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REMARKS CN MONCTONE CPERATCRS
Svatopluk FUCIK,Praha

1. Introduction. This note deals with the different
properties of monotone operators in the sense of F.E.
Browder and G.J.Minty (see for instance [1],(23,13],[6]1).

The purpose of Section 3 is to give some conditions
for the relations among demicontinuity, continuity,
strong continuity, boundedness and surjectivity.

Some exemples of monotone operators with pathologi-
cal behaviour are given in Section 4.

Analogous theorem as the Fredholm.alternative for
the problem I - T (T is a linear completely continu-
ous operator) is proved in Section 5 for the linear mo-

notone operators (see Theorem 2).

A well-known problem in the functional analysis is
to find all isometries in a metric space. A similar pro-
blem for monofone operators is solved in Section 6. Sol-
ving this problem, we obtained a nonlinear characteriza-

tion of Hilbert spaces (see Theorem 3).

2. Terminology, notations and definjtions

Let X be a real Banach space with the norm l - I, ,

C

space of all bounded linear functionals or. X .The pai-

X its zero element; X* denotes the adjodnt (dual)
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ring between x* € X* and x € X is denoted by (x*, x).
The Euclidean N -space is denoted E, . The pairing in
Hilbert space is the inner product. We shall use the sym-
bols " —> ” " —=" to denote the strong convergence
in X (or in X% ) and weak convergence in X (or in X*),
respectively.

Let H be a Hilbert space and A a bounded linear
operator defined on H with values in H . Then A* deno-
tes an adjoint operator.

Let Mc X, Then M denotes a closure in the norm
topology. Let R > 0 be a real number. Then KR denotes
an open ball with the center in origin and the radius R .
M c X is said to be compact (resp. weakly compact) if
for each sequence {x 3, X, € M there existx, € X and
a subsequence {"‘mwf such that X, ~—> X, (resp. x,‘k-*
X, ).

The following theorem is well-known: X is a refle-
xive Banach space if and only if each bounded subset of X
is yeakly compact.

Let F be 'a mapping with the domain D € X eand va-
lues in X* ,Then

(1) 'F 1is said to be hemicontinuous on D if for
each X, € D and w € X we have F(x,+ tw) = F(x,)

(as t — 0+ ).

(2) F 1is said to be demicontinuous on D if X ~»
~—> X, implies Fx, — Fx, .

(3) F is said to be continuous on D if X —> X,
implies Fx, — Fx, .
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(4) T is said to be strongly continuous on D
if X, — X%, implies Fx,,, — Fx, -

(5) F is said to be compact on D if for each
bounded subset M ¢ D, F(M) is compact.

(6) F is said to be completely continuous on
D if F is compact and continuous.

(7) F  is said to be bounded on D if for each -
bounded subset M c D, F(M) is bounded.

(8) F is said to be surjective if for every
X* € X* there exists X, € D such that Fx, = x*
(i.e. F(D)= X¥).

(9) F is said to be D -maximal monotone if for
“, € D, w, € X* the inequality (a/-Fu, -a)20
for all 4 € D implies that w, = Fu, -

(10) Fe M, (D)  if (Fx - Fy,x-4)20 for
each x, €D .

(11) Fe M, (D) if (Fx - Fy,x-4)>0 fur each
X, ¢D, Xy . .

(12) Fe Ma (D) if there exists ¢ > 0 puch
that

(Fx-Fy,x-n4)2c Ix-gh?
for each x, 4, € D .

3. Continuity, boundedness, surjectivity a;ﬂ mono-

Propoeition 1 ({41). Let D. be an open subset of
a reflexive Banach space X and f& M, (D) bea



bhemicontinuous mapping. Then £ 1is demicontinuous.
Proposition 2. Let X ,¥Y Dbe Banach spaces and
A: X—> Y a linear demicontinuous mapping. Then A
is continuous.
Proof. We suppose the contrary. Then there exist
a sequence {x,§, x € X X = Gx,.xn—>9x and € >0
such that lAX, "y 2 € for each positive integerm.

1
Set t, = I x, 1”2 eand Yy =1, X

., - Then ng, —> e,

X
and ﬂAry;nuy =t, lAx, lly = ¢t,—> co contradicts
Ax,—~ 0, .

Proposition 3. Let X be a reflexive Banach space,
A € M1 (X) @ linear mapping. Then A is & continu-
ous mapping.

Proof. Any linear mapping is hemicontinuous on X .
Proposition 1 impl'iee demicontinuity of A and Proposi-
tion 2 implies continuity of A on X .

Proposition 4. Let X be a reflexive Banach space
and T e M, (X) . Then

(1) T is X -maximal monotone provided T is
demicontinuous on X .

(2) T 1is demicontinuous on X provided T is
X -maximal monotone and bounded on X . '

Proof. For part (1) see [1],(2]. If Xx,—> X,

>
then there exists a subsequence fx,,,h? end w e X*
such that 'I'.xm‘"—-=~ w, Letting f¢ tend to infinity
in

(Tx”"— Ty, %p,, = %) 2 0 ,  weobtain

(w -~ Ty , X, ~ 4) 2 0 for each p € X
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and using the X -maximal monotonicity, one obtains wr —

= Tx

o *

Proposition 5. Let X be a reflexive Banach spa-

By contradiction we conclude Tx,— Tx, .

ce, Te M,‘(X) be a demicoptinuous and compact map-
ping on X . Then T is strongly continuous on X .

Proof. By Proposition 4 T is X -maximal mono-
tone provided Te M1 (X)) and T is demicontinuous
on X ,Using (5, Theorem 11 T 1is strongly continuous
on X . ) .

Proposition 6. Let X be a reflexive Banach spa-
ce, Te M, (X)) be a bounded operator with the range
R (T) weakly closed. Then T is demicontinuous on
X . ’

Proof. If X, —> X, , then there exists a sub-
sequence S.x,w“? and w € X such that Txml:—\ Tw.
Letting & tend to infinity in

(T‘xmfk' T"J’;“w‘b"(y') Zc ﬁ‘x/nh' Y ”2
one obtains

(Tw - Ty, x,- )2 ¢ lx, - i?
for each o4 € X . Set g4 = w. Then x, = q and by con-
tradiction we conclude T, — Tx, .

Proposition 7. Let X Bé a reflexive Banach spa-
ce and Te M,(X). Then T is demicontinuous if and
only if T 1is surjective.

Proof. See L1),[2],(31,[7].

Proposition 8. Let Knn c E, and T €
e M, (K ). Then T(X_) ie a bounded set in

E, .

R+s
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Proof. Suppose that there exists a sequence {x,7,
e X x nd ATx I —>c0.
Xy € Kg  such that x,~—> X, a m Ug,

Then there exists a subsequence X, 3 and w e E‘N
o
such that ’

T
T Xmg

-———T—-— —> w ., We have
IT-X,‘_* En

Txp Try
r._&_.r_ o T X, = )y=0 ,
( Txm“ ‘“ ‘ uﬂh ‘“ : ”lv“ M—
and letting St tend to infinity one obtains (wr, X,) 2
2 (aw,qy ) for each g € Ko o - Set gy =+ -%w
The last inequality gives W' = O, a contradiction with

“WI‘N = 1.

Proposition 9. Let T € M‘,CE.N ) be a surjective

mapping. Then

fxi—>co En
Proof. Suppose that there exist «,w 6 Ey and
a sequence {x,!, x, € Ey such that

: m .
"‘m';u“’ o, E ~>« and Tx,—> w. Letting

m  tend to infinity in

(Tx, -~ Tv )y 20

.V " A
Mty Toinle,

one obtains that (w, « ) 2 (Tw,«) for each v € Ey

For each positive integer m there exists a;, € I‘N
'such that Tqr”- mau . We have (w, )@ m (w, e )
The last inequality implies w = 95" which is a con-

v
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tradiction with la lgn = 1,

Proposition 10, Let X be a reflexive Banach spa-
ce, Te M, (X) and x, e X .
Suppose that there exists a linear differential Gateaux
DT (x,, ;) (resp. a linn:; differential Fréchet
dT(x,, f#+ )). Then there exists a Géteaux-derivati-
ve (resp. a Fréchet-derivative) at the point x, € X
(For definitions see [9].)

Proof. For each 1 € X and ¢ € E4 , = 0 it

is

(T(.g,+t4:)-‘1‘(xo) , )2 0, e

t2

20

(X, +th)-T(x,)
Letting t tend to zero one obtains (DT (x,, &), h)2
= 0 for each fa ¢ X &and using Proposition 3, we

conclude this proof.

4. Exemples

Example 1. Let H be a separable Hilbert space,
fag, m = 0, ¥4, £2,..} be an orthonormel basis for
H and define the operator

e

Bx r;‘.z_:”am Ynaeq TOT X -ng_m Cpp Y *
Let I be the identity operator in H and set Tx =
=3Ix - Hxl gy +Bx. Then Te My(H), T is
continuous and T is not weakly continuous.

Example 2. There exists a ©& -positive homogene-
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ous operator T (i.e.T(tw) =tTu for each we X
and t > 0 ) which is continuous,Te M, (H), TH=H
and T is not a linear operator.

Proof. See the operator T in Example 1. (TH =H
follows from Proposition 7.)

Example 3. There exists an operator Te Mz (52)7
T is surjective and ‘T is not continuous (see Propo-
sition 6 and 7).

Proof. Define

X for x < 0 ,

f(X)z‘{

X+41 for x =0

and for each [.x,ny] € En. set

Tlx,pl =[ly+f(x),~-x],
Example 4. There exists Te M, (X,),K cE  (N=2)
such that T(T{I) is not bounded (see Proposition 8).

Proof. Let {x, } ) Xm € E’N be a sequence such
that Hx”IEN=1’ xm"“"m for m = m and
Hmp—> X, . Set

T {N for xe]_(-1,x=l-xm,m=4,2)...,

X = s

Xnt MX, for X=X, , m=1,2,....

Then T € Mg(i(-1) and T(f,,? is not bounded.
Example 5. There exists T e M,(X), T is
continuous and :r(_]f1) is not bounded (a_ee Proposition
8). - 2R TGS '
Proof. Set X = ‘e’z and define
)' 0 for t & -;— ’
fat =ﬂ={fn.\‘. *%' for t > % R




for each positive integer m .

For x =1a,,a,,.. te £, set

Tx =1{f @,), £, (@,),...3+{a,,a,,... § .
Then Te M3 (;ez) and T(K4 ) is not bounded since
for {0,...,0, 41 ,0,..3e K, we have ITx, ﬂzz

2.

2

Moreover, T is a continuous mepping.

Example 6. One can easily prove that if

f e.M,, ((-4,4>))f(-'1)€(-4,4>,:F('1)e(-'1,’l> ( £ is not
generally continuous), then §f has a fixed point at
the interval {—1,4 % (i.e. there exists X, €
€ <=1,1> such that f(x,) = X, ) .

This assertion is not valid for greater dimensions.

Proof. Let N = 2 be an integer and

X X

["3‘“ ? W.fi ? 0""701) X QEN )
TLx‘,’.-.,XN] = |

(4, 0;...,01, x=95u »

Alx,.., % 1= [-%x,%,0,..,01 ,
Ux = %(x-&-Tx-o-A.x) .

" Then UeMa(K,’) ,U(K,,)C]-(-,t and for each
xef,, it is Ux % x .

5. Linear monotone operators
Theorem 1. Let X be a Banach space and A € .M,, (xX)

a linear operator such that R(A)= X*( R (A) is the

renge of A ). Then A is one-to-one.
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Proof. SuPPOsSe that there exists o € X, ¥ + 6,
such that Ay = g‘* . Then there exists x, € X such
that

(Ax,, ) 2 200 . e have
Hiyl £ (A-24), - 2¢) + 2 (A%, 4) =

= (AX,, %) ‘le,HX.'lx,lx
for each A > 0.Lletting A tend to infinity, one ob-
tains a contradiction.

Theorem 2. Let H be a real Hilbert apace.AcM,,(H)
be a linear mapping. Then A is one-to-one if and only if
RaAy=H.

Proof. One part of this theorem is included in Theo-
rem 1. Suppose that A is one-to-one and denote by N(CA)

(resp. N(A*) ) the null-space of the operator A (resp,
A* ). Then
H= R(A) @ NA*) = RTA®) @ N(A) = R(A¥)
(see [8]). But R(A*) = H and applying Theorem 1 on the
operator A¥  we obtain N (A*)= {OHI and hence H =
= m . (The operators A and A* are continuous - see
Proposition 3.)

Exgmple 7. There exists A6 M,(H) such that A
is one-to-one and R(A) == H .

Ercof. Set H = L, (0,41 ant (As)(#) = fxctrat

for each X 6 L [0 4). A is continuous since
A = fifxceraslan & [ fixctriasrias «
1
& Ixi
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For x e C£0,4J we have

4 4
(Ax, x) -_{'(Ax)'(/o)- x(n)dh = [L(AX) (5)]-
2
-[(Ax)(8))ds = _@_.%)__(;4)_ =0,

the density of C [0, 1] in 1..2 [0, 4] and the con-
tinuity of A imply’ (Ax’,x) > (0 . for each X €
e Lz'YEO, 1]. A ie one-to-one and A(L, )c § the
set of all absolutely continuous functions} == L,lo,1).

onlinear characterizations of Hilbert
Proposition 11. Let H be a real Hilbert space
and T: H—> H an operator. Suppose that there exists
ceée 54 such that
) 2
(Tx - Toy,x-y)mchx-gk for each x, y.eH .

Then there exists a bounded linear operator S such
that
Tx = SaH-T(G“) for each x e H .

Proof. Set Sx = Tx -T(e”).rhen
(Sx - Sy, x-q)-cﬂx-q’l: end (Sx,x) = ¢ I x I: ‘

for each X,n4 € H . #e have

(Sx, )+ (Sy,x)

2 bnd C(X,fy-) ’

(Stx+x),4) =(Sx,g) + (S%,%) ,
(S5(tx), ). =t (Sx, )



for each te 51 and all X,y x e H . From these equa-
tions we obtain a linearity of S ,

Proposition 12. Let X be a real Banach space and
T: X—> X* such that Sx = Tx - T¢8,) is an odd
operator (i.e, S (=L )=-Su« for each s € X ). Sup-
pose that there exists ¢ e E.1 , C = 0 such that

(Tx~Ty,x-y)=clx-y I} for each X, y € X .
Then

a) X is a Hilbert space,

b) & is a bounded linear operator.

Proof. S satisfies the following identity
(Sx - S I =g b
X-oy,x-yg)=clx-41 ,

(Sx-S(-ry),.xwy,) =c lx +@l:
for each X, g eX .

By an easy calculus we obtain
(Sx, ) +(Sqp,x)me Cllxly + Ny} - Dx-gp I ) =

= cCxsgli- Il = g 12 )

and

2
I+ g b+ -0 b2 2
Xz_ X .lxn: + lyll, for each x, 46 X .

The last identity implies that X is a Hilbert space.
.Assertion b) follows from Proposition 11l.
Theorem 3. Let X be a reesl Banach space. Then X

is a Hilbert space if and only if there exists a mapping

T: X—» X* and a real number ¢ s 0 such that »
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2
(Tx~ Ty, x-4)= clix-nl,
for each X,y €X .
Proof. If X 1is a Hilbert space, set T = 1. If
there exists ¢ &= 0 end T:; X — X¥ such that

(Tx - 17y3 X-q;) = c "x..q#ﬂ:
for each X, yeX.

Set

Sue T -Tew
2 :
for each w € X. S satisfies the hypotheses of Propo-

sition 12 and Theorem 3 is proved.

~
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