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Commentationea Mathematicae Univeraitatis Carolinae 

12,1 (1971) 

EVERY GROW IS A MAXIMAL SUBGROUP OF THE SEMIGROUP OF 

RELATIONS 

Jaroalav NESETRlL, Praha 

The aim of this note is to extend a result of [2], na­

mely to prove the following theorem: 

Theorem: The class of maximal subgroups of semigroups 

of binary relations includes all groups. 

This generalizes 12], Theorem 4*7 to infinite groups. 

We preserve the notation of £21 and refer to the results 

proved there, too. 

Concerning graphs we use the notation of [11. 

Proof of the theorem; Let <* be an infinite group (the 

proof for finite case would be similar; since the finite ca­

se is solved in [2], we make this assumption for sake of bre­

vity). By II], there is a graph (X, X) suck that 

CCX ,R ) fl* (? , where C C X $ % ) is the monoid of all 

compatible mappings (i.e. homomorphisms) into itself. By con­

structions given in Cl3, we can assume the following about 

tha graph. X X , H ) s 

x) Using a different method this generalisation was obtained 

independently by A.H. Clifford, R.J. Plemmona and B.M. Senein. 
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a) IJCI * IXI (this followa from the fact that 

( X , K ) c * n be choaen without iaolated pointa). 

b) Let ¥ ( * ) - • < < y , l ( - x , 4 y , ) c £ ? , then X + 

+ ^ implies Y(x) $. V(y,) and VGy.) # V ( * ) . 

Similarly for V U ) • ( ^ I ( ^ , ^ ) i X } -

c) V ( * ) 4- 0 , VC*) *f X for every * e X. 

Similarly for VC*) „ 

Let gp : X —• H be a bijectlon* Define the re­

lation oc on X 0 1 » X x <Q, 41 ( 0,1 $ X ) by: 

C(x,0),(<^, 0 » €<*«--> ((* ,>!/ , 0^ ,4 » 6 d o * - * * « ^ . , 

( ( * , 0),(<y)4)) €ot«--> * ia incident with <p (ty) , 

( t * f * > , ( U * 0 ) ) * * • 

By b ) , c ) , oC ia reduced* Further, oc ia idempotent as 

can be easily seen. Thus by Lemma 3.4 12 J (and by i t s re­

mark), the maximal subgroup H^ of *BX containing oc ia 

given by H^ --* ^ -• <f> € Sx I 36* e Sx oc p « 0oc J . 

But in this special case we have <& «r -Cg& iotp «r poc 1 . 

Similarly as in the proof of £2 3, Lemma 4.2 , 

%. fisi Kf c 5A 13 6- e Sx , X f ~ er R } - GR . 

But obviously 6R » A ( X , R ) « * C ( X , X ) » Q , by the as­

sumption ( A ( X , X) ia the group of a l l automorphisms of 

the graph ( X , X) ) . 

1 thank to Z. Hedrlin, who turned my attention to the 

paper [ 2 ] . 
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