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ON CONTINUITY OF LINEAR TRANSFORMATIONS COMMUTING WITH 

GENERALIZED SCALAR OPERATORS 

(Preliminary communication) 

Pavla GVOZDKOVi, Praha 

11 • Let 2t ( X ) be the algebra of all linear con-

tinuoua operators from a Banach apace X into itself. 

In papers C4 3 and[5] the continuity of a linear trans­

formation S commuting with a given T « &(X) is in­

vestigated* Similarly as in C5J we shall deal with ope­

rators having a suitable spectral decomposition* 

Definition* An operator T e X (X ) is said 

to be a decomposable operator if, for each closed subset 

F of the complex plane € , there is a closed linear 

subspace *&(T) at X such that 

1° t(0) m {01 7 t(€) * X , 

2° r\ tCF) m t(HF^) where F^ «. f ; 
trim 4 "V ft *"f *n' Tl /», 7 

3° if i(%f7Zi *s a **n**e open covering of the com­

plex plane, then X » <b(^) + ...+ t(lGfm) -, 

<° Tt(T) c * C F ) end &(T\tCF)) c F for eve­

ry P closed* 

It has been shown in L2J that the definition of the 

decomposable operator is equivalent to that given in £31 
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and 

(1) % C F ) «- i * t 0r C*) c F I for every F cloaed. 

( 6?T ( x ) ia the apectrum of x with respect to T .) 

Let T be a decompoaable operator. Since every 

L e i£ C a n , L T = T L eatiafiea L«CF) c « C F ) for 

F -» P , we ahall further suppose that each tCT) ia in­

variant with reapect to our traneformation S . 

The apace X can be decomposed into a sum of spa­

ces t CF) . We shall, therefore, take into account on­

ly the subspaces on which S ia diacontinuoua. Let 

£ C F ) be auch that S1 *t C F ) ia not continuoua. By 

the cloaed graph theorem there ia an x € % C F ) and a 

aequence x e 4 CF ) auch that -x̂ .—» 0 and &,*.—> 

—> x • Denote by <os the aet of all el amenta x c X 

auch that there exists a aequence x ^ —• 0 with 

S*,n,~~* x • Suppoae now that ^ c ^ ( F) for aome F • 

We may assume that F-* 6 C T I ** CF )) . If A 4 F , then 

there ia a cloaed neighbourhood G of A auch that 

P o G » 0 and S \ *&. C G) ia continuoua by the clo­

sed graph theorem. Obvioualy every A aatiafying the 

following definition ia an element of F * erCT!*£CF>) . 

Definition. We ahall call a complex number A a 

diacontinuity value if the operator S I £ C F ) ia dia­

continuoua for each cloaed neighbourhood F of A . 

By (1) the family { *£ C F ) L » is cloaed with rea-
r« r 

pect to intereection and we may define the minimal sub-

space *£ CF0) containing 6^ aa the interaeetion of 
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all subspacea t C F ) for which ^ c ' i C F ) . 

Lemma. The spectrum 6CT I *&>(F0)) consists 

of discontinuity values only* 

If there is no discontinuity value, then 6̂  * <01 

and the transformation 3 is continuous* 

To obtain further properties of the set of discon­

tinuity values we shall reduce our investigation to a 

subclass of the class of decomposable operators* 

2. Definition* Denote by CCMCRZ)7^) the Fre*-

chet space of all infinitely differentiate complex func­

tions <p Cx1 , x± ) defined on .R2 with the family 

of pseudonorms 

for every compact set K and /ft,,, ^% , tnt^ 0 • 

Definition* An operator T e £ C X ) is said 

to be a generalized scalar operator if there exists a 

continuous linear mapping U s CC^CR^^r) —> £ C£ ) 

such that %9W « ^ tty for y, r e C^CJ5±) , 

^ * I, K - T , where a,CA) « A . 

Every generalized scalar operator is an element of 

the class of decomposable operators* See 11} and [31* 

We shall use the notation XT CF ) for the subspace 

<£<F> -
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Lemma. The aet of discontinuity valuea ia empty 

or it ha8 only a finite number of element8. 

Suppose that the aet of diacontinuity valuea ia 

nonvoid and conaieta of the numbera A ,...., A ^ . We 

have &s c &r ({ A,,,..., A ^ J ) . 

Lemma* Let {(U^,,,., (tc^ I be a aet of complex 

numbera. Then there ia a polynomial P (* ) with the 

roota (Ĉ ,..., (JL^ auch that P C T > I * T « ^ , . - . , ^ . D » 0. 

From thia fact it follows that the operator 

PCTVS ia continuou8. 

Definition. A complex number A is aaid to be 

a critical eigenvalue of T if A ia an element of 

the point apectrum of T and the range RCA I - T ) is 

of infinite codimenaion. 

Theorem. Let T be a generalised scalar opera­

tor in a Banach space which haa no critical eigenvalue. 

Let 5 be a linear transformation auch that 

1° ST - TS , 

2° $XrCF)c XriF) for every F eloaed. 

Then 5 ia continuoua. 

Let T have a critical eigenvalue. Then there ia 

a discontinuous 5 commuting with T and auch that 

S * T ( F ) c Xr(F) for F ~ F . See alao UU Indeed, 

let A be a critical eigenvalue, let T^- «• A ^ and 

let f be a discontinuous functional defined on £ and 

f l R C A l - T ) & 0 * The transformation S«x = /y,«f%* 
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ia diacontinuoua, S T * T S and each 3ETCF) ia in­

variant with reapect to S • 

3« Definition. The aub8pace Y c 3£ ia cal­

led T -diviaible if for every A the equality 

CAI ~ T ) y « Y holda. 

We can construct the largeat T -diviaible aub-

apace in X . There exists a tranafinite aequence Z(ac) 

with eventual constant value defined by 

1° ZCO) • 3£ , 

2° ZCoc-M) m n (AI~T)ZCoc) f 
%*£ 

3° Z CoC) *• O 2(ft) for limit ordinala. 

Similarly as in £53 we could prove the theorem 

under the assumption that 4 0 I ia the only T -diviaib­

le subspace. However, according to the following propo-

aition this aasumption ia stronger. 

Proposition. Let T be a generalised scalar o-

perator for which 10 I ia the only T -diviaible aub-

space. 

Then each aubapace £ T C F ) ia invariant with 

reapect to any linear tranaformation commuting with T . 
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