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Commentationes Mathematicae Universitatis Carolinae

12,1 (1971)

ON DESCRIPTIVE CLASSIFICATION OF SET-FUNCTORS I .

V&ra TRNKOVA, Praha

The aim of the present paper is to study set-functors
(functors from the category § of all sets into itself)
in some detail, with respect to preserving of limits of se- .
veral types of diagrams (equalizers, sets of fixed points,
preimages, intersections, products and so on). Also, some
notions and proof from [9],[10] are modified and generali-
zed.

The paper has eight parts. In the first one the known
definitions, facts and conventions are recalled. In the se-
cond one the distinguished pair of a functor is defined and

some easy consequences are proved.

The catsgorial definitions of the preservation of preimages,
finite intersections, sets of fixed points and their equi-
valent forms expressed by means of sets are given in the
third part. The following two parts contain auxiliary pro-
positions. In the fourth one, the functors without non-tri-
vial separating subfunctors are considered, in the fifth
one the heredity of the preserving of limits, and its "con-
verse", is investigated. In the sixth part special functors

are considered. The main results are proved in the last two
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parts, in the seventh and the eighth ones. Namely, we give
a characterization of functors preserving preimages, equa-
lizers, pull back diagrams, separating systems up to s«

(see III.9), products up to 4 , limits up to s , rela-

H
tions between these properties and many examples.
An investigation of preserving of coequalizers, push
out diagrams, finite colimits etc. will follow soon in the
forthcoming paper On descriptive classification of set-func-

tors II.

Conventions:
I.1. Set-theoretic conventions:

a) As usual, an ordinal number o is the set of all
ordinal numbers 3 < o« ; thus, 0 = @, 1= 1ig}, 2 = 0,13
etc. Cardinal numbers are the initial ordinal numbers.

b) If X is a set, the symbola 4, , dy  designate

X
the mappings 4 : g — X, 4, : X = 1, thus,
¥, = 4, s vg: X—> 2 or v;:x—»z are

the constant mappings on 0 or 4 | respectively. The iden-
tical mapping of X onto itself will be denoted by 4idx .

c) As usual, a mapping f: X — Y is said to be an
injection if f(x) % f(4) whenever X #% 4 , surjec-
tion if £(X) =Y
xe X .

, inclusion if f£(x)= x for all

I1.2. If X is a category, then X% denotes the class
of its objects, K™ the .claas of its morphisms. If
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a, ¥ € K7 then K (a,#) denotes the set of all

morphisms of K from a to & .

I.3. The category of sets (the empty set included) and all
their mappings will be denoted by $ . S* is the ca-

tegory of all non-empty sets and all their mappings.

I.4. Throughout this paper the word "functor" means always

a covariant functor from 9 to § .

I1.5. Let P, M be sets, 4 : P> M a mapping. Then
CP'“, y  i® the functor H given by formulas
H(g) =P and if X 4 @ , then H(«&):,ﬂ,,
M, H(f) = i, whenever f: X—=Y .

H X))
If Pc M and . is the inclusion, we write simply

]

CP’M , if, moreover, P =M , we write CM .

I.6. The identical functor of § onto itself will be de-
noted by I , If M is a set, we put QM(—) =8SM,=).

Thus, {, is naturally equivalent to C4 R

I.7. The functor Ca is called trivial, the other functors
are called non-trivial. If H is non-trivial then H(X) #*
* @ whenever X # @ . The domain-range-restriction of

H to S$* will be denoted by H* ; thus, H*: §*— S$*.

I.8. A functor G 1is called a subfunctor of a functor H
if G(X)c HX) for every set X and the inclusions
form a transformation of G in H . The expression in func-
tors:

H=H1UH2
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means: H, H, , H, are functors, H, and H, are
subfunctors of H and H(X) = H, (X) u H, (X)
for every set X . The expression in functors G = G, n G,

is obvious.

I.9. Natural equivalence of functors will be denoted by
= G is said to be a factor functor of H if the-

re is an epitransformation »: H—= G .

I.10. Disjoint union of functors: let J bea set, HL

be functors; we shall write H =b\‘/g H_  iff H:J&Ja G, ,

G ®H_ forevery LeJ andifc,Vel, L+,
then G_ n GL, =C, .

I.11. A functor H is called connected if caxd H(1) = 1.
Maximal connected subfunctors of a functor are called its
components. If H ia a non-trivial functor, put H, (X) =
= LH (G, )1'ca) for every a € H(1); then H, is a

component of H and H =G‘H,,m Ho =a,¢vﬂm Ha

I.12. If H ig a functor and f =% '\9'x is an injection
(or a surjection), then H(#) is also an injection (or
a surjection, respectively) (see [8)). H (1.9’x ) need not

be injections, of course.

I1.13. I£ H is & functor and 4 : A — X is an inclu-
sion, we shall write. H (A), inatead of LH()I(HC(A)).
s, H(A), € H(X).

I.14. For every functor it holds:
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ifA,BcX,AnB+ @ , then HANB) =HWA)A
A H(B)x (see [101, Proposition 2.1).

I.15. A functor H is said to be geparating (see [9])

if A,BcX, AnB=2¢ implies‘H(A)XnH(B)x=¢.
Every functor H may be expressed as H= H, v Hy  whe-
re H, 1is separating and H_, has no non-trivial sepa-
rating subfunctor (see (91, Statement 4.3).

I.16. Let H be a functor, x € H (X) . Then H“‘,x) is
the subfunctor G of H defined by G(Y)={[H ()] (x) ;
f:X—>Y} for Y+ & ,G(d)=1faecH(D) ;
(HB)1(a) = x§  *,

II.

IT.1. Definition: Let H be a functor, x € H(X) . A pair

{x,X > will be.called distinguished iff (H >~ X,
<X, X> 4

II.2. Proposition: For every x € H(@#), <x, #)> is dis-
tinguished.

Proof: It is evident.

Note: Thus, if H is separating, then H (@) = & .

I1.3. Lemma: Let X + @, xe H(X) . <x,X > is dis-
tinguished iff the following conditions are satisfied:
a). [H(MI(x) = x for all f: X— X ;
b). LH('V: M (x) = LH,(V; Yl(x) .
x) The dgfinition of H, Xy differs from that given in
[10]1 in the value G (@)
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Note: If caxd X = 4 then a) holds trivially. If
card X = 1 , a) implies b).

Proof: If X # § and ¢(x, X)> is distinguished,
then a) b) hold trivially. Conversely, let a),b) hold. We
have to prove that [ H(g)1(x) =L[H(g’)1(x) for eve-
ry ¢, ¢+ X—=Y . Put a = [(H(z))(x), &=[H(g)I(x),
&’ =[H(g’)I(x) . Choose an h: 1 — X . Evidently,
x=[(H(h)I(a). If gokr =g'o b, then & = £°.If
g °M + g ok ,there exists an £: 2 —Y with
goh =1Lo 1,«: , @loh = Lo 1,11 . Consequently, & =
=(Hig o h)l@)=(H(Lo /)] =[H(Lev!)1a) = [H(g o h)l(@) =&

II.4. Proposition: Let H be a functor, A, B c X, A n
AB =g . Then for every er(A)x nH(:B)X the pair
(x, X > is distinguished.

Proof: The proposition holds trivially for A= @ or
B =g@g. Let A B be non empty, let .xe}-((A)xn
nH(B)x . Consequently x=[H(4,)1(&)=[H(<3)] (&)
for some & e H(A) , & € H(B), where ¢, : A—=> X ,
4'.3 t: B —- X are the inclusions. Choose a € A, & e
e B and denote by cm:’l-—-»A or ¢, : 1 — B the

constant mappings onto a or & , Trespectively. Let «,:

A
1+ X—> A and Ny X — B be mappings with r, o éA =
="dAioni‘Bscwoé'D’m)°"’A=c&°j’A"LB‘4"1=‘édb'

Since g o 4y = 3u, Fy° iy = dy , We have g =[H(Z )(x)=
= [H(4,)1(a) = (H(GNF). Then LH(c,) ) (y) = [H(cy o 3 1(B)=
= [H(x, 0 ig)1(B) = [H(x )] (x)=[H(r,*i))(@)= @ and
analogously [H(c,)1(4g) = & . Let b : 2 — X. be the

mapping with <, e Ca=he qrf, 4

1
A ’Gcbzh"lfq. Ve
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have x = [H(h o v:)](,,,_)=m(h.f,,: Y1(y) . Hk) is
an injection and hence [H(nr:).'l(q,) = [H(nr: Y1 (g) .
Thus, {4, 1> is distinguished. Since x = [H(hov:)]('y),

{x, X> is also distinguished.

II.5. Definition. A distinguished pair {x, X} of a func-
tor H will be called regular if there is an a € H(®)
with EH(o}x)](a..) = X A functor H will be cal-
led regular if every its distinguished pair is regular.

II1.6. Propotision: A functor H ias regular iff H(A)x N
nH(B)x = H(A/\B)x forall X, AcX,Bec X.
Proof: If AnD® # @ , then every functor satisfies the

equality. If AnD = @, use the previous proposition.

III.
III.1. An equalizer of morphisma f, g will be denoted by
m = eq (£, g) .
Definition: A functor H is said to preserve sets of
fixed points if H(m) = eq (H(f), H(g)) whenever

m =eq(f,g) and f is a monomorphism.

IIT.2. Proposition: A functor H preserves equalizers iff x)
a) all H(19‘x ) are injections;
b) H(A) = fz e H(X); [H(fI(z) = [H(g ) (%)}
for every f, g : X — Y, where A={xe X; f(x)= g(x)}.
x) The functors preserving difference kernels are defined in
[10] as those that satisfy b). Thus, this notion differs

from preserving equalizers defined purely categorially.
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Proof is evident.

ITII.3. Proposition: A functor H preserves sets of fixed
points iff
a) all H(i’x) are injections;
b) if #: X=X, A=4{x e X j f(x) = x }
H(A)x ={2eH(X); [H(£))(z) =2 ¥ .

, then

Proof: I. Let H preserve sets of fixed points. Then
a) evidently holds because it is easy to find mappings f ,
9, £ monomorphism, with ¥ =eg (f,g) . If f: X —
— X isamepping , A= 9{xeX; f(x)=x3¥, <i:
A — X is the inclusion, then 4 = egq (f, id, ),
consequently H(i) = eq (H () ,idmx)) . This implies
HLA)X = {x e H(X); [H(#)I(z) = = F .

II. Let H # C, satisfy a),b). Let f, g : X = Y
be xnapp'ings, £ a monomorphism. If X = ¢ then f = g,
consequently H(eq (f,g)) = eQ(H(f), H(g)) . Let X
be non-empty.
1) If either g (X) c f(X) or g 1is non-constant, we
can choose a mapping # : Y — X such that h o+ = idx
and M o g(x) = x iff £(x) = g(x).Put A= {xeX;
f(x)=@g(x)},B={ze H(X); [H(f)I(2) = [(H(g)I(x)} .
One can prove that H (A )X =B .
2) Let g- be a constant mapping on y, € Y -~ £(X) . Then
'19‘,‘ = eq (f,9 ) . We may suppose H connected. It is
sufficient to consider the following cases:
a) H is separating. Then necessarily [H (¢#)J(H(X))n
N [H(g)I(H(X)) = # . Consequently, H(fl”x)= 19x=
= eg (H(f) H(g)).
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b) H has no nontrivial separating subfunctor. The equa-
lity H(,) = eq (H(f) , H(g)) will be proved
if we prove
x) [H(£))(2) = [H(g)1(=z) for at most one
poixit x e H(X) 3
f) H(g) + @ .

oc) follows.easily from the fact that g factors
through 4wt X — 1 and H(#) is a monomorphism. To
prove 3 ), use the fact that there is a monotransformation
@ : Cf — H* . Coneequently, the mapping H () has a
fixed point, where v:2-— 2 2 (0) =1, (1) = 0. Thus,
p=1{xe2; vx)=xi,H(@), ={x e H(2),
(H»))(x)=z} + B, consequently H(@) + & .

III.4. Convention: The diagram
f‘/ &
P

£ %y )
far 02
Definition: A functor H is said to preserve preimages

(or to preserve finite intersecticns ) if

will be designated by (

(H('F,,) , H(gy)

) is & pullback diagram whenever (ﬁ’ » % )
H(,) , H(g,) ,

f21 %
is a pullback and % ‘ia 8 monomorphism (or 9% and %

are monomorphisms, respectively).

III.5. Proposition: A functor K preserves finite intersec-

sections iff
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a) all H (19,{ )  are monomorphisms;

b) H is regular.

Proof: Let H preserve finite intersections. If X
is a set, choose a s8et Y @ with X AnY = ¢ and deno-
: Y —> X uvY the inclu-

teby 4, : X—+Xv Y , 4

sions. Since ( %o i ) is a pull—ﬁack diagram,
P <

Y » 4

(ng‘) , Hei)

H3,), Hd, )

monomorphism and, choosing X = @ , We see easily that eve-

ry distinguished pair of H is regular. If H satisfies a),

) is, too. Consequently, H('L?‘X) is a

b), it clearly preserves finite intersections.

III.6, Lemma: If f: X — Y  is an injection, 3 c¢ Y ,
A= ¢1(3) , then every functor H preserving finite pro-
ducts satisfies H(A), = CH(AI' (H(B), ).

Proof: It is evident.

III.7. Proposition: The following properties of a functor

H are equivalent:

(i) H preserves preimages;

(ii) H preserves finite intersections and if £: X — Y

is a surjection, B ¢ Y , then H(-F"(.B))x-EH(HJ“(H(B)Y);

(iii) all1 H ('\9',‘) are monomorphisms and if + : X‘—> Y

is a mapping, B c Y, then HG"(B)),=[H(#)I7(H(B), ).
gr_g_g;_: is easy. Use the well known fact that a diagram

N,
S
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where A is an injection, is a pullback diagram iff «

is an injection and x (A) = 1 (w(B)) .

ITI.8. Definition: Let 44+ be an infinite cardinal, H
a functor. We shall say that H preserves intersections
up to 4 if all H(dS\X) are monomorphisms and H (Y)x =

= Qu H(Xg),  whenever Xe € X forall < € A,

Y= N Xe, crdl A < .

III.9. Definition: A couple < X;{fg . ; «x € A}> is cal-
led a geparating system if all %, are mappings with do-
main X and they are collectionwise monomorphic, i.e. for
every X,y € X, X + o there exists o« € A such that
Do (x) %+ g () .

Dgfiniiion: Let # Dbe an infinite cardinal. We shall
say that a functor H preserves separating systems (or
products) up to ¢ if CH(X), {H(@ ); x € A})> is
a separating system (or product) whenever caxd A < 44 and
{X;{g,.; € A}> is a separating system (or product,

respectively).

II1.10. Note: 1) Evidently, if H preserves products up to

A , it preserves separating systems up to 4« .

9
2) The preserving of separating systems differs from
the preserving of subdirect products only in the value of
H at ¢ (see [10], Note 5,4).

3) We say that H presérves finite (or countable) pro-
ducts or separating systems instead of saying that it pre-

serves them up to &, (or up to 8, reapectively).

-153 -



I1I.11. Proposition: If a functor preserves finite inter-
sections and finite separating systems, it preserves equa-

lizers.

Proof: Let H be a functor which preserves finite
intersections and finite separating systems. Let f, g :
: X — Y be mappings, m = eq (f,g ). Let
<X x }','{JTX, :ryi) be the product of X and Y. Let
T—,;:x-» X > Y  be the mappings with :rrxo? =1fdx,

- . - . m , T
”Y°z=f"rx°9=‘dx'"y°9’=9'Smce(m:'9'—)

is a pull-back diigram and I, g are injections,
C-‘{(rm) , H(F)

(m) , H(G)
H(m)=eq (H(F), H(g)) and, since (H(X x7Y), {H(rrx),
H (er )#)> is a separating system, H(m/)=eq (H(+),H(g)).

) is also & pull-back diagram. Thus

IIT.12. Proposition: Let 4 be an infinite cardinal. Let
a functor H preserve finite intersections and separating
systems up to 4 . Tﬁon H preserves intersections up to
M.

._P_r_q_Lf: Lletkcepp X, caxd T <=am . I£ Ye X,
denote by 4, : ¥ ~—» X the inclusion. Put L = Yf:\! Y

4
and denote by <

L
9%t X — M, with 4 = eg(f, , @,) . Let
<M; {:rry s Y e 23D be a product of the collection
{M,;Y§£§;denoteby t,g : X — M the map-
pings with w, o f = f’y y My g =g for. all Y e
e Z.Then i, = eq (f,g). Since H preserves equa-
lizers (see III.11), H(i,) = eq (H(#), H(g)) ,

: L, — X the inclusion. Choose mappings
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H(i, ) = eq (H(f,) ,H(g,)). Since <H(M); {H(m ) ;
YeX3)> is a separating system, H (4 ) is an equalizer
of the collection {<H(f), H(g,)>; Y e X [
Consequently "H(L), = yoz HY), .

Iv.

As recalled in I.15, every functor is a disjoint union
of a separating functor and a functor without non-trivial
separating subfunctor. Thus, the preserving properties may
be considered separatedly for separating functors and for
those functors without non-trivial separating. subfunctor.

The latter is given in the present part.

IV.l. Lemma: Let »: I* ~> H™* be an epitransformation,

which is not a natural equivalence. Then H* = (* .

Proof: It is evident.

IV.2. Lemma: Let a functor H have no non-trivial separa-
ting subfunctor. Let there be an epitransformation » :
: Q,’"——b H*.If H preaervea either preimages or equali-
zers or finite separating systems, then H* < C1"‘ .
Proof: If cand X & 41 , the statement is evident.
Let cand X >4, put a = », (id,). By Lemma IV.l
if f,¢9.+ X — Y/ are conatant mappings, then v, (f) =
= », (g) = lry . Clearly, it is sufficient to prove
a = l.rx .
a) Let H preserve preimages: let fo: X — 2 be
the constant mapping onto. 1 @ 2 . Put B = {0} c 2 .

Then #~'(B) = @, H(@)y = LH(AII'(H(B),). However,
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H(B), = (4,3 and 45 = »,Ch) = », (h o id,) =
=) (LAY ()] (¢, N=[H(4)]I(a) and consequently
a € H(g), c {4 .

b) Let H preserve equalizers: let f,,f, : X — 2
be the constant mappings on 0 or 1 , respectively. Then
b =eqlf,, ), conaequéntly H ) =eq(H,) , H(£)) .
But EH(ﬁ,)J(@):92(4‘;)-15_=1)1“1):[}{({,)](@) and
consequently a € H(¢)x c {bxi .

c) Let H preserve finite separating systems: put
Y=XxX,let o, m: Y — X be the projections.

Choose X, ,x, € X , X, * X, . Let £,f,: X — Y be

the mappings with J’ra ° 1’1 =m e 1‘2 = X 1

or m o fa. be the constant mapping onto X, Or X, , res-

pectively. Put e = ~.>Y (-Q, ), e, = vy (fz) . Since
[H(:r,)](ql)ss}(ag,of’)zq(-»x(vgafz)-EH(:r,,)J(cz)

let LA 41

and £H<’T2)J<c.,) -;[H(,rz)] cch , then necessarily e, =c,-

Let £:Y — X Dbe a mapping such that £ o 41 is a con-
stant, £ o f, = édx . Then

a = » (éd.x) = % C.Zo‘FA_) L'HCL)J(CZ) =

='[H(L)](c4) = 9x(loﬁl) = ,C;( .

IV.3. Note: The statement is false for functors, preserving

sets of fixed points only.

IV.4. Proposition: Let H have no non-trivial separating
subfunctor.
If H preserves either preimages or equalizers, then
-
HeC, .

If H preserves finite separating systems, then H & Cﬂ' o
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If H preservea finite products, then either H = ¢, or
~ ~
H - Co’q or H - C4 .
Proof: follows easily by IV.2.

v.
V.l. Now we recall a propésition from [9], needed later
(Lemma 3.1 in (9]):
Proposition: Let G, H  be functors,w:G —> H a
monotransformation, f: X ~— Y a mapping. If either X+ g

or G is regular, then no x € H(X) satisfies
(%) LHMIX) € (uY(G(Y))— [H)] ((u_xCG(X))) .

An easy proof is given in [9].

V.2. Proposition: Let a regular functor G be a subfunctor
of a functor H .If H preserves either a) equalizers or
b) sets of fixed points or c) preimages or d) intersections
up to s or e) separating systems up ta s ; then G also
preserves them.
Proof: Let “ G — H be a monotramsformation.
For shortness we shall suppose that all “x are inclusiohs.
All G (4%, ) are monomorphisms since all H (4}, ) are mono-
~morphisms. a) b) will be proved together: if m = eg (f,¢)
(or, moreover, f ia a monomorphiam, respectively), f,q ¢
:X— Y, put A={x € X; f(x)= g(x), B={x e G(X);
LG(f)I(2) = [G(gl)I(z)}?. Then G(A)xc
‘ cdc G(X)AH(AJX. If xeG(X)r\H(A)x
then x e G(A)x by ().
c)Let £: X — Y be amapping, B c A, A=+$"7(B),
(%) yields easily that G(A)x = G(X) A H(A), ,
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G(B), = G(Y) H(z)y . Thus G(A), = [G(£)"(G(B)).
d) is also easy.
e) is trivial, the regularity of G need not be required.

V.3. Proposition: Let H be a functor. If every M”",‘>

preserves either equalizers or sets of fixed points or pre-

imnges or intersections up to 4 , then H also preser-
ves them. '

Proof: If every H preserves equalizers, then

all H(qﬂ)x are monomoi;;x:s)ms. For, if [H(a%)1(a) = ¢c =
=[H (4.9*)X J(&) for some a, &re H( @) then, since
H<c, x> (19)‘) is & monomorphism, necessarily q = £, Now
let f,g: X — Y be mappings, A= {xe X; f(x) =
=g(x)}, B=sizx 6 H(X) ; [H(f)1(2)= fH(g,)J(z)} .
Then obviously H(A)x c B. If e B, put G=H<”’x).
Then ze {xe G(X); [G(fI1(x)=LG(g)(x)} = G(A)X‘::H(A)x.
The proofs concerning the preservation of sets of fixed points
or preimages or intersections up to 4 are quite analogous.
Note: An analogous statement on separating system does

not hold.

VI.

In this part, some special functors will be investiga-
ted.
VI.1l. First we define the category FF of filters:
The category F’' : Objects are all pairs <M, &> , where
either <M, F =(Kg,{g1> or F is a filter on a non-
void set M ; morphisms from (M, F¥> to (N, ¢ > are all
mappings f : M —> N  with §1(G) e # forallGe %.
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The category F is a factor category of F’: F' = F&
and £, g € F' (<M, #>, <N, 9>) determine the

same morphism of F (denoted by f+ or g% respectively)
iff ‘F/F = Q'/F for some F e * .

The category [ is studied in [4], where its concreteness
is proved. The following proposition is also given in [4]:
Proposition: A morphism f+ e F((M, F>, (N, 4>)
is an epimorphism (or a monomorphism) of F iff f(F) € ¢
for all F € & (or iff there is Fe & such that ‘F/F is

an injection, respectively).

VI.2. Definition: Let €: & —> F be the full embedding
with E€(X) = <X, {X3) for every set X € S . Let
<M, F>ecF", M+ @ . Denote by aM,:s» S

1
the functor @, (=) = F( M, F>,e(=)) .,
t]
VI.3. Proposition: There is a l-l-correspondence between
transformations from G.N'?#_ to aM,f‘ and elements of
FCM,#>, CN,%>) . Monotransformations correspond
to epimorphisms, epitransformations to monomorphisms.

Proof: If ¢ : & — @

N, M. P is a transforma-
L] 2
tion, take the mapping A: M — N with ¢(1’4:" Y= AT,

It is easy to see that A'(G) e & for all G e ¥ .

VI.4. Proposition: Every QM g preserves equalizers.
1 . .
Proof: is easy.

VI.5. Let 4 be an infinite cardinal. We recall that a fil-
ter 3 is said to be .+ -complete if xr\zx 6 F whenever
s

- 159 -



all X arein & and card £ < #u .

Proposition: The following properties of a functor
G.M’,,.. are equivalent:
(1) Q preaserves products up to 4

M, 7
(ii) QM po preserves separating systems up to A« ;
H

(iii) QM,,. preserves intersections up to 4
(iv) the filter # is . -complete.

Proof: (i) = (ii) is trivial, (ii) ==> (iii) follows
from III.12. (iii) ==> (iv): Denote H = Gy.p - Let Ec

?

CF, %X + @,cad £ <4 . Put Y=xf‘\g X , denote by
ty: ¥ — M the inclusion. Obviously, (éd.M)"'e HX),,
for all X € & , consequently (<d,)*e H(Y) . Then
necessarily ‘d'M/F = v° ""/F. for some F e § and x :
:M— Y. Thua, Fc Y and consequently Y € # .
(iv) ==> (i) is evident.

Corollary: Every GM,?. preserves limits of {inite

diagrams.

VI.6. The following functors are considered, e.g., in [7],
(91,012): '

The functor N: N(X) = {Z2c X; Z+ @};irf: XY
is a mapping, INI(#): N (X)~> NI(Y ) ia the mapping with

[NCHICZY = F(Z) .

The functor Nl“ : If s > 2 is a cardinal, N,  is a
subfunctor of Nl with N (X) = {Ec X ; Z + & ,
cand Z < m } .

The funct\'.o_r_. $:1f X ia a set, $(X) is the set of all
filters on X 5 if f: X—» Y is a mapping, F 6 §F(X),
[P(ANICF) =iZ cV; +T(Z)e F} or, equivalently,
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[PFII(F) is the filter on Y with the base
{§(F); Fe F3.

The functor B : It is a subfunctor of @  such that
BCX) 1is the set of all ultrafilters on X .

Nt

tersections and preimages. They do not preserve sets of fi-

VI.7. Proposition: The functors IN| preserve in-

’ Al

xed points.

Proof: is easy.

VI.8. Proposition: The functor /8 preserves preimages and
sets of fixed points.

Proof: ﬁ, evidently preserves preimages. The preser-
ving of sets of fixed points follows easily from the follo-
wing theorem, proved in [2],[3]: if £: X — X is a map-
ping, then X = X, v X, v xz v X, , where X
(¢=0,...,3) are disjoint, X, ={xe X;f(x) =x}i and
(X, )A X, = @ for 1 =1,2,3.

VI.9. Lemma: Let N be the set of all natural numbers,
P=NxN-{<m,m>;,meN}, A; B, c N,
A, AB;, =8, i=41,2,..., k.
Then P - O (A; xB,) % & . i
Proof: Suppose B, = N - A;. Put T= P-é&;J't(Ax}‘;_).

For every m e N put X ={4i ; m €A, }.Since X,k ¢
c{i4,2,..,% 1 there are n, g € N, n % g such that
Kﬂ-K%.Thus, <n,g>eT.

VI.10. Proposition: The functor [.& doea not preserve coun-

table intersections and equalizers.
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Proof: 3  evidently does not preserve countable -

intersections. We prove that /3 does not preserve equali-

zers. Let N be the set of all natural numbers, P =
2aN<xN-{<m,m>  meN} $g:P> N, fm,m>) =m,

¢(<m,m>) = m . Then 1}, = eq (¥,¢). We show
that ¥ *eq (B(f), B(g)). Let F be an ultrafilter

BCP)
P e
containing all sets P - ;&J, (A; < B;,) , where Ai ,

B, cN, A, nB;, = ¢ . 1Itis easy to see that
[RCIICF) = [P(gII(F) .

VI.1l. Proposition: The functor ¢ preserves pre-

images. It does not preserve countable intersections and
sets of fixed points.

Proof: is easy.

VII.
Here we give a characterization of functors preserving
preimages or equalizers. The connections between preserving
of pullback diagrams, preimages, finite producte and equa-

lizers, sets of fixed points are clarified.

VII.1l. Definition: Let H be a functor, {x, X > be not dis-
tinguished. Put H*'X = {Ac X; x e H(A), ¥ .

VII.2. Proposition: H*'* is a filter.

Proof: If A,B e H** | then AnB 4 & since
{x, X > ia not distinguished (see II.4). Then AN B e
6 Ho¥ aince H(AAB) = H(AY, N H(B), .

VII.3.Proposition: If f: X— Y, [H($)l(x) = a4 ,
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{x,X>,{nq,Y? are not distinguished, then #(A) € H¥Y
for every A e H* X

Proof: is evident.

VII.4. Proposition: A functor H preserves intersections
up to #4 iff H 1is regular, all H(d'x ) are monomorph-
isms and if H ¥»X is # -complete for every non-dis-
tinguished <x, X > .

Proof: is easy.

VII.5. Proposition: The following properties of a separa-
ting functor H are equivalent:
(i) H preserves preimages;
(i1) if ¢#s X = Y, [H(#)1(x) = 4 , then
L (411 (HMY) = ¥
(iii) the mappings @ : H(X) = (X)), @ (x) = H**X form
a natural transformation @ : H— § ;
(iv) if #,¢: X = Y, TH(#)1(x) = [H(g1(x) , then
[FCHIH" ) = L (gII(H*"¥) |
Proof: If H is separating, then all H (%) are

monomorphisms and H preserves finite intersections.
(i) => (ii): Let f: X — Y be a mapping with
CHC(f)1(x) = o4 . We have to prove «) if B e H*” | then
#1Bye X ;, Bl it B cY, ' (B)e H** | then
Be K"

) is an easy consequence of the fact that H preserves
preimages, ) followa from VII.3.
(ii) == (iii) is evident.
(1ii) == (iv) is evident.

(iv) ==> (i): Let H do not preserve preimages. Then
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there is (see III.7) a surjection £: X — Y, a set B c
c Y and a point a.e[H(f)J"(H(B)Y) - HA),
A = £~1(B) . Choose an injection £ :Y — X with

$oL=4d, . Put &= [H(f)1(a), ¢ =CH(£L)1(%) . Then
[H(Lef)l(ad=c, [H(M1(a)=[H(AI(c) = & and,

where

since £(B) c A, c 1is an element of H(A), . Let

i1: A—= X be the inclusion, x : X— A be a mapping

with % o i = <d, . Since c € H(A), , we have

[H(i on)l(c)=c . We have [H(G)1(c) = ¢ for

g=4ioneotof.Put g =Ffog . ThenlH(f)l(a)=Lr=

= C(H(g)I(a) . But LHHIIH™ ) # 0§ gIT(H™Y),

For, B> g (X) and hence B e [P (g) I (H*¥ ),  put

B¢ LPis)] (g X ) because the converse implies

£(3) e H@* , i.e. @ € H(A), which is a contradiction.
Corollary: A functor G preserves preimages iff G =

~ CMVH , Wwhere H is separating and satisfies (ii) - (iv)

from the proposition.

 VII.6. Proposition: Let & : Qx——> H be a transforma-

tion, » (id.x) = x, (x, X> benot distinguished. Let

f,e: X — Y be mappinga with 'F{A = g’/A for some
2y X »

AeH . Then » (f) = » (g) .

Proof: is evident.

VII.7. Proposition: The following properties of separating
functors H are equivalent:
(i) H preserves equalizers;
(i1) if gt X — Y, TH($)I(x) = LH(@)I(x) then ¥/ =%
for some A & H*¥
(iii) HQ’,‘, =~ By, yx, x for every set X and
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every x € H(X) ;
(iv) H = Y, G_ , where J is a class and for every

. o . ~
L e J there is an (ML,.’r’L)sIF with Gb QM pop

v e

Proof: H is supposed to be separating, consequent-
ly all }-I(n.%x) are monamarphisms.
(1) => (ii): Put A={ze X; f(x) = g(x)} . Then x e
efxeH(X); [H(f))(x) = [H(g)I(x)} = H(A), and
consequently A e H® X .
(ii) == (iii): The natural transformation v: Qx,u-‘”‘ — He, xs
with ¥y (id,*)'( ) = X is obviously a natural equivalence.’
(iii) = (iv) is evident.
(iv) == (i) follows by VI.4, V.2 and V.3.

Corollary: A functor G preserves equalizers iff
G = C, v H where H is separating and satisfies

(ii) - (iv) from the proposition.

VII.8. Proposition: If a functor preserves equalizers then
it preserves preimages.

Proof: If a functor G  preserves equalizers, then
G == CM v H where H is -separating and satisfies (ii)
from VII.7. Consequently H satisfies (iv) from VII.S5.

VII.9. Proposition: The following properties of H

are equivalent:

(i) H opreserves limits of finite diagrams;

(ii) H is connected and preserves pullback diagrams;

(iii) H preserves finite products and H % CM .
Proof:The implications (i) ==> (ii), (ii) == (iii)

are easy, (iii) ==p> (i) follows from IV.4 and III.ll.
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VII.1C. Remark: 1) Consequently the following assertions’
about a functor H are equivalent:
(i) H preserves pullback diagrams;
(ii) H = »YHM) H , every Hu preaerves finite pro-
ducts and M ¥ Co,q

2) One can prove easily the equivalence of the follo-
wing assertions: '

(i) H preserves limits of all diagrams up to # ;

(ii) H preserves products up to # and H ¥ Ca,q

VII.1l. The connection between preserving of pullback dia-
grams, preimages, equalizers etc. is indicated in the fol-

lowing picture:

N el PN
>l 5P

mono’ mono’
sy NN ~ N
~—7 ~—7 T ~—
o € 7 mono’
where
o ... means preserving of pullback diagrams;
/3 ces " " " preimages;
v e " " " finite intersections;
o e " " "  equaligers;
£ ... " " " @sets of fixed points;
N eee " " * equalizers of pairs of mono-
morphisms.
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The indicated implications and their compositions are
true, and there are no others valid.

The implications o = B == 3~ , I'=> e =2 7 are
trivial, oc == 0~ followa from VII.1Q and VII.9, o ==> 3
follows from VII.8. Now we prove 7 == 7 : let a func-
tor H preserve equalizers of pairs of monomorphisms and
do not preserve finite intersections; there is necessarily
@ c e H(A), nH(B), - H(AAB), for some A, Bc X.
But then A A B = @ . Choose monomorphisms f,g: X — Y
with 4 = eq (f,g) . Then, since <c, X ) is distin-
guished, [H (£)](c) = [H(g)]l(c) . Consequently c €
e H (¢)x , Which is a contradiction.

VII.12. Examples:

o =£> o example: the factorfunctor of Ql v @i’ (whe-
re Q; , Q; are two different copies of a, ) given by
the relation (x, x> ~ <x, x> .

T, B=7,€,d, 0 example: all the functors N, , N .
¥, € = 3, example: the factorfunctor of as given by
the relation <(x, g,y >~ <2z, 3,4 .

€ &> d~, example: the functor B or the factorfunctor
of 0‘3 given by the relation (x, 4,4 >~ (g, x, g).
) == ¢ , example: - the factorfunctor of QN given by

X yeee? s

the relation <X , x,, x Ry grmr 2V X, X, Xy, X .

27 3/ 3’

VII.13. Some further implications are valid under certain
assumptions, for example: if a functor preserves finite

sums then it preserves preimages and sets of fixed points.
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ViI.14. We say that a functor H ia generated by finite

sets if H (X) -hk{-'x [HC(F)I (H(M)) , or, equi-
el
valently, if H is a factorfuncter of some. V. @, , whe-
(%

re J is a set and all M_ are finite sets.

Proposition: Let H be a functor generated by finite
sets. If H preserves equalizers of pairs of monomorphisms
then it preserves sets of fixed points.

Proof: 1) Let H be a functor generated by finite
sets and let H preserve equalizers of pairs of monomorph-
isms. Then all H(d)x are monomorphisma. If H does not
preserve sets of fixed points, then there is f: X — X
and acH(X)-—H(A)X with [H(f)](a) = a , where
A= {xe X; f(x) = x 3. Denote by Ly :A— X the in-
clusion. Choose M finite, m € H (M), ¢: M — X with
(H(p)I1(m)= a . Denote by » : GM ~> H the transforma-
tion with 3, (xld,“)- m . Clearly, if g’': M — X ,
P (@) = % (p') then ¢’ does not factor ~~ through t, .

2) Put R = @(M) U £ 9(M) , denote by (.

: R — X  the inclusion. Choose a mapping ¢ : R —» R
such that @ (z) = f(z) whenever z e ¢ (M), g (z)e
e (M)A §£1(2) whenever z € fo (M) -~ @ (M) .
Denote by, ¥ : M—> R  the mapping defined by ¢, ° ¥ = @.
Then L, © ¢ » ¥ = f o @ , consequently

THG ) (o (o)) = (@)=, (-chv)-[H(uR)J(\kfgor)). This
yielda », (y) = ¥, (g o yv) . Put Bx {x 6 R; ¢ (x) = x{,
let Lyt B—> R be the inclusion. Clearly B c A, and
consequently LR e I..B factors threugh A’
It %'+ M— R, 5 (y) = (y’), then ¥’ cannot
- factor through L, because L, ¢ ¥’ dass not facter
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through L, . For, » (Lo ') = ¥, (bnnyr) = (p).

3) Let C ' be the set of all points of all cycles of
the mapping g (i.e. C is the greatest subset of R with
glc)=c ), let Lt C— R be the inclusion. Since
R is finite, there is a natural number ft such that

g:'"a Ce = L s then there is a mapping E: R— C with
9,“'- Lee- Let h: C — C be the mapping with L.coh,-

=g o .- Put 7 = @ o ¥ ,consequently (H(LC)J(% (b og )=
e (o og) mupglget eg) = %@ e y) =

= 9 (g™e ) = 2 (e @) =LH)] (> (7))
which implies » (ko 3) =13 (y) . PutD={xel;h(x)=xi,
let Gy D— C be the inclusion. Since » ¢ B, Loy
factors through by - The mapping % is not an identity
because 7 does not factor through by - For, aince

Ve ly) = % (gMe y)= % (L 02), ¢ o1 cannot factor
through (, . But /& is an injection and LH(4A)] (», (1)) =
=3 (x), »(x) € H(D), , which is a contradiction.

VIII.
Now, we describe the functors preserving separating

systems up to 4% or products up to 44 .

VIII.1l. Lemma: Let g*: <M, , F¥>— (M, F>, i =1,2,
be epimorphisms in. F . Then there is a pullback-pushout
diagram in F , say

A/;, M, &> g*
(2,257 = M, 7>
NN M, 5> T



1;“ and .2.2* are epimorphisms. If 31" and 55 are

Mé -complete, so0 is & .
Proof: Put Z = f(mq,rm,2> €M1><M1;5‘;(m4)=6;(mz)},
A, (Kmy,my))=m, , ©=1,2 ; let & be the filter with

J
- “
the base { A7 CF;) nﬂ.z(fi);l:e.?' F € Z 7. Then

10 t2
<Z,85; .2.‘;' , A.'; have the required properties.

VIII.2. Lemma: Let H =G o G, be a functor such that

G, = QM."—,;- , G = QM,_,S; , 8 nG = @y o .Then there ex-

ists a monotransformation of H into some @, ., . If &,

32" are 4 -complete, so is & .

Proof: follows easily from the previous lemma and VI.3.

VIII.3. Proposition: Let .« be an infinite cardinal. The
following properties of H are equivalent:

(i) H  preserves separating syatems up to 4 ;

(ii) H = C_m% v G where G = ‘_L‘_Jaci, J is a
class and
f , o F
a) for every ¢ € J, G, GM“ % where £
is s ~complete;
b) for every (,,(, € J, qu A G"z = G;_cLGJanG‘_ G, s

¢) if Y c J, can.d,J’<4u-,L%Ja, G < G“' nzG‘_z ,
then there is a L, € J with U, G c G, c Gt-., ) sz.

Proof: (i) == (ii): If H preserves separating sys-
tems up to 4 , then H = C, . v G , where G is
separating, preserves equalizers and intersections up to
(see IV.4, III.11, III.12). Denote by J the class of all
L=(x, X)> where x € G(X) and put G_ Geuw, xy *
Then G = Qx’ 7, for the s -complete filter F = a%¥

{see V.2, VII.7, VI.5). One can verify. that Gb have all
~1%0 -



the required properties.

(ii) = (i): Let H satiafy the assumptions of (ii). It
is sufficient to prove that G preserves separating sys-
tems up to s ., Let (X; {g, ;€ A} be a separating

system, caxcd A < s . Suppose there are a,, 2, € G(X)

with [6(g)1(a) = & = [G(g )](a,) for all
x € A. Choose (¢, € J such that a ¢ Gc,, (X,
a, € G":z (X). Then there is a t, € J with & & G%(X)

for all « € A and G,_c G _ n G - Let X=X, v X, be
3 1 2
@ functor and »: K~— 6 v sz be an epitransforma-
1
tion such that the domain-range-restrictions »?: K4 — G_,
5

2, 3, % iva-
»< s Kz — GL,_ , P K,, ) Kz — G"a are natural equiva
lences. Put J('3= K1 A Kz , choose ¢. € K_': (X) with
»(Ce;)=a,, i=4,2 ; choose d, € X, (X) such that
» (d,) = A&, for all x & A . Since K is embeddable

into some @ with & 44 -complete (see VIII.2),

E, %
it preserves separating systems up to 4« . Consequently

c, = ¢, because [K(@,)1(c) = dy = [Kig)lle,) .

Thus , a = a,

VIII.4. Note: If the clase J from VIII.3 is a set, then,

of course, the functor G is small. The problem, whether
there is a big functor which preserves separating systems
up to s ,is easy under the assumption of an existence of
a proper class of measurable cardinals. (We recall that a
cardinal f > 4, is called measurable if there is a
non-trivial 4 -coﬁplete ultrafilter on the set sz .)
Then, take for every cardinal 41 2 .4 a couple <P, P>
where 7 is a non-trivial o -complete ultrafilter on a

set P and put G = ﬂ_kBJ“ G?’i where G'@ = G.,,’fp and



for every fr, 1’, o # p’ ,the intersection G, n G,
is naturally equivalent to I (i.e. all QP’ » are glued
along the diagonal).

Without any set-theoretical assumption: even an exie-
tence of a big equalizer-preserving functor seems to be un-

known.

VIII.5. Proposition: Let 4% be an infinite cardinal. The
following properties of H are equivalent:
(i) H prea(rvea products up to 44 ;
(ii) either H=C, or H = Ca,1 or H = C1 ar H =
= U H, where J is a clasas and
L€y v

a) for every c € J, H = GM“’:' where £ is m-
complete;

b) if ' c J, card J’ < s , then there exists
v e J with U H, < H .

Proof: (i) = (ii): If H preserves products up to
#4 o then either H = C, or H= 60’1 or H = C or
H is separating, preserves equalizers and intersections
up to 44 (see IV.4, III.11, III.12). Denote by J the
class of all ¢ = (x, X, x € H(X) andputH = H,, 4.
(ii) ===) (i): Let H -u%}a H_ satisfy a) b) from (ii).
Let {X,3;x € A1 be a collection of sets, <X ; {7, ;
< € A?) its product, card A < 4 . Choose X, €
€ H(X_ ) forall e € A . Then there exists a L e J
such that x, e G (X_) for all « e A . Since G,
preserves products up te 4 , there exists an X e GL X)
with [G (m )] (x) = X . If [H(m )1l(a) =
: [H(m )](&) forall w € A and some a, & ¢

& H(X), one can checse L € J such that
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a, & e G, (X). Then, necessarily, a = & .

References

11 P. FREYD: Abelian categories, New York,Harper and Row,
1964.

2] M. KATETOV: A theorem on mappings, Comment.Math.Univ.
Carolinae 8(1967),431-433.

{3] H. KENYON: Partition of a domain,Advanced problems ...,
Amer.Math.Monthly 71(1964),219.

[4] V. KOUBEK, J. REITERMAN: On the category of filters,
Comment.Math.Univ.Carolinae 11(1970),19-29.

(5] J.M. MARANDA: Some remarks on limits in categories,
Canad.Math.Bull.5(1962),133-136.

[6] B. MITCHELL: Theory of Categories, New Xork,Acad.Press,

| 1965.

(7] A. PULTR: On selecting of morphisms among all mappings

. between underlying sets of qucct- in concrete
categories and realisation 6} these, Comment.
Math.Univ.Carolinae 8(1967),53-83.

[8) A. PULTR: Limits of functors and realisations of ca-
tegories, Comment.Math.Univ.Carolinae 8(1967),
663-682. A

[9] v. TRNKOVA, P. GORALUfK: On preoducts in generalized
algebraic categories, Comment.Math.Univ.Caroli«
nae 10(1969),49-89.

[10) V. TRNKOVA: Some properties of set functers, Comment.
Math.Univ.Carelinse 10(1969),323-352.

{11] v. TRNKOVA: When the product-preserving functors pre-
serve limits, Comment.Math.Univ.Carolinae 11
(1970),365-378.- v

- 1¥3 -




{12] 0. WYLER: Operational Categories, Proceedings of the
Conference on Categorial Algebra, La Jolla

Matematicko-fyzikéln{ fakulta
Karlova universita
Sokolovské 83, Praha 8

Ceskoslovensko

(Oblatum 25.9. 19%0)

- 1% -



		webmaster@dml.cz
	2012-04-27T19:57:52+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




