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ON THE METHCD OF LEAST SQUARES OF FINDING EIGENVALUES
AND EIGENFUNCTIONS OF SOME SYMMETRIC OPERATORS,II

K. NAJZAR, Praha

In [1], we studied the method of least squares for
approximating the eigenvalues of a DS-operator. From the
results of [1] it follows that the approximation A‘™)
to an eigenvalue A debenda on a parameter «v , i.e.,
AM - A?”(@p) and we can obtain upper or lower
bounds of A for appropriate choice of & «In this pa-
per, we shall consider the problem of the optimum choice
of the @ which leads to an error JW”%]&)- A of mi-
nimum absolute value. For the case in which A is a
bounded below operator we shall show that the Ritz’s ap-
proximation to the smallest eigenvalue of A is "a li-
mit’s case" of the approximations obtained from applying
the method of least squares. Finally, we shall consider
the probleﬁ of approximating the eigenfunctions of a DS-
operator using the method of least squares.

We assume throﬁshoat that A be a DS-operator
with its domain a real separable Hilbert space H ,i.e.,
A is a symmetric operator in H such that the set of

its eigenvalues is of the first category on the real a-
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xis and the spectrum 6 (A) is the closure of this set.
Let A;,<1=4,2,... be an enumeration of distinct ei-
genvalues of A . Further, we assume that {¥;37]  is a

totally complete system.

1. In this section we shall consider the problem
of the optimum choice of @ . Let .9\,""’(((4,) be defined
by

+ () for < A
(1D .’A\""’(p)-e‘\/(u Ln'ct ¢ ¥
) @~ W) for @w>a, |,

where
- . IIAu-ﬁ.u,ﬂ
(2); Un () = ¢ 50(141;34 Tl
“w W )

and Jl.a; is a fixed eigenvalue of A .
w k t & ; - .

e remark that n% Qm = t‘%ﬁ)l t -l (Theorem
3 of [11,p.318). Before proving Theorem 1, we establish
the following lemma.

Lemma ]. The function A‘“’(« ) is monotone in-
creasing in ecch of the intervals I1 = (-o00, ﬁ'é) and
Iﬁ‘(a""'7+m)‘. '

Proof. Firstly, assume that w, <@, , «, € I .
It follows from the definition of ¢, () in (2) that

N ”
there exists «, e L {¥; 3"  such that Nl i = 1 and

2n (&4‘)-; lAu;‘-@144.1II . Then

(3) 4™ W) =+ AL - il v VlAu.“‘lz-Zta, (A, )4y,

Let #(A) be defined by
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(4) fQA)= A+ V@—Zha&’i-a.z, .ﬂ.e(—oo,-t-ao)

where a = llA«w, 1> eand &= (Awy, ) -
As q =2 ,02, the function £(A) is real and monoto-
ne increasing in (-oo, + o). Evidently, A™ () =

=f ((14,1). Therefore, we find

(5) £lo,) £ £@,) = A (,) -

Now, we note that

MAw -, 1 2 g, («,)
and from (4) it follows

m)
flw) 2+ qn(w,)=A"(g,)
8o that A (@) € A™ (g, ) .
In the case “ < &y, &€ Iz one finds similarly
m) m)
A ((ao) < A ((u,‘) .
An immediate consequence of Lemma 1 and Theorem 3
of (1] is the following
Theorem 1. Suppose an eigenvalue J\é of A is
not an accumulation point of & (A). Let w, , &,, &,,
¢, be real numbers such that

%-(A’-'+té,4)‘p,.<(ua< .9\.’-‘< (us<q.¢‘_£%(ﬂ.’-_+t’-”)

where )
i T LH T Yo = T
t<ig : t>2; -
The..
) 22450 & Ae) & AVe,) € Ay <
€ A™(e)) € A (w,) £ ATV ()
where
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m)

m
A7) = 2yt 9, (2

. nd . o .) - .
B)  om ATO(A) = tim AT(AG) = 2y

In words, this theorem says that the best upper ap-

proximation to A,ao_ is obtained when ¢ = -1-(.1‘,_-9- t"_,)

and the best lower approximation when @ = -1- (.'»\",4- t“_, ).

2. Let A be a DS-operator which is bounded below.
Let A, < A, < .7L,‘ <... Dbe an enumeration of its dis-
tinct eigenvalues with an increasing order of values and
@ be such a real number that w < A, . It follows
from Theorem 1 that we shall obtain the best approxima-
tion to .’A1 from above when tv — —~ 0o . The next theo-
rem gives an impor‘tnbnt information on the limit of the
function A™'(e) when w — -~ oo .

Theorem 2. Let A be a DS-operator which is boun-
ded below. Let }\1 be the smallest eigenvalues of A .
Then

, o) . (Aw,w)
(6) R qw-‘“o 1, —l—;;-r— ’
. “ e

where A (q) is the approximation to A, .

Proof. Suppose that & < h1 . Therefore, from
(1) and (2) we see that
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7 AN ()= +q (e +NAu-wwll

for each w € L{Y,; ™ such that fwl =1 .

4 em

Select w € LY % ,lul=4 and define £(A) by

(8) FA)=A+Ya-220 + A2

where @ =lAwl* and &= (Aw,u) .

It follows from (8) and (7) that
@+~

. omd .
(9) bm 27 () & “I_‘@’f‘&) .

It is easily verified that

(10) P;&:r;f(@o) - (Au,u) .
Since « is an arbitrary element of x{ur,b:;;, such

that lwl =1, it follows from (9) and (10) that

(11) tim A™e) & (A, «) -
“r-co

w e X{WIT,
fuleq
By Theorem 4 of [1], we have

(m) .
(12) A (G“)’Qm(ﬁ‘)ﬂ“ )r"‘nm CAu,w)
wlie1
Therefore, by (9) and (10) we find

. on) .
#m A () = (A, a)

Remark 1. Under the assumptions of Theorem 2,
let A be the approximation to A, obtained from ap-
plying the Ritz’s method to the subspace H, = L 2% 7% o
By Theorem 4 of (1], we have
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m .
A =L (Au,u)
Hulmq
and A, £ A™ < A“™(g) for every « with

w € a .

From Theorem 2 we can deduce that_ the approximation to
the smallest eigenvalue A, by the Ritz’'s method is
"a limit’s case” of the approximations by the method of

least squares, i.e., Lim A™(w) = A“Y for any
&= ~co

positive integer m .

3. In this séction we shall consider the problem
pf approximating the eigenfunctions of DS-operator.
Without loss of generality we may assume that w = 0.
We shall suppose that the eigenvalues {A, 3::4 of A
satisfy the relations
(13) 0<|7tdl<l.ﬂ.2lsl.ﬂgl£...
and il.1 is a simple eigenvalue.

The following lemma is needed.

Lemma 2, With the assumption (13), let {5 1.,
be a sequence of normaliged functions belonging to D (A)
such that‘go: IA'xg'l- |.7L4|. Then there exists a conver-
gent subsequence {1, 177 ~ such that its limit is an
eigenfunction of A belonging to A, .

Progf. By Lemma 1 of [1]

“ﬁ";f-a u™, 1Ag 1 -;i "R [P
where 2;* is the projection of 7, on H; and H,

is the closure of a linear manifold generated by the



eigenfunctions of A associated with the eigenvalue /A, .
Since Yy, is a normalized function, we have

2,2 2.2 .2 @yly ot a2y L g gmdg2
Ay -2 = 2 (A=A 12 (-2, Z 17120 .
It follows that \

<o

: m) 2
an  gm E e - 0
and
Y m)g2
2 WA N 1 “

Now, let & be an eigenfunction corresponding to
the eigenvalue A, such that lg‘ §=4. Then qc‘"’" =

= (v,,g,)g and from (15) it follows &ml(y, g )12=1.

This implies that the sequence {7, }7° _ contains a

(-]
subsequence {14;,“3,,_4 such that

(16) h_l;)g:(v,,;,q;,)ee, lel =1 .

A

Now,

Iy, - e gz,ﬂz-‘.;fz i v?"‘)lz+ Can, ,9)-e 1% . ‘
Hence, by (15) and (16) the subsequence {v,,,’!:“ has
the limit eg, and the proof is completed.

Remark 2. In this argument we have assumed that
the A, is a simple eigenvalue of A . However, mul-
tip17 eigenvalues do not give rise to any special diffi-
culties.

Remark 3. Lemma 2 is not valid in the case when
A, = =2 . To prove this we denote g7 , §3 the nor-
malized eigenfunctions corresponding to .2.1 , .ﬂ.’ , Tes-

pectively. Now, let us make a special choice of Y, 88
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follows: y
=g Qeq), m=i1,2,.. .
Ten ly, =1 and Ay, = L (g-9) ,

whence 1A, =12 | and 2 is not an eigenfunction
of A . ‘

Corollary. Let «, be a normalized function be-
longing to XL{¥ };" = such that

lAw, Il = g 1Al .
w1,
ulnq
Under the hypotheses of Lemma 2 the sequence f{«, 1%,

contains a convergent subsequence and every convergent
subsequence has a limit normalized eigenfunction of A
associated with the eigenvalue ﬂ.,‘ .~ It follows that
the sequence {3} , contains at most two accumu-
lation points. These points are 93' and -9, where

g, 1is a normalized eigenfunction of A associated
with the eigenvalue A, . If we assume that {u,}7_,
“has one accumulation.point, it follows from Lemma 2
that the sequence {4, :_ 4 1is converging.

The next theorem gives a useful information on
the construction of the approximation of the eigenfunc-
tion ¢, . :

Theorem 3. Let A be a DS-operator and {¥;1?7,,
a totally complete system. Suppose the eigenvalues
tA;1%, of A satiefy the relations

0<irl <Al & l?t,l‘

and that the eigenvalue &1 is simple. Consider the

- 456 -



functions «, e x{%;‘:‘“ m=1,2,..with the following pro-

perties
1) NA«, I —*‘%‘?ﬂﬂAul ,
Bullsq
2) lu, | = 1,
3) (g y 4 yy) = 0 .

Then the sequence {"‘m }:_, converges to a normali-

zed eigenfunction of A associated with the eigenvalue
A, .

Proof. To prove this theorem, assume the contra-
ry. Let ¢ be an eigenfunction of A corresponding
to A, such that Ig I =4 . Suppose that {.,, k Jogli
is not converging. Then by Corollary it follows that
{w, 37, , has two accumulation points ¢ and -¢; .
Define the sets M,N as follows:

M consists of all &, for which(u,,%)20,

N consists of all «, for which(«,,%)<0.
From Corollary it follows that M and N have the ac-
cumulation points ¢ and -9 respectively. Since

{u, ). =MUN, there exists «,, € M and 4, , & N

N Mncq
such that
1 1 .
Iu,m-cg'l<-i— y M+l < 7

But

(“m’“mo—f) ’(“,,.‘91,,%,47"'(%,%4*%)’4 “
alu -gl+lu,, +l1-1<0

and this contradicts the assumption 3).
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Remark 4. Theorem 3 is not true for the case
dy=-2

Remark 5. In the case of the multiple eigenvalue
.A,‘ Theorem 3 is valid, if we assume that (, ”,a.m")>
2 e>0 for m=4,2,...

Remark 6. Let A be a DS-operator and let Ag
be a simple eigenvalue of A. Suppose A4 is not an
accumulation point of the spectrum ©°(A). Let w be
a real number such that

lww - < Amf - .

“-Mel < h -t

tel,
Then a convergence theorem similar to Theorem 3 can be
established, if we apply Theorem 3 with (A- ‘u,I) and
.ﬂ.’o ~ ¢ in place of A and .2., , respectively.

Under the assumptions as in Theorem 3, we now stu-
dy the problem of determining {u.“ :.4 . Without loss
of generality we may assume that the system {’Y i‘,,
is orthonormal and 4 = "l’," .

Let g:‘_ be the smallest eigenvalue of the matrix A, =

=1 )

=AY, A¥ 3™ dee., gy - B, Awl? .

lulad .
"
To find u’“‘&?‘_? o, ¥, m >1, we must determine the

solution of the equations

an i DAY, AY) -, 2 T m 0, j=4yym

for the m unknowns a:”: cery g ’ such that
: m )
’ m) (2

(18) i (™)
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and

m-1
(19) m) _m-1)

It is evident that the solution ot ™= (O‘f": ey )

of (17) is an eigenvector of A, corresponding to qj‘.
If the rank of the matrix f3 = A2 In (I, de-
notes the identity matrix) is equal to m -1 , it fol-
lows from (17),(18) and (19) that the conditions 1) .-
3) of Theorem 3 determine a unique function «, .

Now, we discuss the rank x, of the matrix 3, .
Let x, =m -t and let (¥l @™o (x717,,  be
an orthonormal basis for the space of the solutions of

(17). Define V, to be a fe -dimensional space span-

o ~”
ned by {u.% ]*‘."“ where “f-,-., «.‘?; - ¥; . Then we

have

Lemma 3. Under the hypotheses as in Theorem 3,
let the rank of the matrix J3, be equal to m - 4o ,
{@ lo € m . Then

(Au.,Av)-gf,,'(u,v) for any «, v ¢V, .

Proof. Let %-“%E!Aul.pomg the definition

lalaq

(22]
of «, , we have

(Aul) AY )= 3 . (AY AY)m g2 .o i = ,..., Ao
m ) AT y 27 'y L 0\'-‘4', v =1,..,

and hence

20) (Auf A = & ) 2 wle) e gt o

i = 2
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Since { %3 is an orthonormal basis for 1".‘

m “e= A1 J

it follows from (20) that (Aw,Av)=gi - («,7) for

any «,v € Vp, . This proves the lemma.
As a consequence of Lemma 3, we have

eorem 4. With the assumptions of Theorem 3,
let the system (Yt 1“:’ be orthonormal. Then there
exists a positive integer m, such that the rank of
the matrix B = ((A%,A!’i)-d‘«"--g:, 1 iaq i equ-
al to m-4 for mam,,i.e., @2 is a simple
eigenvalue of the matrix A, = {(AY], AY; )},‘{:,-" for
m2m, .

Proof. Let us denote the rank of $, by «x, .
Suppose that there exists an infinite set N of posi-
tive integers such that x, < m -1 for m e N .
Now, it follows from Lemma 3 that there exist «, , 7
such that

1) ap, v, 6 437, lu =Ny =1,

(4, %) = (Ad, , Ar,)

2) WAy, Il =llAvy, =g,

for any m « N . Consequently, ‘L_’a?. TAu, Il =
=t VAv I = 12,1 . ~e

It“;ollou from Lemma 2 that we can choose convergent

sequences fv,’u!_“:’ and {%}7.4 from i, :.1‘
L% ]

and - «» respectively, such tl\nt ]
{95y, ,  Tespectively, such that oy 4 = o,
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and  ALom v,
(."'"Q ”‘81’;’

malized eigenfunctions corresponding to Aﬁ' From this

where «, and 2, are the nor-

we obtain

(21) (g, vy ) = 0 .

On the other hand, .A1 is a simple eigenvalue of A .
Consequently, |(«,,v;)! =4 and this contradicts (21).

Remark 7. With the assumptions of Theorem 3, the

number q'zn is the smallest eigenvalue of the algebraic

eigenvalue problem (A, -6%8, Ju =0 , where
A, ={AY, AY)3Y ., and B =Y, 1,37, .,

and there exists a positive integer m;. such that the
Q: is simple for m > m, . From this it follows that
the conditions 1) - 3) of Theorem 3 determine a unique

function u,, for m =2 m,
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