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ON CONTINUITY OF LINEAR TRANSFORMATIONS COMMUTING WITH
GENERALIZED SCALAR OPERATORS
(Preliminary communication)

Pavla GVOZDKOVA, Praha

1. Let £ (%) be the algebra of all linear con-
tinuous operators from a Banach space X into itself.
In papers [4] and[5] the continuity of a linear trans-
formation S commuting with a given Te¢ £ (¥ ) is in-
vestigated. Similarly aa_in (5] we shall doai with ope-
rators having a suitable spectral decomposition.

Definition. An operator T e ¥ (X)) is said
to be a decomposable operator if, for each closed subset
F of the complex plane € , there is a closed linear
subspace € (F) of £ such that

1° ¢(@) =40}, E(O)=X ,

4 o0
2° SONEE)= €( F, ) where F, = F
3° ir {G,-l;’:,, is a finite open covering of the com-

plex plane, then X = €(G)+...+E(G

O TE(F)c €CF) and 0(TI€(F) c F  for eve-

ry F closed.
It has been shown in [2] that the definition of the

decomposable operator is equivalent to that given in (31
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and
(1) €(F)={x:0.(x)c Fi for every F closed.
( 6,(x) is the spectrum of X with respect to T.)

Let T be a decomposable operator. Since every
Le £(X),LT =TL satistiesL2(F) c €(F) for
F=F , we shall further suppose that each €(F) is in-
variant with respect to our transformation S .

The space X can be decomposed into a sum of spa-
ces € (F) . We shall, therefore, take into account on-
ly the subspaces on which S is discontinucus. Let
2 (F) bve such that SI'¢(F) is not continuous. By
the closed graph theorem there is an x € €(F) and a
sequence X, e £ C(F)  such that x, — 0 and Sx -
—> x . Denote by &g the set of all elements x ¢ X
such that there exists a sequence x,, — 0 with
Sx,—> x . Suppose now that G, < 2(F) for some F .
We may assume that F=6 (T 1€ (F)). IfA ¢ F, then
there is a closed neighbourhocd G of A such that
FAG=@ and S1€(G) is continuous by the clo-
sed graph theorem. Obviously every A satisfying the
following definition is an element of F = ¢ (T I€ (F)) .

Definition. We shall call a complex number A a
diacontinuity value if the operator SI1&(F) is dis-
continuous for each closed neighbourhood F of A .

By (1) the family { ¢ CF) ;s.ﬁ‘
pect to intersection and we may define the minimal sub-
space € (F,) containing 6g as the intersection of

is closed with res-
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al) subspaces € (F) for which o, ¢ € (F) .

Lemma. The spectrum 6 (T £(CF,)) consists
of discontinuity values only.

If there is no diaconiinuity value, then 6, = {0}
and the transformation S is continuous.

To obtain further properties of the set of discon-
tinuity values we shall reduce our investigation to a

subclass of the class of decomposable operators.

2. Definition. Denote by (C®(R,),z)  the Fré-
chet space of all infinitely differentiable complex func-
tions @ (x,,x,) defined on R, with the family
of pseudonorms

m MMy (x ,x,)
. -3 gy — P (%5 X,
1T A, =m0 (X X)ER a3 X, o™ Xg

gl |

for every compact set K and n,,fr,, m = 0 .

Definition. An operator T € £ (X)  is said
to be a generalized scalar operator if there exists a
continuous linear mapping U : (C¥(R,), ) — £ (X)
such that U, = U, U, for ¢, y e C¥(R,) ,

U, =1, U =T, where a(A) = 2 .

Every generalized scalar operator is an element of
the class of decomr»sable operators. See l1] and [3].

We shall use the notation 38,. (F) for the subspace
2 (F).
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Lemma. The set of discontinuity values is empty
or it has only a finite number of elements.

Suppose that the set of discontinuity values is
nonvoid and consists of the numbers A ,..., A, . We
have 6, c X (f2,,...,2,3) .

Lemma. Let {w«,,..., ¢%n } be a set of complex
numbers. Then there is a polynomial P (-) with the
roots «,,..., &, 8uch that P(T) X (...« 3=0.

From this fact it follows that the operator
P(T)S is continuous.

Definition. A complex number A is said to be
a critical eigenvalue of T if A is an element of
the point spectrum of T and the range R(AI-T ) is
of infinite codimension.

Theorem. Let T be a generalized scalar opera-

tor in a Banach space which has no critical eigenvalue.

Let S5 be a linear transformation such that

1° ST =TS ,

2° SE_(F)c X, (F) for every F closed.

Then S is continuous.

Let T have a critical eigenvalue. Then there is
a discontinuous & commuting with T and such that
SX¥ . (F)c 2. (F) forF= F . See also [4]. Indeed,
let A be a critical eigenvalue, let Ty = Ay and
let f be a discontinuous functional defined on £ and

fIRAI-T)Y = 0 . The transformation Sx =g .fx
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is discontinuous, ST = TS and each X _(F) is in-

variant with respect to S .

3. Definition. The subspace Y ¢ ¥ is cal-
led T -diviasible if for every A the equality
(Al=-T)Y =Y holds.

We can construct the largest T -divisible sub-
space in X . There exiasts a tranafinite sequence Z (x)

with eventual constant value defined by

1° Z(0) = ¥,

2° Z(x+1)= N (AI-TYZ(x) ,
A6l

P Z@=N Z (p) for limit ordinals.
pSx

Similarly as in £531 we could prove the theorem
under the assumption that {0} is the only T -divisib-
le subspace. However, according to the following propo-
sition this assumption is stronger.

Proposition. Let T be a generalized scalar o-
perator for which f{0} is the only T -divisible subd-
space.

Then each subspace X_(F) is invariant with

respect to any linear transformation commuting with T.
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