., Q) < 2 for

Q< % n - -% . One is essentially using the fact
that if A"[X1 >2,then m (X) £ 1, m(Xi<2 (see (3D
Since the same thing holds if A¥[(X1> 2 , we can use
the proof in (1] in "limit modification". The limit t;aa
to exist by [3] Theorems 3,4.

Corollarx.ﬂ,u_};v; Alp,n+b)=26= 48>0 ,

L ° = = .
ﬂa&_:wa(—fl«,»ﬂ-t-A) 16md A = 0
Proof. If A > (0 then by Proposition 4,

mA"(p,p-ﬁA) £ 2 , but by [3] Theorem 4,

A°(p,p+A)> 1 for every sufficiently large f1.
If A € 0 then there is f, such that 1 > f2, =
=my,< ft + 8 (since my— -0 ).

§ 5. Asymmetric bounds.

In [1], Chapter 4, Erdds and Rényi have defined the
following numbers:

F (&, n) is the emallest q, such that A(f,@)Z
Z fo .(The numbers F*(fe, n) , F (%, n) are defineq
in the obvious analogy.)
As an immediate consequcncé of finding the best possible

lower bound for A(f, @) = 1, the values F(p, 1),
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F*(p,1), F~(p, 1) were determined in {41, Theorem 7
(of course by Lemma 1 (iv) - they coincide).

Having here characterized when A°(n,q) =1, we
have

Corollary. Let p = 10. Thenv]:‘°(¢»,2)=4z+2 for
h&1¥, F°(pn,2)=nn+1 for > 1% .

The proof is an immediate consequence of Proposition 2,
3, examples for A’(p,,yn.+2 )= 2, fp & 1¥ may be
found in [3] .

Let (C°(p2,4e) be the smallest g such that there
is connected p g -graph X such that A°[X] 2 f.It
is conjectured in [1] that C(m, 4e)=F(m, %) for all
22,

By the above corollary, we see that for e = 2 this
is false for all m = 1¥ since L(f,2) = 12 +2 (see
Lemma 6) but F(p, 2) = C(pn,2)~1 .(We have an analo-
gous observation for the values of F"’, P, C"', C™ ,to00.)
We see that F°(n,2) = C°(nn,2) for the first few
values of 4o , where F°(pn, 2) is defined. This holds
generally.’ ' .

Proposition 5. Let 41, be the first s such that
F°(p,Ae) is defined. Then C° (fr, &) is defined and
F°(h, %) = C° (f,Le) .

Proof. We have the graph X IVQX)=p, IEX) =
=P° (»ft;,h)_ Since there is no graph with asymmetry e
on <., vertices, the X must obviously be connected
by Lemma 1 (ii).
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