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Commentationes Mathematicae Universitatis Carolinae 

11,3 (1970) 

ON THE METHOD OF LEAST SQUARES OP FINDING EIGENVALUES 

AND EIGENFUNCTIONS OF SOME SYMMETRIC OPERATORS,II 

K. NAJZAR, Praha 

In fl], we studied the method of least squares for 

approximating the eigenvalues of a DS-operator. From the 

results of til it follows that the approximation Af<rv^ 

to an eigenvalue A depends on a parameter At/ , i.e., 

A***1 •» %f* (yu) and we can obtain upper or lower 

bounds of A for appropriate choice of p * «In this pa

per, we shall consider the problem of the optimum choice 

of the (U, which leads to an error A^Vf-v) - A of mi

nimum absolute value. For the case in which A is a 

bounded below operator we shall show that the Ritz's ap

proximation to the smallest eigenvalue of A is Ma li

mit's caseH of the approximations obtained from applying 

the method of least squares. Finally, we shall consider 

the problem of approximating the eigenfunctions of a DS-

operator using the method of least squares. 

We assume throughout that A be a DS-operator 

with its domain a real separable Hilbert space H , i.e., 

A is a symmetric operator in H such that the set of 

its eigenvalues is of the first category on the real a-
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xis and the spectrum & (A) is the closure of this set. 

Let %i f *£ m 472j... be an enumeration of distinct ei

genvalues of A . Further, we assume that K%lfLA is a 

totally complete system. 

1. In this section we shall consider the problem 

of the optimum choice of p , . Let X(m,)({u) be defined 

by 

(vx^)^^^^)for ^<X^ • 
where 

4**0 

and A^, is a fixed eigenvalue of A . 

We remark that Mm* o -» imf I t - <**, I (Theorem 

3 of ClJ»p.318). Before proving Theorem 1, we establish 

the following lemma. 

Lemma l. The function Xim,)(^) is monotone in

creasing in each of the intervals L ** (-ao, X*) and 

Ift m ( X^ f + CO ) . 

Proof* Firstly, assume that (co0 < f^ , ^ € I . 

It follows from the definition of c^m ((tc) in (2) that 

there exists u* m S6if} If* M such that II ̂  K » 4 and 

£* <<*., > " I A * S - f*f "S fl ' Then 

(3) **%..,)P.^+ • A ^ - ^ . m l - ^ * Viw,,l2-->fCA^ . , ,^)^, 

L«t f (X) be defined by 
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(4 ) ÍCX)ш A+- l / a - 2 Л ^ 4 . Я 1 ' } Xe (-00,+ 00) 

where a — \\AAJLA i and i r -» (Au^,*^ ) • 

As a, > *lr4, the funct ion f ( A ) i s rea l and monoto-

ne increasing in C ~ O 9 , > 0 D ) . Evidently, A** C ^ ) as 

= f C(U, ) . Therefore, we find 

(5) f C(JLQ) £ t(foH)m A ^ C ^ ) . 

Now, we note that 

IALL^(L0^\ £ <U(fr) 
and from (4) it follows 

so that A^Ctfrf*) ** A ^ C ^ ) . 

In the case ^ < ,ct , ft0 e I 2

 o n e finds similarly 

X**}((±) ^ A ^ C ^ ) , 
An immediate consequence of Lemma 1 and Theorem 3 

of C13 is the following 

Theorem 1. Suppose an eigenvalue A • of A is 

not an accumulation point of & (A) . Let £JL^ t f^2f fu„ 

(JL^ be real numbers such that 

where 

*mĄ
 tвTЪt) * *** t«Г 

t < A^ * > &£ 
The*. 

a) Â 'CÂ ) * A^V,) * A^V^) * \ * 
« JL"*<<4.4) -» A<*%t4> * A ^ C A ^ ) , 

where 
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b) **m A ^ A . ) - ^ Ai^CA^) m Xd . 

In words, this theorem says that the beat upper ap

proximation to Xj is obtained when <u, m % CA*-+-i» „ ) 

and the best lower approximation when (tt m i- (A,. 4- t*^ ). 

2. Let A be a DS-operator which is bounded below. 

Let XA < X- < X% <.*. be an enumeration of its dis

tinct eigenvalues with an increasing order of values and 

AA, be such a real number that A* < A1 # It follows 

from Theorem 1 that we shall obtain the best approxima

tion to X from above when AA* —• - oo . The next theo

rem gives an important information on the limit of the 

function X€m,1(<u,) when (4, —• - oo . 

Theorem 2* Let A be a DS-operator which ia boun

ded below. Let A^ be the smallest eigenvalues of A • 

Then 

t*\ *• ***V \ (AAJL944,) 
(6) fJ^i.x <^>-*«'5K^Cf i J - ' 

where X(m* (#*>) ia the approximation to A^ . 

Proof. Suppose that AA* < A* . Therefore, from 

(1) and (2) we see that 
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(7) A^V^)» (« , + £^C^).6<Cl,4- ftAdA-(U44, II 

for each 44, € Xi^lZ^ ouch that i-u,l • 4 -

Select -u. e ^ i ^ l ^ , l-u-I- 4 and define fCA) by 

(8) f CA1 = A + / a - 2 U + A* 

where a-lAxi,!1 and 4r » CrW, *a-) » 

It follows from (8) and (7) that 

(u,-•-«-* v jit 

It is easily verified that 

(9) ií»* .V".;,*) é , W f U ) 
• *••»<# §éímTmm> * 

(10) .A**, i(A4,) m(A44,.4+.) . 
(+-¥-00 v * 

Since .«, is an arbitrary element of X<^}^mi such 

that 1.44,1 » 4 , it follows from (9) and (10) that 

C0O 

(11) ^ i H A ^ **&&&, <Au*4c) • 
l4*.lm<\ 

By Theorem 4 of U ] , we have 

(12) A Cx*,) m- 0^(fi4,)+*4, > *****, . _ (A41, 44,) . 
c~ %** i e~ -u,«*<i£i£; ' 

i^civf 

Therefore, by (9) and (10) we find 
Mm, X (ft) m muft ' (A^AA,) • 

| .4*i .»1 

Remark 1, Under the assumptions of Theorem 2, 

let A*1** be the approximation to A i obtained from ap

plying the Ritn's method to the subspace -Ĥ *-* it<yi||^f 

By Theorem 4 of 113, we have 
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A * /mm, CAAA*%AA») 

Hu,tm4 

and X4 & A**** .6 X^Cft) for every <a with 

ft* * A^ . 

From Theorem 2 we can deduce that the approximation to 

the smallest eigenvalue A. by the Ritz's method is 

"a limit's case" of the approximations by the method of 

least squares, i.e., jfam, Xc"*C(u,) * A t m , ) for any 

positive integer /rt . 

3. In this section we shall consider the problem 

pf approximating the eigenfunctions of DS-operator. 

Without loss of generality we may assume that p . -» 0 . 

We shall suppose that the eigenvalues (-^1^^ of A 

satisfy the relations 

(13) 0 < \xA\ < \XA & U 4 U ... 
4 2 s 

and X is a simple eigenvalue. 

The following lemma is needed. 

Lemma 2. With the assumption (13), let {i^i^mi 

be a sequence of normalised functions belonging to S K A ) 

such that Jtim* IA4111** \XA. Then there exists a eonver-
m.-¥oO ^* <t 

gent subsequence {%^.^94
 auch *nat ita -*•*»* t ia a n 

eigenfunction of A belonging to A^ . 

Proff* By Lemma 1 of til 

where nrf** i» the projection of %> oft H 4 and K ^ 

is the closure of a linear manifold generated by the 



eigenfunctions of A associated with the eigenvalue A^ . 

Since VL is a normalized function, we have 
fit 

I . A i & l , - ^ - . f ^ - A > l a ^ l ' a ^ - A * ) . £ | - < f » | 1 * 0 . 

It follows that 

(14) Mm f I v ^ l 2 - 0 /«, -* op * » i * 

and 

(15) i<m fl^^l2 « 4 

Now, l e t ^ be an eigenfunction corresponding to 

the eigenvalue \ such that lg>, I « 4 - Then 1/̂ ** ~ 
mCnJL a)w and from (15) i t f o l l o w s Mm \(n£9<&, )lz** 4 . 

This implies that the sequence itr^}%mi contains a 

subsequence { ifa - \£m ^ such that 

(16) ^JUm (*»«£- w ) m « , (<e I - A -

Now, 

Hence, by (15) and (16) the subsequence {t^ ijf°mj has 

the limit eg?, and the proof is completed* 

Remark 2. In this argument we have assumed that 

the A, is a simple eigenvalue of A * However, mul-
7 

tiple eigenvalues do not give rise to any special diffi

culties. 

Remark 3* Lemma 2 is not valid in the case when 

X^ m - 3i^ • fo prove this we denote g^ , ̂  the nor

malised eigenf unctions corresponding to Xn f A^ , res

pectively. Now| let us make a special choice of t^ as 
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followa: 
A , 

%, m " T J ^ ^ + JJt) I «*>m4%2f... . 
Then 1 ^ 1 - 4 a ^ A i £ ~ -far A4 C% - fy) , 

whence Mi^BalA^I and ^ i s not an eigenfunction 

of A -

Corollary* Let AJL^ be a normalised function be

longing to Hi\^m4% auen that 

,A*-- ,--.ifcfc, ,A"1 .• 
tola* 

Under the hypotheses of Lemma 2 the sequence iu^ l%m ^ 

contains a convergent subsequence and every convergent 

subsequence has a limit normalised eigenfunction of A 

associated with the eigenvalue \ r It followa that 

the sequence i^^iZm^t containa at moat two accumu

lation points* These points mre g^ and ~% , where 

Cf. is a normalised eigenf unction of A associated 

with the eigenvalue X . It we assume that {<«•;-*,»?*--"f 

has one accumulation point, it followa from Lemma 2 

that the sequence i*hm,}£m4 ia converging. 

The next theorem gives a useful information on 

the construction of the approximation of the eigenfunc

tion % • 

Theorem 3. Let A be a IB-operator and i^i^mA 

a totally complete system. Suppose the eigenvaluea 

*^-i*it* °* A satisfy the relations 

•«•<.*„ I < \ \ \ * \%%\ * .., 

and that the eigenvalue A 1 is simple. Consider the 
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functions ^ • . t f < ^ C f > ' * * ' ' ' 2 ' - W i t h th* f o l l o* i n« P-»" 

parties 

1) »A-V« - „.&&'*> *Auh » 

2) 1 ^ 1 * * 7 

3> ^ ' ^ ^ * ° • 
Then the sequence iu^l^mi converges to a normali

zed eigenfunction of A associated with the eigenvalue 

Jv. • 
n 

Proof, To prove thi8 theorem, assume the contra

ry. Let 9? be an eigenfunction of A corresponding 

to Xi such that f y I » 4 . Suppose that iu^iZm^ 

is not converging. Then by Corollary it follows that 

i^^iZm^t nas two accumulation points ^ and ~ #J # 

Define the sets M,N as follows; 

M consists of all u^ for which Cus*,^)-* 0 , 

S consists of all AJL^ for which C ^ , ^ ) ^ 0 • 

From Corollary it follows that M and H have the ac

cumulation points g> and — cp , respectively* Since 

• K C M « M c/JV , there exists u^ e. M and 4 ^ ^ * -W 

such that 

But 

and this contradicts the assumption 3). 
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Remark 4. Theorem 3 is not true for the case 

i i 

Remark 5. In the case of the multiple eigenvalue 

A, Theorem 3 is valid, if we assume that (u^u^f)£ 

Z Z > 0 for /n a <f, 1, ... . 

Remark 6. Let A be a DS-operator and let Xj^ 

be a simple eigenvalue of A . Suppose Xj^ is not an 

accumulation point of the spectrum tfCA). Let (U, be 

a real number such that 

^ - ^ ' < t ^ > ' ^ ^ i f • 

Then a convergence theorem similar to Theorem 3 can be 

established, if we apply Theorem 3 with (A- fjul ) and 

Xj — (U. in place of A and A- , respectively. 

Under the assumptions as in Theorem 3, we now stu

dy the problem of determining iumfi^m^l * Without loss 

of generality we may assume that the system i ^ iT*i 

is orthonormal and &L. ** *%. 

Let g ^ be the smallest eigenvalue of the matrix •4n»*r 

«CCA%, A¥,)i^m4 , i.e., o* • <m»»^ tA^tl* * 
%4+l~4 

m,> 
To f ind AA^ * 21 OCJ % m <iv > 4 • we must determine the 

solution of the equations 

<17) i . l - r - ^ A ^ A y ^ - ^ ^ j - o , -i.-4f...,̂  

for the ft, unknowns *£**, *•* 9 &£*' such that 

(18) ŕ*» . . . 
^ ^ Г ) * - < 

458 



and 

(19) ^ o c f ^ o c ^ ^ > 0 . 
4> ml * * 

It ia evident that the solution aC *» (*% , »*•, «c^T ) 

of (17) is an eigenvector of A ^ corresponding to q^. 

If the rank of the matrix J3^ m A ^ - <£«, * ^m. * 4* de~ 

notes the identity matrix) is equal to m. - 4 , it fol

lows from (17),(18) and (19) that the conditions 1) -

3) of Theorem 3 determine a unique function AJL^ . 

Now, we discuss the rank H.^ of the matrix 33^ . 

Let K^m/n-M and let ̂ ^ J * „ ^ ^ » < < v J ^ f bt 

an orthonormal basis for the space of the solutions of 

(17) • Define %t to be a M -dimensional space span-

n.d by {*,% 1^ *h.r. « £ - .f. e% • % . Th.n w. 

have 

Lemma 3. Under the hypotheses as in Theorem 3, 

let the rank of the matrix Sb^ be equal to /it - 4t , 

4 4» to, * m . Then 

(A-u,, Av>) m (j^> (AJL7v) for any AJL9 v f V^ . 

froof* Let 4^--* /w^jv^lAitl.Using the definition 

O f 4*1-4, ? W e h f i V e 

and hence 

^ C A ^ A ^ ^ i ^ ' ^ ^ . ^ . ^ . . 
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Since A.AA£ }?* ̂  is an orthonormal basis for VL . 

it follows from (20) that (.A-u,., Air) »^f,* f-a,ir) for 

any 44,, tr € l^ . This proves the lemma. 

As a consequence of Lemma 3, we have 

Theorem 4. With the assumptions of Theorem 3, 

let the system CY^J^,, *>• orthonormal. Then there 

exists a positive integer #t0 such that the rank of 

the matrix % - <(*%, A % > - e ^ * « ! ̂ . * is equ-

al to /it -4 for vrtv «* m^ t i*e., g ^ is a simple 

eigenvalue oif the matrix ^ » f(A%, A f ^ ) l ^ » f for 

/?!• fSl /If, « 

Proof > Let us denote the rank of 35^ by /c^ • 

Suppose that there exists an infinite set N of posi

tive integers such that x^ < m, - 1 for <n e N * 

Now, it follows from Lemma 3 that there exist AJL^ , v^ 

such that 

1) ^^m*<Y+l?94, 1^1-1^1-4 , 

2) l A ^ i - B A ^ I - <u 

for any ^ m N • Consequently, Mm lAiLA » 

It follows from Lemma 2 that we can choose convergent 

sequences l « £ 4 * £ f and t^J?*,. from * ^ $ J U 

snd | iii f~ 4 . respectively, such that Mm* u,~ «*«. 
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and .Jtim, I*L m vi , where u,m and t£ are the nor-

malized eigenfunctions corresponding to A , From this 

we obtain 

(21) ("**, v» ) - 0 . 

On the other hand, Ji is a simple eigenvalue of A * 

Consequently, \(u,0fir0)! -« 4 and this contradicts (21). 

Remark 7. With the assumptions of Theorem 3, the 

number q?^ is the smallest eigenvalue of the algebraic 

eigenvalue problem (Jl^ ~ 6 $3^ ) u, » Q 7 where 

and there exists a positive integer m,m such that the 

o* is simple for /ti, & /TL . From this it follows that 
A>4%> 0 

the conditions 1) -- 3) of Theorem 3 determine a unique 

function M,^ for /rt, *& m** 
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