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ON GENERALIiED LAMBERT SUMMABILITY

Patrick CASSENS and Francis REGAN
Oswego N.Y. - St.Louis,Mo.

Summability conditions on the sequence {a, 3 from the

seriea
.
(1) F(z) = £2_ a, b, ﬁ,:;’v
where {q ¢ and i{%; 3 are complex sequences with 1 the
least upper bound of l&;,l”w [ have been studied in
(3] and [6]. This paper will prove an extension of Hardy’s
theorem ([61,pp.194-196) by showing that the (C,p ) sum-
mability of X a,  implies summability of X q, in a
generalized Lambert method. The series (1) is a generalized
Lambert series; and we say F(x) 1is represented by the
F -series [4].

1. This section establishes the notation which will be
employed throughout the paper.

Let m be a natural number, ¢ and f be non-negati-
ve integers; and for a fixed natural number .% define for

all integers m such that 0 € m =< & -1

m m
By = Zﬁtﬂ a’&g’-ﬂw

’

and
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G, e,f; x,4) =m et s (1 - o, g)?e

Let a sequence fa,‘f be given. For any real value of
#, SP(a,) denotes the Cesaro sum of order s and A7
the binomial coefficient of order n

For -} a non-negative integer and g.(z,) differen-
tiable at least ¢ times, define Hg'g.(z) (z d./aLz)g'y (z),
where the operator (x d/dx)% is defined so that
(% d/dz)’g(x)=g @), (zd/dz) gx)=z-dg(x)/dz and
for g 2 1, (xdldx)% = z-d(H¥ g @) /dx .

The differences of order s, A™  belonging to a gi-
ven seguence {aﬁi are given by A"am = Q, = @y, g and
for qp = 2, APa, = 84" "a,) .

Remark. For these differences the following hold

(1) Mo, = L, &7 G, = Z,07C, Loy,
and

1) a0 = 5, C o O%a, 0%k,

2. Formulation of results. We state here tne main theo-
rems which are to be proved.

Theorem 1. Let P (x) be represented by the F -seri-
es; let # be a pasitive integer for which there exiat %
non-negative integers 4»0 , Ty 200y 4:,*‘_4 such that

[ 4 ]
1. 2’-:4 ah;,/k; = 5 «c,n,) ;s
Py v

2. for t w4, 2,...,4=-1, 5, (45) = olm ).

Then, if either l’i‘é = 1 for every 4 = N and suit-
able N or l“;’ %= 41 for every 3. & N and suitable

N’ 2* is any primitive g -th root of 4 and
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-4:.-;4-3)
Ym (1= " *HEFPea*)=».T. ¢! ,

L 2

,b'ws- o(m

where J = 1 in the former case and J = 0 in the
latter case.

Iheorem 2. Let

1. = Q= s (C,f) for some non-negative integerfz,

2. §J, (x) 3 be a sequence of functions of the
real variable X on the interval (0,4 ) for positive £z
such that

(1) x%" Jy(x)=¢c¢, ¢ aconstant, for every
m=4,2,...,N , for suitable N |

(ii) for all x in (0, AR), dm m*I (x)= 0 ,

m — o it

(iii) for all x in (0,.h), there exiats a X inde-

pendent of X such that

EnI*I () < K .
Then X @, J, (x) converges for all x in (0,4 ) end
my, Zap G (x) = 6. J,(0%) .

%~
Comments. Theorem 1 is an extension of Hardy s theorem

that ( C, ) aummability of Z @, implies Lambert sume
mability of Z a,, to the same sum. This is the restric-

ted case g9 = 0, &,

- = 4 for all m and f, is a

fixed natural number for t = 0, 1, ..., 4% =1 , The case
.where 8ll & are 1 has been considered previously [3]. Theo-
rem 2 is an extension of Bromwich’s theorem ([1],p.358) and
is useful in establishing Theorem 1.

2. Proof of Theorem 2. To simplify notation let £ de-
note J, (x) for x in (0, &) .
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From the properties of Cesaro sums of order ., we aD-

tein
@) =, 8, 44y = Z1, ST Cap ) 4™ty + S5 @) A7 4

and

(3) Ehoa5ly = Z5i 5 @ yA8UL + S (@ ey

If 4+ ia a positive integre, iteration of (2) with (3)
establishes
4

L+ R,

s® .t =", 8% ) A"l

420 %75 = S4e0 %5
where

Kn, = 3.:0 5’ (da )A M.‘.q .
From Remark (i)
R.= Z;:a ZLO( 4)"0 5’ (e V% 2,1 *
Since S,: (a,) = 0(m¥) IS,: (@) | < Km?* for some

positive X , and

IR, = Z# Z’ K'ca',i "“’: '”u.-via-wi‘

’-0 +v=0
£X =0, 30,00 (mei s 0 1 Bprina! -
But, (01.4-4,4-4)312%’*4!—*0 as m —* ®© vy
. There-
pothesis and C;; < C, ; for 0 £ 3 £ 1.

fore, R, = o(1) .

Consequently, from Remark (ii),

(4) :»:'.'*‘,a”zr11 zosf’ )A’*",b;_-ro('”'

’.I
Thuys
(5) b a; 40"_'
and .
(6) X 50 (a,,) A" 2y
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converge and diverge together.

Since SI'(a,,) ia o(3™) ,
. 1
3o, 18 ) aM ey = K 2, 7107 4 |

for some positive X . But,
250,414y |

is convergent by hypothesis. Thus, series (6) converges.
This fact implies series (5) converges, and the first part
of the theorem is established.

Since the validity of (4) depends only on conditions
1 and 2(ii) of Theorem 2, the following lemme is easily ob-
tainable from (4) and the comment that in the special case
@ =1, a, =0 for m = 4 we have for integral
r z -1 that for all m , 5:(@“)=A:‘=C

mef,m ?
Za, =1 (,p) and Z o, ¥, =4 .

Lemma. Let { J, (x) 3 satisfy condition 2(ii) of

Theorem 2. Then

[ ] fn+1
200 CGupyi &7 Jp(x) = J(x) .
Combining Z @, &, = &, , statement (4) and the

facts that series (5) and (6) are convergent we find that

(7) Ta, L, -n-by = b3 [s::(w%)_b,cm JApM% )

p,m

But, if 4o is the Ceaaro limit in condition 1 of this

theoren,
. n
M%Esn(wj)/cn*p,ml = A
and
om [ C /m™I=Ap ! .
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Thus, for every e > 0 , there exists an integer Ne
such that for m > Ng ’
v "~
I8y (ag) = b Cppppm! < e-m™
and there exists a constant X  such that for all m
» n
185 (a;)) < Xem™ and 151C,,, o < K-m™ .

Hence,

(8) | Eapby-rdyl & ZLIST@)~n:Cypp 187010

<2KEZE, (ns 140 |

1
+e :::N,,+4 m”'AM 40,;,, .
But,
ned :
2012, Cpuyi
and for all m £ N for N suitably large, Lm & = c
x4 0*

; ; 1y
by hypothesis. Since X, (-)*c-Cp,, .

every m =« N and N suitably large, we have

Lim 8™ '% = 0.

= A”‘Mb'

m 3

= 0 ) for

X~y 0¥ n
Consequently,
%*WlZawbw—a-%lée-K .

which implies
ut_'h;.'l: Za, br-s.-41=0 .
The conclusion of Theorem 2 follows.

3. Before proving Theorem 1 we note the following three
theorems.

Theorem A. ([5],p.100) If = fo > -1 and Zaq,
=5 (C,n),then Za,= 4 (C,x) .
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Theorem B. [2] Let o > -4 and ¢ > O .
1. If S:: (a,’-) s o(m®) for some .positived ,
then 5:""(@’;) = o(m®**% ) and 5,‘:"(»,-) = o(m%) .

2. If S:: (b';") = olm®) for some positive d ,
then a, =o((km -m)*) where for a fixed positive
integer & we define, for all integers m  such that

m #
Oén'rb‘k-'f, O‘Sz‘l",@‘i-m,

Theorem C. [2] Let F(2) be defined by the F -
series; let %¢ be a positive integer such that there ex-
ists a positive d for which ST 43 = o (n%t)
for some p > -~ 1 and all integers m satisfying
0 =m < Ak -1 . Let g be a positive integer,

Mg, =M(g,¢) = 1 and for ¢ > 2 and24w£g-1,

Mg, w) = wM(g-1,w)+(g-w+ 1) M(g-1,w-1) .

Then for lxl < 4 ,

HYP(2) = Z2 MQw) Sy 2 Oy m G (@3 552) -

4. Proof of Theorem 1. Let ¢  be a positive integer;
let s+ be an integer and f =2 v, for all integers t sa-
tisfying 0 = t £ & - 1 ; then, from Theorems A

and B we may replace each 1, by 4o . From Theorem C
HYP(z) = Z5, Mlqw) 2370 52 ap; o Gy (2,05 G 2)

mz0
Since 221 M(g,w) = ¢! for all integers g =1
([31,p.431), this theorem will be demonstrated if the fol-

lowing are true:
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{a) For any integer w satisfying 1 2w = g ,

. 149, L4
,“:;":_ (4—’0) Z’.ﬂaﬁ’.(i’._(g,w',b;mz*)s/an] 3

(») For all integers w and ¢t asatiafying
1« w < q and 1 £t £ -1,
. 14-g_ <« R »* = ,
o A-n)""Z, 4 Ogss G*j-t(g,w', ,nz¥*) =0
Proof of (a). For integral w such that1 £ w £ q
o © ,
Z, a:“’.G,".(q,ur;b;mz*)= Z(R3)e; Gy (qu; tyn)
. s * s s . .
for o = ah}./(k;.) since =« is a primitive fe-th root
of 1 .

Because

'%}_r’n:'_[(4—/;)""]9,"9’/(4—m"'.‘”“] =1,

fom [ -k YT*ET ed)e; Oy, (9w 45 0)]

(1-x%)1"% 312 whi

(4_ '%;‘ Mhi)‘f{,

. ZU . “’.
(9) =~MW_'1- ”16 b'“’
provided the limit in (9) exists. To prove the existence of
this limit we let e = a* |

3 (x) o g me g e gy
? T Thg (4_%;"_-,'“)44»9..

and show X cz'-"’i (x) satisfies the conditions of Theo-
rem 2.

Condition 1 of Theorem 2 is satisfied by hypothesis.
For those z  for which ‘QSq =1, J; (0%) = 4 , while
if 4 is such that '&k;' » 1, Jg (0*) = O . Therefore,
by restricting all lrh’.’ for some initial segment of
fi"‘.é Yy, 4=1,2,... to either be { or different
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from 4 , condition 2(i) of Theorem 2 1s satisriea.

For h > 0 and X in (0, #2) we have

(10) 1™ g (x) | & 1LAST 148 e NE o o)

since w =2 1, 32 =21 and l%l-‘-"'f; and condi-
tion 2(ii) holds.

Previous techniques ([3] and [6]) for establishing con-
ditions similar to 2(iii) require expansion of
[b'we("“'w,”.l / [e"" - b‘"'. 11*% into partial frac-

*;

tions in e*# This can be done only for ,05‘4. a con-

.

stant. Then, if &3 is a real constant, K the trans-

3 ’
formation e"“’t - K+ e ™% reduces our problem

to that in [3]. If ”h is complex, the sequence

#

{ A‘”‘ J;- (x)}% contains complex expressions; and it is

not possible to establish 2(iii) by the methods given here.
Consequently, we impose £ = o (m=in+g+3), which

implies there exists a constant X such that
(11) |%| < K' ml-(»flwg,-"i)

From (10) and (i) of the remark we have

12)  mPIA™ g (x) < M 2n)* R E e e, |

mz0 “pri,m o (n+m)

for m sufficiently large. From (11) and (12) there exists
a constant K? independent of X such that
ZmPI4™" g, (x) = k', and (a) is proved.

Proof of (b). For all integers w* and t satisfying

1 & £ g and 1 &£ ¢t £ 4 -1 we  show

’

. 14+ a0
13)  &m (1-x) 5;=4%,~,¢G.\,~4 (Quw;txz*) =0,
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It follows from Thearem B that Sf (b;) = o(m™)
. . . ~ :
implies gt = o((kg -t)") , and there exists a
constant X, such that

, r
(14) lagge! < K, CRG -8 .

But, for all values of # and 4
hj-t 14
- x
L[4 ‘(’Lg-f. Cnz*) ]
is bounded from zero since Ilg‘é_tl £ 1, =* is apri-
mitive M -th root of 1 and 41 & t £ 4 -4 , Therefore,
for all 3 and for all 4 < 1, lex*|l< 4, and there

exists a constant M > (0 such that
1s5) la,, Gujot (@ 2™ < Mgy, g, 1" hG-2)%

From (11),(14) and I‘&"'.é_t l & 4 we find the left
side of (15) is leas than
MoK =t K- U= 0T, (g )% K KO (- £

Hence (b) is proved. This completes the proof of Theorem 1.
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