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Commentationes Mathematicae Universitatis Carolinae 

11, 4 (1970) 

ON SPECTEA OF NONLINEAR OPERATORS 

Slavomir BURfSEK, Praha 

Introduction. In the present paper, some properties of 

spectra of nonlinear operators are studied. Let A % X — • X 

be a nonlinear operator on a complex Banach space X such 

that A CO) « 0 . A complex number A is called an eigenva

lue of the operator A if there is a point* c X , «xA 4* 0 

such that A C«x* ) -» A*X* • Some authors consider the 

spectrum of the operator A as a set of its eigenvalues. In 

this sense, the spectrum has been studied by Nemyckij f11, 

Krasnoselskij [3], Vajnberg L4J and others. Neuberger defi

nes (in C2j),at first,the resolvent as follows. A complex num

ber A is called a point of resolvent of the operator A 

if there is a Fr^chet differentiable operator C & I - A)" 

( I is the identity operator on X ) satisfying the Lip-

schitz's condition locally on X . A complex number A which 

is not a point of the resolvent is called the point of spec

trum of the operator A • We can find a similar definition 

of the spectrum in [5], but, instead of the assumption on 

Fr^chet differentiability, the author requests the Lipechitz's 

condition on X . 

This paper is divided into three sections.In the first 

one, we give a general definition of a spectrum with respect 

to a given set in Y and show some proDerties of this 
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spectrum. In Section two, sufficient conditions for tne exis

tence of the spectrum are given. Section three deals with 

homogeneous operators on a Hilbert space. Some conditions 

are shown for a symmetric operator to have merely a real 

spectrum and boundaries of this spectrum are determined. Let 

us remark that some of our results are related to the results 

declared by KaSurovskij in 15] (but without proofs). 

1. Definition and properties of a spectrum of nonlinear 

operator with respect to a given set 

In this section, let X ? Y denote complex Banach spa

ces and let C be the space of complex numbers. 

Definition 1.1: Let G'.Xx C —* Y be an operator such 

that GCOfO) « 0 . Let M c X be a given non-empty set. 

We shall say that X e C is a point of the spectrum of the 

operator G with respect to M if there is a sequence 

iXtti) 6 M , *„,> Q,m>*4fl7... such that 

JLurru flfirCx %)l m 0 '. 
fll-+CO *»' 

Let us denote rfCM) the set of all points of the 

spectrum of the operator G with respect to M • The set 

&(M) is called the spectrum of the operator G with 

respect to M . We shall say that A ^ e C. X0 4- 0 is the 

eigenvalue of the operator G with respect to M if the

re is an element xc € M f *0 -4* 0 such that G(xc, \ ) ** 0 . 

The element pL0 is called the eigenvector of the operator 6 

with respect to M (corresponding to the eigenvalue X0 ). 

Remark 1.2: Every eigenvalue of the operator (J with 

respect to M belongs to j£ (M ) # I* &(#7&) * «5C%x) -

- XT(oc) , where S,Ti X —* Y , A * C ,then the set 
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if (M) as 3^ C M ) is called the spectrum of the couple 

(Bt T ) with respect to JH and the eigenvalues of the 

operator G with respect to 14 are called the eigenva

lues of the couple C-5., T ) with respect to M • (In case 

X * Y, T » I the eigenvalues of the couple (*5, I) with 

respect to X are the eigenvalues of the operator S in 

the usual sense.) The spectrum "with respect to .M " can be 

useful in the problems of solving equations of the form 

G(x7X) --» 0 whose solutions are subjected to some ot

her conditions represented by a given set M , 

Proposition 1.3: Let (J;Xx C —* Y be an operator, 

M c X 9 H c X , -M^cX, Jk, » 47 2, *,- be non-empty sets. 

Then the following assertion*hold: 

a) If M c W , then ifQM) c tfQ(H) . 

b) If MnN* 0, then !f&MnN) S S£CM)r. i£ CM) 

The proof is evident. 

We assume further that }A c X is a given non-empty 

set and 5,T« X — • Y are operators such that 

$^C0)r\T'Uo)rsM £ <<H -

Proposition 1.4: Let T be a bounded operator on X 

(i.e., T maps bounded sets in X onto bounded sets in 

y ). Then it holds: 

a) If J4 is a bounded set in X , then if— CM) --8 

closed in C • 

ь) If M is an arbitrary set, then if — (JW ) is a 

F^ -set. 

729 



Proof: Let M be a bounded s e t and l e t i ^ i 6 vr uv.i; 

be a sequence such that ^i^-—* X0 as H —->• <*?,Then there 

i s , for any Jt •» 4? 1 , •«« , a sequence {t f^ 3 e M such 

that iiW USC*!*') - A*. TC*i*') II « 0 . If we choose 
/n .-tao *•» -n, li

the "diagonal** sequence €tyfe,3 -» xj^ , then i t holds : 

15 C^) - A0TC-iJs>)l 6 ISC f̂e,) - A^TcV*)! + i TC^) | - lAfc- .\ I , 

hence 

AW I S C ^ ) - .^TC^)! - 0 , that is Xa B y.TCM) 

and the asser t ion a) i s proved. I f M i s an arb i trary se t 

and m,0 the smallest natural number such t h a t K ^ n M -* 0, 

where K^ * -Cx m X / A x 8 -6 m, } , then, using Proposit ion 

1.3 c ) , we obtain 

-.& £T<K*nM> • 4-E^CL CK«."M)1 - %-<M) . 
.n-Ai/it^ * » T <n. S , T A t * A * * «l» S » T 

Thus, according to Proposition 1.4 a), ifs T CM ) is a Fg* -

set. 

Proposition 1.5: Let M c X be a bounded set, S$T * 

, y _ y y bounded operators and let dltt CTCM), tODmd. > 0. 

Then it T CM ) is a compact set in C . 

Proof: According to Proposition 1.4 a) ifm T CM) is 

closed. We show that t/a -.CM ) is a bounded set. Assume, 
»»T 

on the contrary, that i£ CM) is not bounded. Then for 
».,T 

any K > 0 there i s A e i^STCM) such that \X\ > K • 

Denote I S L » AUJV II S Cx ) II and l e t K » *b . 

According to Def init ion 1 . 1 , there i s a sequence < x ^ } « M 

such that JUm, I S C x ^ ) - A T C x ^ H • 0 * But 

ISCx^-aTCx^)! ^l^l*ITCx^)l-l3Cx^)l| *K-<i - ISIM « 4 

and we come to a contrad ict ion which completes the proof. 

Proposit ion 1.6: Let M C X be a non-empty s e t such 

that 0 # M and l e t iS^T- X —* Y be a couple of ope-
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rators. Then the following assertions hold: If M is a com

pact and closed (weakly compact and weakly closed) set and 

the operators S f T are continuous (strongly continuous), 

then any non-zero element of £_. (M) is an eigenva-

lue of the couple (StT) with respect to M . 

Proof; Let h9 6 ^ r (M) , K0 4* 0 . Then there is 

a sequence foc^leM such « » t ^ ^ w ^ > ~ \T(X^)^ - 0 -

Using compactness (weak compactness) of U we can choose 

a subsequence { x 1 which converges (weakly converges) to 

x c M <x -#B 0 • Now, according to the triangular ine

quality, we obtain 

»S(x0> - X0T(*on * &SU,)- SCo<^>8^BS(^)-^TClx^)l4. 

+ laj- « T C ^ > - T(*0n . Bvt^jsixj-scx^i-
m Mm, tTCxJ -TCx-^H m 0 because S , T are cont i -

nuous (strongly continuous) and thus iS(x0) - A , T ( x , ) ( «r 0 . 

Hence, XQ i s an eigenvalue of the couple C S , T ) with 

respect to M . 

Proposition 1*7: I*t .M c X be a non-empty s e t and 

l e t S Tt X —• Y be p o s i t i v e homogeneous operators of the 

order oc7 fl ( i . e . , there are oo, ft > 0 such that 

S C t . x ) - t ^ S C x ) , T C t - * > ~ t*TCx) for any t <> 0 

and any * e X ) . Then &3T Ct * M) - t " " ' 9 ^ . CM) for any 

p o s i t i v e real number t * 

Proof: i f A i (4c~rCt.M) , then there i s a sequence 

Ix^ie M such that tiff^ I S C t . x^> - A T C t , x^> t m 0 . 

But HSCt.x*,) - ATCt-**,,>**» l t * S C * ^ > - A i * T C * ^ , > l 

and thus jfcwv lSCt*~> - * * * " * T C x ^ l «• 0 . We see 

that A**"* « tfA CM> • Assume, on the contrary, that 
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p, m t" " • ifs T CM ) • Then there i s % c Jfs T CM ; 

and a sequence i x ^ i « M such that KJL m t*""** • % and 

JUim BSCSL ) - # T C $ L )I « 0 . I t fol lows that 
m -»r co "* "-» 

itVm/ ISCoL) -<a , t^~*TCSL)l l - 0 and a lso icWlSCfST ) -

- (aTCtJT^)* - 0 , hence p, m tf§r (t . M) . 

Remark 1.8: The point ^ s 0 need not general ly be

long to if CM) . But i f at l e a s t one of the fol lowing 

conditions a ) , b ) holds: 

a) $m/f(0) A M contains a point x 0 «*• 0 $ 

b) 0 4: M , cO*t C S - * < 0 ) , M ) - 0 and S i s a Lip-

schi tz ian operator; 

then 0 « tf5|T CM) • 

Indeed: If the condition a) is satisfied, then for x ^ «• 

«-*<,, »tww <, H,,.. ; we have 1 SCx^) - 0. TCx^)l • 0 

and thus Q m if C M ) • *«-* the condition b) is satisfied, 

then there are sequences x^ c M , ^ *• S~ (0) such that 

1-vw* ll-XL. - 4fc* B -» 0 . Finally, we obtain 

i*m, ISCx^)-0.TCx^)l- JfalS(xJ-S(yJl4! K.tom,**L-Z^K- 0, 

where X > 0 is a constant. Therefore 0 e \f*-.(M) . 

Remark 1.9: Let G: XxC-* Y, G C0, A) » 0 , A l C 

be a Lipschitzian operator with respect to the variable & 

in some neighbourhood Hd x A of a bifurcation point 

C0, A e) (i.e., iaCx,A)-<?Cx;(e<.)l -= KCx)l A - & I 

for any x * VLe f h f (U* m A f where K Cx) is a boun

ded functional on U 0 )• Then K0 « if# C li ) for any suf

ficiently small neighbourhood li of the point 0 € X » 

In fact: There are sequences 4x^1 € Xf x^ 4» 0 , \^ c C 

such that J*m H x^ 1 » 0. *#ra> A- •• AA and 
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ff Cx^ 9 A ^ ) » (J . Hence, for any sufficiently small 

neighbourhood li of the point Q m X } there is a sequen

ce { S^ * c U , .5^ 4- 0 such that <» C5^ t X^ ) m 0 

and 

That is, i<W IG($~ . A J | « J and thus A,« t£ CttJ -

Corollary 1*10: Let S, T t X — > Y be operators 

such that SCO) *» TCO) ~ 0 and let T be bounded 

pn some neighbourhood ll0 of the point Q m X . Then any 

bifurcation point of the couple (S , T ) (with respect to 

zero) belongs to the spectrum if- C \JL ) with respect 

to any sufficiently small neighbourhood LI of the point 

Q m X . 

Proposition 1.11; Let S T : X — • Y De positive 

homogeneous operators of the order cc s» 0 defined and 

strongly continuous in a reflexive Banach space X . Let 

-M c X be a bounded closed convex set such that 0 f M . 

Then any non-zero point of the spectrum- %C - CM) of the 
9f T 

couple (S9T) with respect to id is a bifurcation 

point of the couple (S9T) . Further, any bifurcation point 

of the couple CS,T) belongs to the spectrum tf» r C ^ ) 

of the couple (S,T) with respect to the unit sphere 

S^mixeX/lxlmU . 

Proof; Let 0 + X0 m &ST CM) . Then, according 

to Proposition 1.7, i t follows that tL-Ct.M) m ££ „ CM ) 

for any t > 0 , Choose a sequence of positive real numbers 

* such that tim, t m 0 . Then \ m tfm„Ct . M) , 

/rv m 49 .2, •" and, according to Proposition 1.6, X0 
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is an eigenvalue of the couple CS,T) with respect to M 

Let xo e M be an eigenvector corresponding to \ . De

noting oum t x „ we see that JUm, 1 x^ I -• 0 and 
&c*m,) - ^ T U J « t * CSCx0)- AdTU<,)> « 0 • Therefo

re, -x̂  are eigenvectors of the couple CS,T) and A# 

is the bifurcation point. On the other hand, if <a.0 is a 

bifurcation point of the couple CS,T) 9 then there is a 

sequence t^u^l of eigenvalues with eigenvectors x^ such 
v 

that tlm> /U. m <Ou and turn* Jar, H m 0 . If we put 5L» . 7 

then 3^ • S and 3 ^ are also eigenvectors of the coup

le CS,T) corresponding to the eigenvalues fi^ # According 

to Proposition 1.4, the set if C 5. ) is closed and thus. 

2. The existence of a spectrum of the couple (S„ T) of 

bounded operators 

In this section, let X denote a Banach space, Y a Hil 

bert space and let C • , * ) denote the inner product in 7*. 

Theorem 2.1: Let S fT s X ~—+ Y be bounded opera

tors such that SCO) m TCO) m 0 and let M C X be a 

bounded set. Let, further, the following condition hold: 

(Pl) 0 < *a-fvlCSGx), TC*>)!« ISH^ • IT1 M , 

where 1 S U M « *c*f* KSCx)l 9 I T»M » ^**jv t TCx)A . 

Then the couple of operators CS, T ) has a non-empty spec

trum tf%T CM) with respect to M and if , in addition, 

du>t CTCM) , *0J ) >• 0 , then V CM) i s a com

pact se t . 

Proof: Assume & > 0 an arbi t rary posit ive real num

ber. Then there i s a point x0 « M , x* 4s 0 such that 
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»cs^j,Tf-s,»i>i»^.ir^-»-Jg*- . 
Denote further 

>e 1SIM 
X0.m e • T I — , where 0 i s the argu-

• T | M 

ment of the complex number C&(xp)f T(o(0)) . Itoen i t holds: 

16Cx0> - X0T(*0)f** ISCoc0)l
1-.2Ke U0(T(x0),$(xo))3 + 

Now, i t i s evident that there are sequences ix^l € M , 
1SI 

*«+ 0,\*C,\AJ-Jff- -uch thatn.toal5C.V--WTt-W)«-fl. 

At the same time we can assume that the sequence A ^ con

verges to a point X0 -*» 0 . Using the triangular inequa

lity we conclude that 

so that &/»* ilSCoc,-) - A- T C-x̂ . )I -» 0 and thus 

Jt c *f* CM) . Finally, Proposition 1.5 completes the o 5,T 

proof. 

Remark 2.2: Let SfT: X —• Y be bounded operators, 

M c X a bounded set and l e t for any * c M the fol lo

wing inclusion hold: 

Ay, m Y / I ^ I «r!TC*)I } c TCM). Then the following condi

tion 
(p2) 0< ^o^ U S ^ ) , TCx))!»^^ICSC^),TC^).>l 

jy« M 

implies the condition (p.,) from Theorem 2.1. 

Proof: For any positive real number «. > 0 there are 

points x0 .y* c M such that 

1SC*,)I> ISII M-e, ITC^)II> ITI^ - e . 
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Choose a point zc e M such that T(Z0)** iLgc* ) \ 

• »T(^, ) l . Then i t holds that (3C*a), TC%) -

» ttS C*0)I • I TC^0)I >CffS^-£)(ffT^-5),hence 

*«4» ICSC*), TCy))\ & IS(M • ITIM . On the other hand we 
at c W 

have 

*«av k-SCoc), T(/t*))i *£ *«*fv i.SC*>,f.4*<^ flT6y*)t » « s ^ ' ' T' M ' 
jtV/M y * € M >e'M 
<*€« 

Clearly, the condition (p^) from Theorem 2.1 is satisfied. 

Remark 2.3: The conditions (p-j) and (p2) from Theorem 

2.1 and Remark 2.2 are equivalent (under the assumptions of 

Remark 2.2). Especially, if T « 1 is the identity operator, 

X m Y is a Hilbert space and S ; X —+ X is a bounded 

operator, then the conditions (p-̂ ) and (p2) are equivalent 

for M KKXVX/H,.*f*|*A , 0 * tt, & K ? . If, in addi

tion, the operator $ is a homogeneous polynomial and sym

metric operator, then the conditions (p.,) and (p2) are sa

tisfied (see (61f Theorem 4.5)• But these conditions can be 

satisfied even if the operator 5 is not symmetric as the 

following examples show. 

Example 2 .4: Let .£« be the Euclidean two-dimensio

nal space* Define for * « C*^ , *^> e E A , the ope

rator P by 

PC*) m (*l f «* ) . 

Then 

ter^mple 2 . ; . For any, * m % (t09 4 j ) define the opera

tor P by i 

PC*> m*fM~t *'X*Ci:)clt . 
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Then 
H? 

AU44rp ftPCx)H' H, *tMuto\CP(x\x)\B -~par for any & P> 0 . 
fl*lt«* 9 V3 

Theorem 2*6: Let £ t X —*> Y oe completely continu

ous , TJ X —* y a continuous operator with the L ip sch i t -

zian inverse operator T , Then any non-zero element of 

the spectrum tf CJV!) with respect to a bounded c l o -
5 ,T 

sed set M c X such that 0 ^ M is an eigenvalue of 

the couple CS,T) with respect to M * 

Proof: Consider A e ifm „ CM) , A 4? 0 » Then there 

is a sequence tx^J-e M such that A W flSCx^)-ATC# )!l-*0 

and we can assume that the sequence {SCiX^J is conver

gent. Denote z^ & T C%x^) , so that x^ « T* (*„,,) 

and for arbitrary natural numbers ^n, /m we obtain 

Now, we see that ix^l is a fundamental sequence and thus 

there is a point * 0 c M , rt0 * -&>?*-' x^ -4» 0 . Clear

ly, it holds: 

ISC*,)-ATCx,)! &tSCx0)--SCxm,)t+nSCxm,)-XTCxm,n + 

+ ^ T C ^ ) - TCxo)!l* IAI . Using continuity of the opera

tors S,T we conclude that IS C*0 ) . - A TC*0 ) I » 0 -

Hence, cA is an eigenvalue of the couple CS , T ) with 

respect to M # 

Corollary 2.7: Let Si X —• Y b© completely continu

ous, T; X —* Y a continuous operator with an inverse ope

rator T ^ and let T*4 De a homogeneous polynomial ope

rator of the order to* h A , Then the conclusion of Etieorem 

- 737 -



2.6 holds. 

Proof: According to t6 ] (Theorem 3.4), the operator 

T is continuous. Being continuous polynomial operator, 

T" is a Lipschitzian operator. Using Theorem 2.6, we 

complete the proof. 

Remark 2.8: If S ,T .* X — • Y are analytical opera

tors in a bounded domain J) c X which are continuous and 

bounded on the closure 5 and satisfy the condition (p^) 

from Theorem 2.1, then the couple (S ,T ) has a non-emp

ty spectrum with respect to the boundary 3D of the do

main D . 

The proof follows immediately from the well-known "ma

ximum modulus principle" for analytical operators and Theo

rem 2.1. 

3. Spectra of positive homogeneous operators with res

pect to a sphere 

In this section, let X denote a complex Hilbert spa

ce. 

Definition 3.1: Let F; X —> X be a bounded homogene

ous operator of the order *f > 0 . Denote 

»FII *r ^ «F6x>l , 
«Kll 9 4 

IIF1I m Hup KFCx),«)l • 

We shall call UFA the norm of the operator F and lit FII 

the absolute norm of the operator F . 

Remark 3.2: If F is a linear operator, then the norm 

and the absolute norm of T are well-known. For a homogene-
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ous operator F of the order y > 0 i t follows that 

II FCx)l .fiXFJI'llxll^ f o r a n y * * X and HI F Iff 4* 
£ jj p j| , I f F i s a continuous homogeneous polynomial 

operator of the order M. £ 4 and symmetric in JC , then 

III FII m It F II ( see C63, Theorem 4 . 5 ) . 

We consider further the spectrum of the operator F 

with respect to a given set M c X (i.e., the spectrum of 

the couple (F, I ) with respect to M , where I is the 

identity operator). The general case of the spectrum of a 

couple (S , T ) with positively homogeneous operators S , 

T of the order oc* , /3 > 0 *« can reduce to the above 

problem assuming that the inverse operator T" exists. 

Really, then T is a homogeneous operator of the order 

fim and the operator F m T " & is a homogeneous ope-

rator of the order *f m -a- . It is evident that X m 

e'JL-(M) if and only if a * m % t CM) . 

Definition 3 .3: Let F : X —+ X have the Gateaux dif

ferential YFCtf̂ JHO on the set M c X .We shall say that 

the operator F i s symmetric on M i f 

CVF(*ito>),Jk,)>*CJh,,VFCx,M,)) for any * e M,M,,M.cX. 

Lemma 3.4: Let D c X be a set such that for any x c 

C -D and any positive real number t the point t • x c 3> , 

0 4 -D • Suppose F; X -~-> X possesses the Gateaux diffe

rential VF Cx i to,) on 35 . Then the operator F is ho

mogeneous of the order oc > 0 on JD if and only if 

Y F C * , * ) *r ecFCx) for any x m 3 . 

Proof: If F is homogeneous of the order oc > 0 ,then 

'or any x c D it holds 
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, , p , , 0. FC*+t*)-FCx) #. i l + t ^ k i t v i ^ w x vFC«,#)» .torn, r *•/**& U '(be) » <* Fux) . 

On the other hand, i f for any x 6 D i t holds VF(x,x)s* 

.* ooFCtX) j then for the abstract funct ion 4* C )̂-* t~*F(t» * ) -

- F (*x) , t > 0 , «x * 3> , w e ob tain 

m):=-od:*"¥ct.^ 
Hence I'(t) • 0 and 4* C 4 ) « 0 , so that fCt) s 0 

and thus F(t»x) » tcF Cx) . 

Theorem 3 . 5 : Let F: X—> X be a bounded homogeneous 

operator of the order <f > 0 . Let H F ft -» M F II . Then the 

operator F has a non-empty compact spectrum &L CS^ ) 

with respect to any sphere BK -si^xc-X/ft* ft *• /& , ** > 0 J > 

\X\ * *,*"* li Ft for any X * &F (S^) and there i s 

a \ m 9jL (S^) such that lA^t a /i/'"'* II F ft . I f , in 

add i t ion , F i s completely cont inuous , then any non-zero e-

lement from &p CS») i s an eigenvalue of the operator F 

with respect to S^ . 

Proof: We sha l l show that the cond i t ion UFA a HI Fill 

imp l ies the cond i t ion (p-^) from Theorem 2 . 1 : Let ^ be a po

s i t i v e real number and l e t x e X , 11.x II * 4 . Then for y, -= 

» H, • x , we have II /y- ft » /& and 

**ufi> ICFC4^),^)I» *of* ICFCx),*)l***VL IHFIII 'A,*** * 

• I I F I l V - tap IFC*>lVM - l t ^ »F6 .*) | ' * • 

Now, using Proposition 1.7, Theorem 2.1 and 2.6, we obtain 

the assertion. 

Theorem 3.6: Let Fs X —fr X be a bounded symmetric and 

homogeneous operator of the order -y > 0 satisfying the 
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condition i F It « III F III . Then it holds: 

a) The operator F has only a real compact spectrum 

î , (*% ) with respect to any sphere S^ixcX/II*II**/i9tt>0} . 

b) #L (£L ) is contained in the interval 
F a. 

J^« C / " U , tc^M 1 , where mi m f jn,^ *(F (*), ** ) , 

M * ^un/(F (*) , * ) . Both .^"^/m, and Kr~ M are 
.ixf..i 7 

contained in #.(£„). 

c) If, in addition, the operator F is completely con

tinuous, then any non-zero point of î F CB^) is an eigen

value of the operator F with respect to B^ . 

Proof: According to Definition 3-3 and Lemma 3«4, we ob

tain (VF(^, ̂  ), ̂  )- (oc, VFCPC , x ))» ( 1 ^ ^ ^ 

for any x c ^ , Now, we see that the expression(VFC#9oc),x ) 

is real abd thus also (FCoc), .x ) is real. Assume X e. C > 

& .» cu + iXr, Ir 4* 0 . Then for # *-£/-. and /^» FC*) - A»x , 

we obtain 
C^^c) * (F(^<)? *) - X C*,*) , 

(x,^) at (̂ , ac) «. CF(x), * ) - X(x, .*) , 

so that (*,/y<) - (»^,«x) « («A,~X)(«x,*)-a 2*<&*!l# Ia-s4«t>'*/̂ a . 

It follows that 2.l£rl/t>z
 m I Oc, /^) - (rt^* )l ^ 2 l ( ^ K ' / t • 

Hence 1/̂ . II s IIF (*) - a. «.* II £ \Jbr\n, > 5 and thus 

*̂ + p̂ t&it * f o r a n y ** > 0 . Further, using Theorem 2.1 , 

we obtain the assertion a) . To prove b) l e t us suppose that 

X m M • ***** 4 <L f where d -> 0 . Then 

(FCx) - Xx,x)~CFC*)iM)-&C#,x)&!A'ftxf*'1- All* I 1 , 

so that for d t c S ^ we obtain 

( F ( * ) - - a x , « ) £ £*{'H?m*- (M^rm\cL)lfJL *Z-H,*'CL< 0 
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and thus I (F(M) - X*7 * )l ZcL'K11 , hence II F(x) - A * II * ft fc 

> KFCx)-A,*,*)l & d* H,1 - Finally, we have 

IFOc)-A.oc J > d- H. > 0 txid thus A. # ^ ^5/t) • 

The case A,<.m*Jfc may be examined analogously. Using 

the proof of Theorem 2.1, we can show that both m, • M, , 

M • H/*0"* belong to Ĵ. CS^) and the proof of b) is fi

nished. The assertion c) follows immediately from Theorem 

2.6. 

Remark 3.7: The assumptions of Theorem 3-6 are satis

fied if the operator P is a completely continuous symmet

ric homogeneous polynomial operator of the order ik*> «-£ A -

Suppose, further, that X , (uu c t/L CS ) are two 

different eigenvalues with eigenvectors * , <%- m S^ . Then 

the following inequality holds: 

U F C * ) , ^ > - < P ^ > , * ) I « W ^ 

Especially, if Jk* m 4 f then the eigenvectors X, ̂  are or

thogonal. 

Proof: If FCx) » A.»x , FC*y->) *» $44^ , then 

CFC*L,^)-CFC<fr),*) - C4-<a->C\x,^)«CFC*), q.-x)+(FM> 

-CFC/y),*) • C*Z F * ^ i * l
1 ^ , « . t , i *> t 

hence 

lCFC*Vy,)-CFC^),*)l- IA.-<al-l6c# ^)I^IF*l-Ij<»^*"V
, i^-* 1-

where F* is the polar operator to F , The last equality 

follows from £61 (Lemma 4.2 and Remark 4.3). 
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