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TENSOR PRODUCTS IN THE CATEGCRY CF GRAPHS

A. PULTR x) , Praha

Introduction. Given graphs (sets with binary rela-
tions) X,Y , there are different ways of providing the
set of the compatible mappings from X into Y by a struc-
ture of graph . The present paper was, actually, stimulated
by the fact that, working on a more general problem, Hedr-
1in and Sichler suggested a very reasonatle way of doing
this, in a moment when the author investigated another one.
The Hom-functors and the corresponding tensor products sa-
tisfied in both cases certain conditions (Tl - T4 listed be-
low). This gave rise to a question how many ways there real-
ly are. They are 2Cl - and the aim of the present paper is
to prove it.

The category of sets with binary relations and the re-
lation preserving mappings will be denoted by 7 , the na-
tural forgetful functor 922 — Set by U (we shall, how-
ever, often write simply ¢ instead of Ug for the under-
lying mapping of a morphism @ ). The objects of & will
be denoted by capitals, the relation of X (subset of UXx
xUX ) by ~(X) (or, simply by s, , if there will be no dan-
ger of confusion). The set of morphisms from X into Y is

x) Support from the Canadian National Research Council and
NcMaster University is gratefully acknowledged.
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denoted by < X,Y ). )
A covariant functor
@: Rx=xN — R
will be czlled a tensor product, if the following conditions
are satisfied: .

T1l: There exist a functor [, 1: R xR —> A such
that ULX,) Y] =~ (X,¥Y > naturally in X,Y and
(X ®Y,25 ~ (X, IYV,Z1)> naturally in X,¥,Z .

T2: There exist an X e ¢ such that X® X, ® X na-
turally in X

T3: X ® Y~ Y® X naturally in X,Y .

T4: (X ® V) ® Z ~ X8(Y @ Z) naturally
in X,Y, Z .
A covariant functor @: R x X — &R satisfy-

ing T1, T2 and T3 will be called a WKT-product (weak commu-
tative tensor product).
® is said to be regular, if U(X @ Y)RUX xUY , ot-
herwise, ® 1is said to be singular.
The results given in this paper may be summarized as follows:

Up to a natural equivalence,

there are exactly 256 regular and 149 singular WKT-pro-
ducts in A ,

there arg exactly 52 regular and 149 singular tensor
products in R .
(Tﬁus, every singular WKT-product is a tensor product.) All
the products are described constructively.

Some of the regular tensor products from the 52 ones
appear among operations on graphs frequently used in the 1li-

terature. Thus, e,g. (in the notation of 3.3) we may find
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the product Ia (coinciding for symmetric graphs with Id)
in Chapter 3 of {1] as the sum of graphs, the product II
(coinciding for symmetric graphs with IVb) in Chapter 4 of
[1]. These two operations (termed cartesian and strong pro-
duct) are studied e.g. in [5] and [3]. It is worth noting
that the operation designated by ® in [3]1 is close to be
a tensor product satisfying (as it is easy to prove) the
properties T1 and T4 . On the other hand, some authors use
the term tensor product for the categorial product, which
does not appear in our list (it does not satisfy in 2 al-
ready the condition Tl: Let us take a discrete X and a Y
which is not discrete. If [ , ] existed, we would have
had (X x ¥, X x ¥Y>»= <X, [Y,X x Y1), while the
left-hand side contains the identity and the right-hand si-
de is void).

Throughout the paper, the following notation of parti-
cular graphs and mappings is used:

P: UP =1(=40}), (P)= g ,

A: UA = 2(=40,1%) £ (A) = £C0, D} ,

“’L; P~§A (1';:0,4)2 oo‘,’(O):i, .

§ 1. How the WKT-products of graphs have to look like
1.1 Denote by K the full subcategory of 72 generated
by the objects P and A, by L the full subcategory of
9@K generated by the functors f such that
F(u;)(f(?))LJ?(«a)(f(P))s £CA)
Let us have @ and [ , J given. By [4] (3.1) and by

Tl there is a functor

- 621 -



H:R— L
such that

(1) ® 2 L(-,H-),[-,-1= R(H-,-).
Both }, and R are described in [4]. Let me here recol-
lect the definition of R , which will be used explicit-
ly. We have

UR (£, X) = <f(P), X > ,

(o, ) € w (R (£, X)) iff there is a w:f(A) — X

with @éa-(w-f(oo‘;),for Tig—f and @g: X—=>Y
R, )= peu =P .

Now, given the H , define functors I';’I';: R —> R and

transformations

(2) z, : B, — F,

’ ’B_'
by F(X)= HOXO(N), E, @)= H@N=BA), 25 HX) (o) .

We have always:
(3) (BN U B(E X)) =FX) .

We see easily that thus a one-to-one correspondence between
the functors R — ( and couples of transformations (2)
satisfying (3) is established. Moreover, H and H’ are
naturally equivalent iff the corresponding couples are. In
the following, we shall replace functors and couples (3) of
transformations by equivalent ones without further mentio-
ning.

Using Tl and the definition of R we obtain

CE(X),Y>m <X, ¥

30 that g = 41! .

Thus, the H from (1) corresponds to some couple of
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transformations

with
@ (X)X X) = F(X) foran X .

1l.2. Consiéering the definition of TR and the consequent
form of [X,¥Y] we see that we may define
8% <A, [X, Y] > <FX),Y>
by
e"’q.«.)e 'a: = w(i) .
It is easy to prove the following
Proposition: © is a natural equivalence.
1.3. Proposition: F is a left adjoint. In fact,Fa»-@A.
Proof: We have, by 1.2, Tl and T3
(FQ(),Y)‘V(A,['X,YJ)N CA® X, YY) <X®AYI=(X [AY])

naturally in X,¥Y . Thus, F and ~®A have the same righ
adjoint.

Remarks: 1) Thus, by (4], F =~ L (-, f) for some fe
e L. Hence, F is determined by its values on K (where
it coincides with f ). Taking in account the condition (4)
applied for X = P,A , we see that f(P) has at most
2 points and $#(A) at most 4 points. Hence using only Tl
and T3, we have already proved that thereare only finitely
many products.

2) We can put directly F = -® A (see 1.1) and
we shall do it from now on.
1.4 Proposition: If - ®X, = 4, , then(X, -] a4,

and we have X° =P .
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Proof: We have (X,Y)= (X ®X Y>=<X [X, Y1) .

Considering UY = < X,,Y > we obtain X = P .

Convention: To simplify the notation, we shall replace

now the @ by a naturally equivalent one such that actu-

ally
X ®P=P®X = X for every X

1.5 We have in particular (see 1.3)
F(P)=PO®A=A©@P=A

ez 4
Proposition: T, = o,
£ v

. c P _ P _
Proof: By (4), we have either %, = «; or<%, =« _, -
In the second case, however, we would not have generally

Y=CP,YI.

1.6 Proposition: 1;: = '1A@ ox, .

Proof: Consider the commutative diagram

‘B‘.P = OC.

v v
P > A=P®A=F(P)
% % ® 1= F(x,)
A
. T,

A=A®P *

> A® A =FA)

The commutativity obviously determines 'z_? . Cn the

other hand, we have (oc’-® 'fA) so = ® “’-&"'MAQ o« )e o -

1.7 Define Ao A by U(ADA)=2x2,x(ApA) =

= £(€0,0),€0,4)), (€0,0)(1,0), (0,4), (1,4)), ((4,0), 4,40 } ,

tx.‘._n'!A:A—»AnA by (x,01(3)=(<,3), 4Aacc‘.:A—vAnA by

Uoa;)E) = (G,i).

(The sign O will be given a broader sense in the next
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paragraph.)

Define a mapping

M:AoA— A® A

by 7(i,3) = (ox; ® &, )(0) .

Proposition: 7 is a morphism in &  and we have

n.(aciufl):aoé@d, ne(dpo,)=41@ox; .

Proof: me(a, aM)(g)=n (i z)= («;® océ)(O) =
=(x, @1) x,(0)= (<, ®1)(3) and similarly the

second equation. The equations yield immediately the first
stetement.

1.8 Proposition: nl(i,g'.)aoz (%, D) iffoz(;‘,i:)=oz(£,h),
(mGi,4),m(%,£Nen(A®A) irf(9G,i),n(4%) ex(A® A).

Proof: Let # be the equivalence from T3. The state-

ments follow by the commutativity of the diagram

. . oc .
o ® o o, ® o

AA
A®A—> Ao A

1.9 Summary: By 1.3, 1.7 and 1.8, the number of WKT-pro-

ducts on R (up to a natural equivalence) does not exceed
the number of nonequivalent epimorphisms 7 :Ao A — X
satisfying the statements in 1.8. Since for a regular product

1A ® Al = 4

, We obtain:

There are at most 405 WKT-products, there are at most
256 regular WKT-products.
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In the next paragraph, we shall show that the words

"at most" may be omitted.

§ 2. How_the WKT-products look like
From the lack of a better notation, we shall use through-

out this paragraph the signs & , [, ] for functors des~
cribed below in 2.3, thus, in a sense different to that in
§ 1. We shall see soon, however, that if is not quite incon-
sistent.
2.1 Definition: Define functors

O:NxR— R,

{,L}hRxR— R
by

wXgyY)=ux =< uy )
(X, ,45), (x,,4, Ve (XD V) iff either (x,, x ) €n(X)
and 4 =y ,or x, = X, and (4,,%,) € (YY),
Ulpoy) = Up x Uy ,

UIX,Yi=(X,Y>,
(¢, 80)€ 0 (LX,Y ) iff (g, (x), @, (x)) € 2 (Y)

for every X € X, {9, () = et » @ -

Remark: Evidently, (¢,,c,) € # ({X,Y3) iff there e-

xists a w: Ap X — Y with(u-(oc‘.m'f*):(“,i
2.2 Proposition: O: (-a—,~>— (=, {~,~§> defined
by (nyztp)J(x)(:y,) = 9(x,y) is a natural equivalence.

Proof: First, every &(@)(x) is really in{Y, Z ¢,

since if (y,, 40 e x (YD, we have ((x, %), (x,%,) €
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e x(XaY). Now, if (x,x ) e o (X ) , we have,
for every g, ((X,,4), (X, 4N en (X0 Y) and hence
(cy(\xo,ty,),q(x1,ry.)) en(CZ), 80 that(B(g:)(xo),e(g»)(x1))e
en ({£Y,Z3%).0n the other *hand, define §: (=, {-,=-3>>
— <-U—',— > by 5(9)(.:(,@)-9(::)(@) . If
(x,,q4,), (‘"4,"“1» e £(X 0 Y),we have either x, = X,
and (o, 4 )en(Y)or (X, x, ) e n(X) and oy =gy, .
In both cases obviously (9(09(%),?(.\(’)(% Ve rCZ).
Evidently @ is natural in all variables and 60 = 1
6e = 1.

’

2.3 Definition: Let | : AGA —> B be an epimorphism.
An equivalence € (7, X, Y) on UX x UY is generated by
the relation e’ defined by:(x;, 4y )e’ (X, ,q, ) iff the-
re exist morphisms ¢+ A — X ,
y:A— Y with @(m)=, ,y(n)= 14, and
02({,3.) = rrl(k,zl) o
For morphisms @: A — X, w:A—> Y  define a mapping
grxy: UB— UXxUY /e (9,X,Y)
by (o) (g (i,4)) = (@), ¥(G))
(the bar denotes the class of equivalence and will be used
further on often in this sense).
Further, define €*”: UX x UY —> UXxUY/e n,X,Y) by

eV (x,4) = Cx,aqp) .

Finally, define X ®, Y by
UlXe,Y) = UX x U¥/e (n,X,Y) ,
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m(X@,q)’)-(exc)(rc(XDY))u
uU{((gsw)x(§xv)) Bleg:A> X, y:A> Y2,
and 9@, y: X&Y— X'®, ¥’ for-g: X — X’,
y: Y —> Y’ by

@O ¥ (x,) = (@(x), v (y))
(it is easy to see that this is correct). If there is no dan-
ger of confusion, the index 7 will be omitted. We check e-
asily the following

Proposition: 1) ® is a functor from ® x R into 2.

2) The £XY defined above are morphiems in ® and de--
termine a transformation

e:0—> &

3) @ x 9 defined above is a morphism P> X® Y ,

4A %* 4A is an isomorphism and we have @ % ¥ = (P ® ) »
cAx4), eM a1y .

Remark: By Proposition: 3), we may replace B by
A ®, A end 7 by (1% 4)e7 without changing the
functor ® . ]
2.4 Definition: Define [ X,YJ.,l by

LlL'X,YJ,,z =<X,Y>,

A (¢o,t,) € m (LX,Y1,)) iff there isa “:'A @ X —

-’Y with ((,‘:-(((,o(x‘;@”)
For ¢: X'— X, 1Y — Y’ define [, Y], : [X,Y1»
— (X%, Y1y by (@, yl, () = yow 9 -

We see easily that thus a functor[, ], : RxR - R
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is defined. The index 7 will be, in the following, often

omitted.
Obviously, the formula

)’XY((L) =«
defines a transformation »: [ X,¥Y] — £X,Y 7§ .
2.5 Proposition: (- ® =, - D>a(~-, [~-,-1)>
Proof: Let oy X ® ¥ — Z be a morphism. Consider
O(y.eX): X — $X,2%

(8 from 2.2). Let (x,,x,) € £ (X) . Thus, we have a
@:AoY — Z with
By e x)= @wolx;a 1) -
Applying this equation for an 4 & Y and defining ¢: A~
— X by @(£)= &, we obtain
X . .
Yo € Y. (p a4y Wi, gd= e (i, y) .
Thus, @ = %e . (9D4Y)- ye(p ® 4y) . EAyAY and hen-
ce O(y-eNx)d=@el,01)=gye(g®1)eee(x,a1)=
=ye(pg@1)e (., ®1).
Six::ce (x,,xq) € (X ) was arbitrary, we see that there is
(exactly one) = (g=): X —> LY, Z1 with
P, 2(y)e O(r.-e*) .
Now, let o : X —> E}’, Z ) be a morphism. Consider
F»" . ) XoY> 2 .
If (xg, ;) e (X, 9e) , we have ¢: A — X ,
y: A— Y  withgmlex, , yn) =g, and
N (,5) = 7 (h,L). Since (9(0), (1)) e (X)) , we
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have a (a,=A®Y-)Z with

Y@n)= w.lc, ® 1) .
Hence, 8(»”%. 3 )(@ (L), (40 = (p (@ (i M(y () =
=@ la, ®1,) e ay)G)=wee?ola,04,) (o) (G) =
=g (oy),3) = w1, © y)en (i, &)

(see Remark in 2.3).
Thus,
F(»"% y)(«‘-,ry-;) = 8% o Y X, Y ) s

so that &(»"%. r) induces a mappiné r:uU(X®oY)—
—> UZ, Since we have (see above)Fe(P@®y)z (1, ® y)e 7,
we see easily that q_r preserves the relations. Thus, we
have (exactly one) % (9*) such that

Er)e =B85 y) .

Now, it is easy to see that % = 1, ¥z = 41 and that ¢

is natural in all the three variables.

2.6 Proposition: Let 7  have the properties from 1.8.Then
X& Y~ Y ®, X

naturally in X, Y .

Proof: It suffices to define acxyz XY — Yo X

by 0 (x, ) = (;::) and to check the correctress
of this definition by 2.3 (and the properties from 1.8).
2.7 Theorem: For every . : Ao A — B éatisfying
the properties 1.8, @”l is a WKT-product. Ii{ G’L o d ®’L'
for some m': A o0 A —> B’ , then there is an isomorph-
ism 3:B —> B’ with ' = Bey .

Proof: T1 follows by 2.5 and definition 2.4, T2 is Ob-
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vious (of course, X = P ), T3 is proved in 2.6. Now, let

% : @,,L e @"Z , be a natural equivalence. Put
Bo=yr,, 40" et x, 1)

Obviously, (3 is an isomorphosm and we have (see 2.3, Pro-

position 3))

, . -1 AA, . . -1
Peni,g)=1 X 1)"e0e " (<, 4)=(1 ¥ 1) -aeo(at.‘.ﬁva%)m)x«
= (14, 1, ®,, &, )O)= U1 %, Do e (3,3 = 77, 5) .

2.8 Comparing 2.7 with 1.9 we obtain
Corollary: Up to a natural equivalence, there exist ex-
actly 256 regular and 149 singular WKT-products.

§ 3. Tensor products

The bars in the following statements have the same sen-
se as in § 2.

3.1 Lemma: If (y,x) =(y’, 2'), then ((x,4.),2 )= (x,44°),2")

for any X , If (x,q) = (:(—',7'), then(x, (i, 2 )= (x,(3"z ).
Proof: We shall prove the first statement, the proof of
the other one is analogous. We may suppose(#,x) e’(ry,’,z’).
Then there are ¢ A — Y and y: A—> Z with @(Z)=
=x, g)=x",y@F)=ny , v(D =g’ andylii)=
= 7 (&,£).It suffices to consider P = comaty @ P:A—
— X® Y and y .
3.2 Proposition: Let there be an isomorphism
2: A®(A®A)—> (A A)® A

such that ae (<, (,%&)) = ((¢,3 ), %) . Then, for general
X ® (Y ® Z) and (X ® Y) ® Z
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(x,(y,2)) = (&', (4/,27)) iff (X, 90),2) = (X, "), 2") .

Proof: We shall prove only one of the implications, the
other one is analogous.

Let (x,(%y,z)) e’ (x’, (W)) . Thus, we have @ :
tA—> X, u:A—=> YO Z with @)= X, plh) = X uG)=
=(y,x), @ (L)=(y,z") and 7 (3,3 )= m(k,£). Put @(m)=
= (y,,2,).

Since (w(0), w (1)) € » , we have some of the following

three possibilities:

1) (g, 2 = (g2, 22 ) with ) = g and (x7,z])€

€ £(Z).Thus, we have a 7' A —> Z  with g (n) = z, .

We obtain ((x;),z)s ((x,47),2’) by lemma 3.1 conside-
ring 9@@0»631*. and % .

I1) (4, , %, )= (g , %0 ) with (g0 4% )en(Y) and x; =

- z,‘,’ . Thus, there isa y: A — Y  withy(m)= /y«; .

Using @ and 9 we obtain (x, 4 )= (x’, ¢, ) and((x,y)z)=
——————
= ((x’,4’),2’) follows again by 3.1.

III) e )=y @)y, , Q,) with ((n,,9,)
(4;,1,%,)3 € & . Thus, there is asr:A— A® A(or(m)=
=(pn,Q@) satisfying

“=(@® )
considering 4A and v (and B (L,4)=n (s, £ ) ) we ob
tain
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(‘:7(’"‘3‘7Qa‘)) =(R,(n,, q,))

so that ((1'-,423 ),Qé)e((k,p‘), 2, ). Hence (using 3.1 again)

(y)z)=(p@y) @), ny),0;) <

=((g@Y)® Y (R0, ),2,)= Ax’, %), 27).

3.3 Proposition: Let the assumption of 3.2 hold. Define map-
pings
XyE

X (YOZ 2 (X®Y)® Z

X
arl

by 2e (x,(yy,2)) = ((x,94),2), A((x,y),z) =(x,(y,x)) .
Then 22*¥% anda A*"% are mutually inverse isomorphisms
and form a natural equivalence.

Proof: We shall show that 3¢ preserves the relation,
the remaining statements will be then evident. In view of 3.1
and 3.2 we may freely choose representatives of equivalence

classes. This will be done without explicit mentioning.

Let ((x,(y,x)), (x, (4 ', 27))) € £ . We have the
following possibilities:

I. x =x’ and ((y,2),(y',z")) € £ 8o that
either 1) ¢ =o', (z,x’) € x and hence (x,g),2) ,
Ux,y),2)) € » or

2) (g, yVen, z =x’, s0 that((x, %), (x4 Ner

and hence ((x,4),2);, ((x,q'), x')) € x or

3) there are - A —r Y,y A —r Z  with 9(¥)=
=y, PR)=y’ y(G)=2z , (L) = ' and
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((i,4), (k,,l))e 4 . It suffices to consider const, ® @

and ¥ .

IT. (x,xVen , (4,2) =(y’, "), which yields

(Cx,y)yz), (x,"), ")) e n almost immediately.

III. There are ¢:A —> X and w:A—>Y ® Z
such that @ (£)=x, @(R)=x", w(F)=(y,z), (€)= (y,z )ana
(t,4),(k, £ ) en. Put w(m) = (%"”zm') and define
V:A— A®A by »(0)=(Z,4),»()=(k,£).VWe have ei-
ther 1) 4, = 4, and (x,, %, )€ & . Define y: A — Z
by 7(m) = 2, and use gvewmt% and 7 , or

2) (y,,4,)€r and , =2 . Define w:A—>Y

by ¥ (m)= 4, . Using ¢ and 3 we obtain ((x, %) ,

(-;—',rg.——’-)) € x , which yields ( since (z =x") “_"77--_)7;) ;
((.—xT,_ry?),z’)) € npr

N u=(y® ) for some w: A—> A® A.
Putting « = (@ ® (¢ ® ) » (1@ T ) » we see that
(x, (4,2 N=x(0),(x, (g, 2 N =& (1) and 9 (x (<)) =
=((g®yPp)OF)ew s (1® ) » (<)
satisfies T4 iff there exists an isomorph-

3.4 Theorem: @n
ism ae:Aez,(AG,).A)-—’(AQ?A)Gz.A such that

0 (i,(5, k) = (2,5),%&) .

Proof: If such a 3¢ exists, T4 holds by 3,3 (and 3.2).
If there'is an equivalence 8% X ® (Y®Z) —» (X ®Y)®.Z,

put 9 = @AM and consider the commutative diagram
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x; O (c; ® ) (a, ® o, )Dagy,

A® (A®A) ————> (ADAIDA
eAAA

3.5 Theorem: Every singular WKT-product is a tensor product.

Proof: If, for an :AoA— B, ®, is a singular
WKT-product, we have some of the following cases

1) m is a constant,

2) 7(0,0)=m (0,1) = n (1,00« n(4,1),

3) m(0,0)# 7n04)=7(4,0)= 'rl('f,ﬂ »

4) 10,00 =74,1)+n(0,1) =n1,0),

5) M(0,0)=n(4,1)%n(01)+(1,0)#n1(0,0),

6) "1(0,0)4- n@A4)=7(1 ,O)a* ”,4?# m (0,0) .

In the case 1) we have A © (A Q@AM (A®A)® A~ P
where UP = 1, n(P) ={ (0,0)% , 8o that the assumption of
3.2 and 3.3 is satisfied trivially. In the cases 2) - 5) ei-
ther (p xn)(n(ADA)) sm(B) and we see again
that A®(A@ A)®& P ,or (pxm)(£(Aa A)) =x(B)and
we easily check that the assumption of 3,2 and 3.3 is satis-
fied. The only less trivial case is the case 6). We may put
UB =3, n(i,4)= 4+ 4. Necessarily, (0,1),(1,2) e 2(B).
We have

L) i+ 4 +hmi/+3+hm =i, (5,k) = (i)(4, %’) and

((e,4), ) = (54,87 .
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Really, let < +3 + 4 =<'+ 7'+ k". Let us prove, e.g. the

first equation on the right hand side. It is obvious if <€ =

/,If < % 4i’, we may assume < = 0 and i’= 1. Then,

=4
G+ ="+ kR +1 , s0that (F'+ 4’ 4+ k)e £(B)

and (see 2.3, Proposition 3)) hence (4, 4’),(5,k)) €

e n(A®A), Define w:A — A ® A by «w (0)= (5, 47),

@M =(G, k). Thus (see Definition 2.3),(<,(F, ke ))=(c, (G &)

because of '!4 , & 8and n (0,1) =% (1,0) .
By T3 (see also 2.6) we have

(2) (G, k),1) = ((F/, &7),47) ite (<, (7, k) =
e —————
= (1%, (G, 4,

(3) ((CF,4),i) , (7, R, 4’) € 2 iff
— s ———ad
(C<,(3,R)), (¢(3,4°))) e 1 .
Combining (1) and (2), we see that we may define a mapping

% by ee(i,(4,%)) = ((£,4),4 ), by (1) and (3) we

see that 2¢ is an isomorphism.

3.6 Theorem: There are exactly 52 regular tensor products
on ® .

Description: By 2.7 and 2.3, ® is determined by

eM:ApA — A® A . In the following figures,

the left upper points indicate the image of (0,0) the left
lower points the image of (0,1) the right upper ones the
image of (4,0) and the right lower one the image (4,1)

under gAA

. The arrows indicate the couples of distinct
points in the relations (the couples of equal ones are dis-

cussed below).
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Put A={(§,§){eA@A], L=x(A®A)A 4 . By?2.6
we have

(1) (€0,1),(0,4)) e L, iff (€1,0),4,0)) e L
In the casés Ia and II any L satisfying (1) appears. Thus,
we obtain in both cases eight tensor products. In the cases
IIla and IVa, necessarily L = J , hence we have only one
tensor product both times. In the cases Ib and IIIb the L
satisfying (1) and ((0,0), (0,0)) ¢ L appear, in the ca-
ses Ic and IIIc the ones for which ((1,1),(4,1)) ¢ L. ap-
pear. Thus, every one of these four cases yields four ten-
sor products. In each one of the remaining cases we have 6
tensor products, only L = {((0,0),(0,0)) ¢ @and L =
= {CC4,1), (4,10} being prohibited.

Report on the proof: It would be tedious to give here
the proof in full. In fact, it is not much more elegant then

‘checking all the cases. On the other hand, the absence of
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simple common features of the resulting tensor products seems
to indicate that it hardly can be done in some tricky way.

Considering Definition 2.3 we see easily that
((13,3', k), '(43', 7", A'Nen(A®(A®A) iff T‘,u',g'-,b,i’,j', &)
((i4, &), G 4, R e x (ABAIBA) itt Ty (ke 7,4, ', 4, "),

where

Tg (¢, #,% ,1’, 3%, #7) is an abbreviation of the formu-

la (we write (i’é) for ((£,4), (h,2)) en(A®A):

(55 V& (G, ded= (3, )& (3 (X, o) W v (& (G be) =
., xqy i0 L <4 P
=(;,k,’))&(3(x,ry),(éh )))v((1-‘4)&9.:*')\/((#0)&(4_* J) .

Put, for n=(4,,%,.

. 6 , s s s 4 s .
at)e2, A= (dgy %y Coytg,%,% ) -
Thus, by 3.4, a WKT-product & 1is a tensor product iff

L& (T B) = Ty (47

The formula V _(T_ (») <=p=> T _ (45’)) may be,
rYyyl - ®
after some computing, brought to the form (where a = (aog) ,

11 o 00 7] 00 o1 11
b"(oq )7 C= (40 )—, 43(44 ),8’(00),0’(00), 1’(04), 2’ ({1 )
and X = mon X )
(c&d)v(C&e) virkb&e)v(a&rbe)v(a&eddI)v(L&E &d)v
v(ie&c &d&e)vwr&e&d&e)v (0&T &)v(0&abke)v(28a )y
v(22 0 8&e)v (285 &e)v(0&1428a)v(0&T&2&e)v(0&T&2 & 4r)v
v0&T&2&ed)v(1ea& b &e)v1ea &b ie) .

Now, it suffices to exclude the WKT-products satisfiyng

this formula.
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Je( lheorem: Let ® be any of the 201 tensor products

on R . Define e*: Po X — X by eX((x, 0= x,

i XeY — Ye X vy XNk, ) = (3,0,

X X® (YO Z) — (X@Y)® Z by

—_— —
a® ((x,(y,x2)) = ((x,y4),2) . Then e,c,a are

natural equivalences (see 2.6 and 3.3) and (®,P,e,c, a)
is a coherent multiplication in the sense of MacLane (see
[21).

Proof: follows immediately from the formulas for e, c,

a and Theorem 5.1 in [2].
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