Commentationes Mathematicae Universitatis Caroline

Václav Koubek

Set functor

Commentationes Mathematicae Universitatis Carolinae, Vol. 12 (1971), No. 1, 175--195
Persistent URL: http://dml.cz/dmlcz/105336

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1971
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

$$
12,1 \text { (1971) }
$$

SET FUNCTORS

Václav KOUBEK, Praha

In the following paper we shall investigate set functors. We shall characterize the behaviour of a functor on all objects (sets) from its behaviour on its unattainable cardinals, where a cardinal \propto is an unattainable cardinal of a functor F if there exists X with cand $X=\alpha$ and $x \in F X$ such that $x \notin \operatorname{Im} F f$ as soon as card (domain $f)<\propto$. (A precise definition is given in the part three.) We shall give a necessary and sufficient condition for a functor to reflect monomorphisms, epimorphisms, isomorphisms.

In the first part we introduce some definitions and necessary conventions. In the second part we form some auxiliary propositions about sets. With their help we investigate the behaviour of a functor with respect to its unattainable cardinals in part three, where there is also the formulation of the main theorem on estimation of the behaviour of a functor. In the fourth part we show some constructions of functors with a given class of unattainable cardinals. Semiconstant functors, i.e. functors naturally equivalent with a constant functor up to a certain cardinality,

AMS - Primary 18B99
Ref.そ. 2.726

- Secondary -
are investigated in the part five. In the sixth part we discuss the relation between a functor and the preservation of monomorphisms, epimorphisms and isomorphisms.

I want to express kind appreciation to doc. Věra Trnková and RNDr Bohuslav Balcar with whom I discussed various parts of the manuscript and especially to doc. Trnkova for her encouragement in my work.
1.

Convention: Denote by S the category of all sets and their mappings. Let \propto be a cardinal. Then S^{\propto} denotes the complete subcategory of S with $X \in\left(S^{\propto}\right)^{\sigma} \Leftrightarrow$ card $X<\alpha$. In agreement with the set theory a cardinal \mathcal{A} is a set and so card $X=\propto$ means that there exists a bijection of X and $\boldsymbol{\alpha}$.

Convention: Writing $X \leqslant Y$ we mean card $X \leqslant$ card Y while $X \subset Y$ means X is a subset of Y. By $X \simeq Y$ we mean card $X=$ card Y. An ordinal also means the naturally ordered set of all smaller cardinals. Denote by \ll the na-tural ordering of the ordinals.

If A, B are sets (categories), f a mapping (functor) $f: A \rightarrow B$ and C a subset of A (subcategory of A) then f / C denotes the restriction of f to the domain C. Definition: A set functor F is regular if:

1) F_{X} is a monomorphism where $\vartheta_{X}: \phi \rightarrow X$.
2) Every monotranaformation from C_{1} / S_{0} to F / S_{0} in S_{0} has an extension to monotransformation from C_{1} to F in S. where S_{0} is the category of nonvoid sets and their mappings and C_{1} is a constant functor to one-point set.

There is a difference between the notion of the regular functor, as defined above, from the one in [5].

Lemma 1.1: A functor F is regular if and only if it preserves prosections i.e.
$\forall A, B P i_{A}[F A] \cap F i_{B}[F B]=F i_{A \cap B}[F(A \cap B)]$
where $i_{A}, i_{B}, i_{A \cap B}$ are the inclusions from $A, B, A \cap B$ to $A \cup B$ respectively.

Proof: see [5].
Lemma 2.1: For every set functor F there exists a regular set functor F^{κ} such that $F^{\kappa} / S_{0}=F / S_{0}$.

Proof: see [5] .
Convention: All functors throughout this paper will be covariant regular functors from S to S. The superposition F 。 G of arbitrary functors F and G is written left-hand i.e.

$$
(F \circ G) X=F(G X)
$$

Let us introduce some of the most commonly used functors:
I - denotes the identical functor, C_{M} - a constant functor to M.
Convention: X^{y} denotes the set of all mappings from Y to X where Y and X are sets. Let $A \subset B$. Then i_{A}^{B} denotes the inclusion from A to B.

We recall the definitions of a distinguished point and of a component of a functor.

Let F be a functor. A point $a \in F \|$ will be called a distinguished point of F if there exists a transformation $\tau: C_{*} \rightarrow F$ such that $\tau(0)=a$ where 1 is ordinal.

Subfunctor F_{a} of $F, a \in F \|$ is a component of F

$$
x \in F_{a} x \Longleftrightarrow F h(x)=a, \quad h: x \rightarrow 1
$$

There is a difference between the notion of a distinguished point, as defined above, from the one in [5].

Convention: Let X be a set, F a functor. F^{X} denotes the subfunctor of F where $F^{X} Z=\bigcup_{y<x} \bigcup_{f \in Z^{Y}} F f[F Y]$. Let α be a cardinal. Denote by α the follower of α.
2.

Definition: Let X be a set, \propto a cardinal such that $\alpha \leqq X$. let a be a system of sets such that:
$a \subset \exp X ; Z \in a \Rightarrow Z \geq \alpha ; Z_{1}, Z_{2} \in a \Rightarrow\left(Z_{1} \cap Z_{2}\right)<\alpha$. Then we call the system a a $\binom{x}{\alpha}$-system.

Lemma 1.2: Let $\alpha \leqq X \leqq \aleph_{0}$. Then there exists a $\binom{X}{\alpha}$ system Φ such that
$\Phi \simeq\binom{\operatorname{card} X}{\alpha}$, i.e. $\operatorname{card} \Phi=\binom{\operatorname{card} X}{\alpha}$.
Proof is evident.
Lemma 2.2: Let $\alpha<r_{0} \leqq X$. Then there exists a $\binom{x}{\alpha}$ system Φ such that $\Phi \simeq X$.

Proof is evident.
Convention. Denote by $\binom{\bar{X}}{\alpha}$ the system of all subsets Z of a set X with $Z \simeq \alpha, \alpha<\gamma_{0}$. Clearly $\binom{\bar{X}}{\alpha}$ is a $\binom{X}{\alpha}$-system.

Lemma 3.2: Let $\mu_{0} \leqq \propto \leqq X$. Then there exists a $\binom{X}{\alpha}$ system. Φ such that $\Phi \approx X$.

Proof is evident.
Let us introduce this known lemma:
Lemma 4.2: Let us assume the generalized continuum hypothesis. Let $\propto \geq 5_{0}$ be a cardinal. Let X be a set such - 178-
that $X \simeq \propto$. Then there exists a $\binom{x}{\propto}$-system Φ such that $\Phi \simeq 2^{\alpha}$.

Proof: Let ω_{0} be an ordinal such that $\omega_{0} \simeq \propto$ and that $\omega^{\prime}<\omega_{0} \Rightarrow \omega^{\prime}<\alpha$. Let $S=\bigcup_{\omega} \mathcal{L}^{\omega} \mathscr{N}^{\omega}$ where 2 is ordinal. Clearly $S \simeq \propto$. Let f be a mapping from ω_{0} to 2. Let $s_{f}=\{g \mid g=f /$ domain $g, g \in S\}$.Clearly $g \simeq \alpha$ and $f_{1} \neq f_{2} \Rightarrow s_{f_{1}} \cap s_{f_{2}}<\infty \quad$ as there exists an ordinal $\omega_{1} \in \omega_{0}$ and $f_{1}\left(\omega_{1}\right) \neq f_{2}\left(\omega_{1}\right)$. As $2^{\omega_{0}} \simeq 2^{\infty}$, $\left\{s_{f} \mid f \in 2^{\left.\omega_{0}\right\}}\right.$ is the system we were looking for. Q.E.D.

$$
3
$$

Definition 1: A cardinal $\propto>1$ is said to be an unattainable cardinal of a functor F if $F \propto \neq F^{\infty} \propto$, Card ($F \alpha-F^{\alpha} \alpha$) is said to be the increase of the functor F on α.

Denote by \mathcal{A}_{F} the class of all unattainable cardinals of the functor F.

Lemma 1.3: Let α be an unattainbale cardinal of F. Let $f: X \rightarrow Y$ be a monomorphism Then $F f\left(F X-F^{\propto} X\right) \subset$ c $F Y-F^{\infty} Y$.

Proof: Suppose $x \in F X-F^{\propto} X$ and $F f(x)=y, y \in$ $\in F^{\propto} Y$. There exists $g: Y \rightarrow X$ such that $g \circ f=i d$ and so $F g(y)=x$. We have $F g\left(F^{\propto} y\right) \subset F^{\propto} X$, hence $x \in$ $\in \mathrm{F}^{\propto} X$. That is a contradiction. Q.E.D.

Lemma 2.3: Let α be an unattainable cardinal of F. Let Z_{1}, Z_{2} be sets such that $Z_{1} \subset X, Z_{2} \subset X,\left(Z_{1} \cap Z_{2}\right)<\infty$. Then
$\left(F i_{Z_{1}}^{X}\left[F Z_{1}\right]-F^{\alpha} X\right) \cap\left(F i_{z_{2}}^{x}\left[F Z_{2}\right]-F \propto X\right)=\varnothing$.
Proof: There exists a morphism $g: X \rightarrow Z_{1}$ such that
$g \circ i_{Z_{1}}^{x}=i d$ and $g\left(Z_{2}\right)<\alpha$. Suppose
$x \in\left[\left(F i_{Z_{1}}^{x}\left[F Z_{1}\right]-F^{\infty} X\right) \cap\left(F i_{Z_{2}}^{x}\left[F Z_{2}\right]-F^{\infty} X\right)\right.$.
As $g \cdot i_{z_{1}}^{x}=i d$ there exists $z \in F Z_{1}-F^{\infty} Z_{1}$ such that $F i_{z_{1}}^{x}(x)=x$ and therefore $F g(x)=x, g \circ i_{z_{2}}^{x}=h_{1} \circ h_{2}$ where $h_{2}: Z_{2} \rightarrow Y, h_{1}: Y \rightarrow Z_{1}$ and $Y<\alpha$. Then $F^{\alpha} Y=F Y$ and therefore
$F g\left(F i_{Z_{2}}^{X}\left[F Z_{2}\right]-F^{\propto} X\right) \subset F h_{1}[F Y] \subset F h_{1}\left[F^{\infty} Y\right] \subset F^{\propto} Z_{1}$ and $\operatorname{Fg}(x) \in F^{\infty} Z_{1}$. That is a contradiction. Q.E.D. Lemma 3.3: Let α be an unattainable cardinal of F. Let Φ be a $\binom{x}{\alpha}$-system.
Then there exists a monomorphism $\tau: \Phi \rightarrow F X-F^{\alpha} X$.
Proof: Lemma 1.3 implies $F_{z}^{x}[F Z] \cap\left(F X-F^{\alpha} X\right) \neq \emptyset$ for every $Z \in \Phi$. Lemma 2.3 implies $\left(F_{i_{Z_{1}}}^{X}\left[F Z_{1}\right]-F^{\infty} X\right) \cap$ $\cap\left(F i_{Z_{2}}^{X}\left[F Z_{2}\right]-F^{\propto} X\right)=\varnothing$ for every $Z_{1}, Z_{2} \in \Phi$. Choose $z_{z} \in F i_{z}^{X}[F Z]-F^{\propto} X \quad$ for every $Z \in \Phi$. Put τ : $: \Phi \rightarrow F X-F^{\propto} X, \tau(Z)=z_{Z}$ for every $Z \in \Phi \cdot \tau$ is evidently a monomorphism.
Q.E.D.

Convention: Denote

$\max (X, Y)=\max (\operatorname{card} X, \operatorname{card} Y), \min (X, Y)=\min (\operatorname{card} X, \operatorname{card} Y)$, where X and Y are sets.

Lemma 4.3: Let α be an unattainable cardinal of a functor F. Then $F X \geqq \max (F \alpha, X)$ for every $\operatorname{set} X$ with $X \geqq \max \left(\alpha, \kappa_{0}\right)$.

Proof: Lemmas 3.2 and 3.3 imply $F X \geqslant X$. As every functor maps monomorphisms into monomorphisms it holds that $F \alpha \leq F X$.
Q.E.D.

Lemma 5.3: Let α_{1}, α_{2} be cardinals such that there exists no unattainable cardinal α_{3} of the functor F with $\alpha_{1}<\alpha_{3}<\alpha_{2}$. Let $\alpha_{1} \geqq k_{0}$. Then for every X with
$\alpha_{1} \leqq X<\alpha_{2}, F X \leqq\left(\max F x_{1}, X^{\alpha_{1}}\right)$.
Proof: As there does not exist any unattainable cardinal α of F with $\alpha_{1}<\alpha \leqq X$, we have $F X=$ $=\bigcup_{f \in X^{\alpha_{1}}} F f\left[F \alpha_{1}\right]$. It implies $F X \leq\left(\max F \propto_{1}, X^{\alpha_{1}}\right)$. Q.E.D.

Lemma 6.3: Let α_{1}, α_{2} be unattainable cardinals of F with $\alpha_{1}<\alpha_{2}, \alpha_{1}<w_{0}$ and let there exist no unattainable cardinal α_{3} with $\alpha_{1}<\alpha_{3}<\alpha_{2}$. Let $F \alpha_{1}$ be finite. Let a be the increase of F on α_{1}. Let X be a set with $\alpha_{1} \leq X<\min \left(\alpha_{2}, \kappa_{0}\right)$. Then $F X \simeq F^{\alpha_{1}} X \vee a .\binom{\operatorname{card} X)}{\alpha_{1}}$.

Proof: We prove $F X \geqq F^{\alpha_{1}} X \vee a$. ($\left.\begin{array}{c}\operatorname{card} X \\ \alpha_{1}\end{array}\right)$. For every $\mathcal{Z} \subset X, \mathcal{Z} \simeq \propto$ there exists a monomorphism $f_{\mathcal{X}}$ from \propto_{1} into \mathcal{Z}. Lemmas 1.2 and 2.3 imply $F X \geqq F^{\infty_{A}} X \vee$ \vee a. (card $\left.\begin{array}{c}X \\ \alpha_{1}\end{array}\right)$ As for every monomorphism $g: \alpha_{1} \rightarrow X$ there exists an isomorphism $h_{g}: \alpha_{1} \rightarrow \alpha_{1}$ and $\mathcal{Z} \in\binom{\bar{X}_{1}}{\alpha_{1}}$ such that $g: i_{z}^{x} \cdot f_{z} \cdot h_{g} \quad$ we have $F g\left[F_{a_{1}}\right]=F\left(i_{z}^{x} \cdot f_{z}\right)\left[F \alpha_{1}\right]$. Evidently $\left.F^{\alpha_{1}} X \cup \underset{\mathcal{Z} \in\left(\frac{\bar{x}}{\alpha_{1}}\right)}{ } F\left(i_{z}^{x} \circ f_{z}\right)\left[F \alpha_{1}\right]\right) \simeq F^{\alpha_{1}} X \vee a \cdot\binom{\alpha_{1}}{\alpha_{1}}$. Also clearly $F^{\alpha_{1}} X \cup\left(\underset{z \in(\mathbb{Z})}{\mathcal{Z}} \underset{\sim}{x}\left(i_{z}^{x} \circ f_{z}\right)\left[F \alpha_{1}\right]\right)=F^{\alpha_{1}} X \cup\left(\cup_{f \in X_{1}} F f\left[F \infty_{1}\right]\right)$. As there does not exist any unattainable cardinal \propto of F with $\alpha_{1}<\alpha \leqq X$ it holds that $F X=F^{\alpha} X \cup\left(\bigcup_{f \in X^{\alpha_{1}}} F f\left[F \alpha_{1}\right]\right)$ and therefore $F X \simeq F^{\alpha_{1}} X \vee a .\binom{\operatorname{card} X}{\alpha_{1}}$.

Lemma 7.3: Undep the presumptions of Lemma 6.3. Let $5_{0} \leqq$ \& $X<\alpha_{2}$. Then $\mathrm{FX}=X$.

Proof: Lemma 2.2 implies $F X \geqq X$. As there does not exist any unattainable cardinal \propto of F with $\alpha_{1}<\alpha \leqslant$ $\leqslant X$ we have $F X=\bigcup_{f \in \alpha_{1}} F f\left[F \sigma_{1}\right] \simeq X$.
Q.E.D.

Remark: Let α be a finite unattainable cardinal of F and let $F \propto \geq \mathcal{K}_{0}$. Let X be a set such that $\alpha=$ sut $\mathcal{R}_{F} X$. Then $F X \simeq \max (F \propto, X)$.

Proof is evident.
Theorem 1.3: Let χ be a set with sup $\mathcal{A}_{F^{x}}=\beta>1$.

1) If X is finite then $F X \simeq F^{\beta} X \vee a .\binom{\operatorname{cond} X}{\beta}$ where
a is the increase of F on β.
2) If X is infinite then max $(F \beta, X) \leqq F X \leqq$ $\leqq \max \left(F \beta, X^{\beta}\right)$.

Proof: The theorem is a consequence of Lemmas 4.3, 5.3, 6,3 and 7.3.

Corollary: Under the presumptions of Theorem 1.3 and assuming the generalized continuum hypothesis it holds for every set $X \geqq r_{0}$ with $\operatorname{conf} X>\beta$ that $F X \simeq \max (F \beta, X)$.

Proposition 2.3: Let us assume the generalized continuum hypothesis. Let $\alpha \geqq \aleph_{0}, \beta=2^{\alpha}$. Let $F \beta>\max \left(F_{\alpha}, \beta\right)$. Then β is an umattainable cardinal of F.

Proof: It follows from Lemma 5.3 that $F^{\beta} \beta \leqq \max (F \alpha, \beta$); $F \beta>F^{\beta} \beta \quad$ and therefore $F \beta-F^{\beta} \beta \neq \varnothing$, hence β is an unattainable cardinal of E.

Proposition 3.3: Let $\alpha \geqq 5_{0}$ be an unattainable cardinal of F. Then $\beta \geqq \alpha \quad$ where β is the increase of F on α.

Proof: Lemmas 3.2 and 3.3 imply $\beta \simeq E \alpha-F^{\alpha} \approx \geqq$.
Proposition 4.3: Let. us assume the generalized continuum hypothesis. Let $\propto \geqq \aleph_{0}$ be an unattainable cardinal of F. Then $\beta \geqq 2^{\alpha}$ where β is the increase of F on α.

Proof: Lemmas 4.2 and 3.3 imply $\beta \simeq F \alpha-F^{\alpha} \alpha \geqq 2^{\alpha}$.
Corollary: Let us assume the generalized continuum hypothesis. Let $\alpha \geqq \mathcal{K}_{0}$ be an unattainable cardinal of F. Then $F \propto \geqq 2^{\alpha}$

Convention: Let α, β be cardinals. Define a functor ${ }^{\alpha} R_{\beta}$
${ }^{\alpha} R_{\beta} X=\{(A, y, \alpha) \mid A \simeq \beta, A \subset X, y \in \propto\} \cup\{0\}, f: X \rightarrow X "$,
${ }^{\alpha} R_{\beta} f(A, y, \alpha)=0 \Leftrightarrow f(A)<\beta,{ }^{\alpha} R_{\beta} f(0)=0$,
${ }^{\alpha} R_{\beta} f(A, y, x)=(f(A), y, \infty) \Longleftrightarrow f(A) \simeq \beta$.
Proposition 1.4: Let \mathcal{A} be a class of cardinals with $\propto \in \mathcal{A} \boldsymbol{\alpha}>1$. Let f be a mapping from \mathcal{A} to the class of all cardinals with $f(\propto) \geqq 2^{\propto}$. Then there exists a functor F such that $\mathcal{A}=\mathcal{R}_{F}$ and $f(\alpha)$ is the increase of F on \propto.

Proof: Define a functor F

$$
F X=\bigcup_{\alpha \in \Omega}^{f(\alpha)} R_{\alpha} X ; g: X^{\prime} \rightarrow X^{\prime \prime},\left.F g\right|^{f(\alpha)} \mathcal{R}_{\alpha} X^{\prime}={ }^{f(\alpha)} \mathcal{R}_{\alpha} g V_{\alpha} \in \Omega .
$$

Clearly \mathbf{F} is correctly defined and satisfies the conditions of the proposition. Q.E.D.

Corollary: Let us assume the generalized continuum hypothesis. Let \mathcal{A} be a class of cardinals with $\alpha \in \mathcal{A} \Rightarrow$ $\Longrightarrow \propto \geqq \kappa_{0}$. Let f be a mapping from \mathcal{A} to the class of all cardinals. Then there exists a functor F auch that $\mathcal{A}=A_{F}$ and $f(\alpha)$ is the cardinal of increase of F on \propto if and only if $f(\alpha) \geqq 2^{\alpha}$.

Proposition 2.4: Let \mathcal{A} be a class of cardinals with $\alpha \in \mathcal{A} \Rightarrow \alpha \geqq \kappa_{0}$. Let f be mapping from \mathcal{A} to the class of all cardinals with $f(\alpha) \geqq 2^{\alpha}$ and $\alpha, \beta \in$ $\varepsilon \Omega \alpha<\beta \Rightarrow f(\alpha) \leqq f(\beta)$. Then there exists a functor F such that $\mathcal{A}=\mathcal{R}_{F}$ and $F \propto \propto f(\propto)$ for every $\propto \in \mathcal{A}$.

Proof: Define a functor F

$$
\begin{aligned}
F X & =\bigcup_{\alpha \in \Omega}{ }^{f(\alpha)} R_{\alpha} X ; q: X^{\prime} \rightarrow X^{\prime \prime}, F q / /^{f(\alpha)} R_{\alpha} X^{\prime}= \\
& ={ }^{f(\alpha)} R_{\alpha} g \quad \forall \propto \in \Omega .
\end{aligned}
$$

Clearly F is correctly defined and satisfies the conditions of the proposition.

Corollary: Let us assume the generalized continuum hypothesis. Let \mathcal{A} be a class of cardinals with $\propto \in \mathcal{A} \Longrightarrow$ $\Rightarrow \alpha \geqslant 5_{0}$. Let f be a mapping from \mathcal{A} to the class of all cardinals. Then there exists a functor F such that
$\mathcal{A}=\mathcal{A}_{F}$ and $F \propto \simeq f(\alpha) \quad \forall \propto \in \mathcal{A} \quad$ if and only if
$f(\alpha) \geq 2^{\alpha}$ and $\alpha, \beta \in \Omega, \alpha<\beta \Rightarrow f(\alpha) \leq f(\beta)$. We recall the definition of a small functor.

Convention: Denote by Q_{α} a functor from the category K into S defined by
$Q_{\alpha} b=\{g \mid g: a \rightarrow b\}$ for b an object from \mathbb{K}, $Q_{\alpha} f(g)=f \circ g$ for a morphism fibl $\rightarrow c$ and $g \in Q_{a} b$,
Q_{∞} is called covariant homfunctor.
A functor $F K \longrightarrow S$ is small iff it is a colimit of a diagram the objects of which are covariant homfunctors.

Lemme 1.4: A functor is small iff it is a factorfunctor of a disjoint union of a set of covariant homfunctors.

Proof: see [2].
Lemma 2.4: If F is a factorfunctor of G, then $\mathcal{A}_{F} \subset \mathcal{A}_{G}$.

Proof is evident.
Lemma 3.4: $\quad \mathcal{A}_{Q_{M}}=\{\propto 1 \propto$ is a cardinal, $M \geq$ $\geq \propto>13$.

- Proof: A) $\alpha \leqslant M$. Let f be an epimorphism with
$f: M \rightarrow \alpha$. If $Q_{M} \alpha=\left(Q_{M}\right)^{\alpha} \alpha$ holds then there exist $g: M \rightarrow \beta, h: \beta \rightarrow \alpha, \beta<\alpha$ such that $f=$ $=g \cdot h \cdot \operatorname{Im} g \leqslant \beta$ and therefore $\operatorname{Im} g<\alpha$. That is a contradiction and therefore $Q_{M} \propto \neq\left(Q_{M}\right)^{\infty} \propto$ and $\propto \in \mathcal{R}_{Q_{M}}$. $B \mid \propto>M$. Let $\varepsilon \in Q_{M} \propto$. Then $\varepsilon=Q_{M} \varepsilon\left(i d_{M}\right)$ and therefore $Q_{M} \alpha=\left(Q_{M}\right) \propto \propto$ and $\propto \notin \mathcal{A}_{Q_{M}}$.
Q.E.D.

Theorem 3.4: A functor F is a small functor if and only if \mathcal{R}_{F} is a set.

Proof: The theorem is consequence of Lemmas 1.4, 2.4 and 3.4.

Definition 2: A functor F is said to be a semiconstant functor up to \propto if F^{∞} is a constant functor on S.
F is said to be a semiconstant functor if there exists \propto such that F is a semiconstant functor up to \propto.

Definition 3: A functor is said to be a big functor if it is not a small functor.

Remark: F is a big functor if and only if \mathcal{A}_{F} is a proper class.

Lemma 4.4: Let F, G be functors. Define a mapping h_{G} from \mathcal{A}_{G} inte the class of all cardinals:
$h_{G}(x)=\min _{F O _\propto} \delta_{\alpha}^{\sigma}$ if the minimum exista; if contrary, put $h_{G}(\alpha)=1$. If G is not a semiconstant functor then ($\left.\mathcal{A}_{F} \cup h_{G}\left(\Omega_{G}\right)\right)-1 \subset \Omega_{G O F}$. If G is a semiconstant functor then $\left.\left[\left(\mathcal{A}_{F} \cup h_{G}\left(\mathcal{R}_{G}\right)\right)-\left(1 \cup \mathcal{A}_{F \beta}\right)\right] \subset \mathcal{A}_{G O F}\right)$, where $\beta=\min _{F \sigma} \geq$ min $\mathcal{A}_{G} \sigma^{\sigma}$.
proof: We have $\left(F \propto-F^{\propto} \propto\right) \geqslant \propto \quad$ where $\propto \in \mathcal{A}_{F}$
(Proposition 4.3). If G is not a semiconstant functor or $F_{\alpha} \geq \gamma$ where $\gamma=\min \mathcal{R}_{G}$ and $\alpha \in \mathcal{R}_{G}$, then $G\left(F \propto-F^{\propto} \alpha\right) \cap G^{\propto} F_{\alpha} \subset G \emptyset$ and $G\left(F \propto-F^{\propto} \propto\right) \neq G \varnothing$. Therefore α is an unattainable cardinal of G - F. $\delta \in h_{G}\left(\mathcal{R}_{G}\right)$ is evidently an unattainable cardinal of $G \bullet F$.
Q.E.D.

Theorem 4.4: Let F be a big functor, let G be a non-constant functor. Then $F \bullet G$ and $G \circ F$ are big functors.

Proof is evident.

$$
5 .
$$

Theorem 1.5: Let F be a semiconstant functor. Let \propto be the smallest cardinal such that $\left\{f f \mid f \in \alpha^{\alpha}\right\}>1$. Then $\propto=\min \mathcal{A}_{F}$.

Proof: Every point of the set $F \mathbb{1 l}$ is a distinguished point of the functor F and therefore for every $a \in F \mathbb{1}$, $\tau^{1}(0)=a$ defines a transformation $\tau: C_{1} \rightarrow F$. It implies that the functor F^{∞} is a constant functor and therefore α is an unattainable cardinal of F. Q.E.D.

Theorem 2.5: Let F be a functor, X a set with $F X<X$. Then F is a semiconstant functor up to (card $X-1$)'

Proof: We shall prove that every component has a distinguished point. For every component F_{a} of F where a \in e $F \|, F_{a} X<X$ and therefore there exist $f_{0}, f_{1}: \mathbb{H} \rightarrow$ $\rightarrow X$ with $F f_{0}=F f_{1}$ and $v_{0}, v_{1}: 1 \rightarrow 2$ and a morphism $v: 2 \rightarrow X$ such that $v \circ v_{0}=f_{0}, v_{0} \circ v_{1}=f_{1}$. As $F_{a}(v)$ is monomorphism it holda that $F_{a}\left(v_{1}\right)=F_{a}\left(v_{0}\right)$
and therefore a is distinguished point. If $x \simeq 1$, then $F X=\varnothing$ and therefore $F=C_{\varnothing}$. If $X \simeq 2$, then $F X \leq 1$ and therefore the cardinal 2 is not an unattainable cardinal of F. If $X>2$ and there exists an unattainable cardinal \propto of F such that $X-1 \geq \propto$ then $\mathrm{FX} \geqq X$ (Lemmas 4.3 and 6.3). That is a contradiction. Therefore there does not exist any unattainable cardinal of F smaller or equal to card $X-1$ and hence F is a semiconstant functor up to (card $X-1$)'. Q.E.D. Corollary: Let F be a functor and let $\alpha=\min \mathcal{R}_{F}$. Then there exist. A, B such that $\left(I \times C_{A}\right) \vee C_{B} / S^{\infty}$ is naturally equivalent F / S^{∞}.
6.

Lemma 1.6: Let X be a set with $X>1$. Let $\left\{F f \mid f \in X^{X}\right\} \simeq 1$. Then the functor F is a semiconstant functor up to (card X)' .

Proof: Let \boldsymbol{Y}. be a set with $\boldsymbol{Y} \leqslant \boldsymbol{X}$. Let $f: \boldsymbol{Y} \rightarrow \boldsymbol{X}$ be a monomorphism. Then there exists an epimorphism $g: X \rightarrow Y$ such that $g \circ f=$ id. It implies $F g \circ F f=$ $=F$ id . It follows from the assumptions that $F(f \circ g)=$ $=i d$. It implies that $F f$ and $F g$ are isomorphisme. Suppose there exist $h_{1}, h_{2}: Y \rightarrow Y, F h_{1}+F h_{2}$. Then $F\left(f \circ h_{1} \circ g\right) \neq F\left(f \circ h_{2} \circ g\right) \quad$ which is a contradiction. Therefore for every $h: Y \rightarrow Y, F h=i d$. Hence for every k: $Y \rightarrow X$ it holda $k=k_{1} \circ f \circ k_{2}$, whore $k_{1}: X \rightarrow X, k_{2}: Y \rightarrow Y$ and $F k=F\left(k_{1} \circ f \circ k_{2}\right)=$ $=F f$. The lemma is proved. Q.E.D.

Lemma 2.6: Let X, Y be sets with $Y>1, X>\varnothing$
and $\left\{f f \mid f \in y^{X}\right\} \simeq 1$. Then

1) Every point of the sot $F \mathbb{1}$ is a distinguished point of F.
2) If $X>1$ then the functor is a semiconstant functor up to $[\min (\operatorname{card} X$, card $Y)]$ '.

Proof: The proposition 2) implies the proposition 1) with the exception $X \simeq 1$ in which case the proposition 1) is evident. We shall prove the proposition 2). Let $X \leq$ $\leq Y$. Then for every $f: X \rightarrow Y, F f$ is monomorphism and therefore for every $g: X \rightarrow X, F g=F i d_{X}$ and the rest follows from Lemma 1.6. Let $X \geq Y$. Then for every $f: X \rightarrow Y, F f$ is an epimorphism and therefore for every $g: Y \rightarrow Y, F g=F i d_{y}$ and the rest follows from Lemma 1.6.
Q.E.D.

Lemma 3.6: Let $f ; X \rightarrow Y$ be not a monomorphism and let Ff be a monomorphism. Let there exist
$\max _{y \in y}\left(\operatorname{card} f_{-1}(y)\right)$. Then F is a semiconstant functor up to $\left[\max _{y \in y}\left(\operatorname{cand} f_{-1}(y)\right)\right]$ '.

Proof: We shall prove that $1 \simeq\left(F f \mid f \in \beta^{\beta}\right)$ where $\beta=\max _{y \in y}\left(\operatorname{cand} f_{-1}(y)\right)$ and the proof then follows from Lemma 1.6. There existe $y \in Y$ with $f_{1}(y) \simeq \beta$. Therefore there exists monomorphism $g: \beta \rightarrow X$ such that $f \circ g(\beta) \simeq 1$; clearly $F(f \circ g)$ is monomorphism. For every $h: \beta \rightarrow \beta, f \circ g \circ h=f \circ g$. It implies $F h=$ Fid $_{\beta}$ for every $h: \beta \rightarrow \beta$. Q.E.D.

Lemma 4.6: Let $f: X \rightarrow Y$. be not monomorphism and let Ff be monomorphism. Let surn cand $f_{-1}(y)$ be a singular cardinal. Then F is a semiconstant functor up to (sup card $f_{-1}(y)$)'

Proof: If ($\operatorname{mun}_{y \in y}$ cand $\left.f_{-1}(y)\right)=\left(\max _{y \in y}\right.$ card $\left.f_{-1}(y)\right)$, the proposition of Lemma 4.6 is a consequence of Lemma 3.6. Let there not exist $\max _{y \in y}$ card $f_{-1}(y)$. Let $x=\operatorname{conf}\left(\operatorname{sum}_{y \in y}\right.$ card $\left.f_{-1}(y)\right)$. Then there exist $g: X \rightarrow Y$, $h: X \rightarrow X \quad$ such that $f=g \circ h$ and mup card $f_{-1}(y)=$ $=\operatorname{sun}_{y \in x}$ card $f_{-1}(y)$. Clearly $F h$ is a monomorphism. There exists $z \subset X$ such that $z \simeq \sup _{y \in x}$ card $k_{-1}(y)$ and $h(Z) \simeq \propto$. Therefore there exists a monomorphism $h: X \rightarrow X$ such that $h \cdot h \circ h(z) \simeq 1$ and Lemma 3.6 implies the proposition. Q.E.D.

Lemma 5.6: Let $f: X \rightarrow Y$ be not a monomorphism and let $F f$ be a monomorphism. Then F is a semiconstant functor up to sum_{y} card $f_{-1}(y)$.

Proof is evident.
Definition: Put $\mathcal{F X}=\{\mathfrak{F} \mid \mathcal{F}$ is a filter on $X\} \cup$ $\cup\{\exp X\} . f: X \rightarrow Y, Z \in F f(\mathscr{H}) \Longleftrightarrow \exists Z_{1} \in \mathscr{H}$ with $f\left(Z_{1}\right) \subset Z$. Clearly F is a functor. Define a mapping $\mathcal{F}_{F, X} \quad$ from $F X$ into $F X, Z \in \mathcal{F}_{F, X}(X) \Longleftrightarrow X \in$ $\in F i_{z}^{x}[F Z]$.
There is a difference between the notion of mapping $\mathcal{F}_{F, x}$, as defined above, from the one in [6]. In [6] the mapping $\mathcal{F}_{F, x}$ is not defined in case $f(x)$ where x is a distinguished point and $f: \mathbb{R} \rightarrow X$.

Definition: Let $\mathscr{H}, \mathcal{G} \in \mathcal{F} X$. Define $\mathscr{H} \subset \mathcal{G} \Leftrightarrow$ $\Leftrightarrow(Z \in \mathscr{H} \Rightarrow Z \in \mathcal{G})$.

Lemma 6.6: The relation C is an ordering.
Proof is evident.
We recall the definition of essential cardinality.
For every $H \in F X$ put min card $Z=\|\mathscr{Z}\|$. The number
$\|\mathscr{H}\|$ will be called essential cardinality of \mathscr{H}.
The definition of essential cardinality is the same as in [3] in case \mathscr{H} is a filter.

Lemma 7.6: Let F be a functor, α an unattainable cardinal of F. Let $X \geq \propto$. Then there exists $\mathscr{H} \in$ $\in \mathcal{F}_{F, X}(F X)$ with $\|\mathscr{H}\|=\propto$.

Proof: α is an unattainable cardinal of F and therefire for every $X \geqq \propto, F^{\alpha^{\prime}} X-F^{\alpha} X \neq \varnothing$. Put $x \in F^{\alpha^{\prime}} X$ -- FCX . Definition 1) and definition $\mathcal{F}_{F, x}$ imply $x \in F i_{z}^{x}[F Z] \Rightarrow Z \geqq \propto, \exists Z_{1} \simeq \propto, \chi \in F f_{z_{1}}^{x}\left[F Z_{1}\right] \quad$. Therefore $\left\|\mathcal{F}_{F, X}\right\|=\propto$.
Q.E.D.

Lemma 8.6: Let F be a functor. Then for every $x \in$ $\in F X$ and every $f: X \rightarrow Y$ it holds $F f\left(\mathcal{F}_{F, X}(x)\right) \subset$ c $\mathcal{F}_{F, Y}(F f(x))$.

Proof: $Z \in F f\left(\mathcal{F}_{F, x}(x)\right) \Longleftrightarrow \exists Z_{1} \in \mathcal{F}_{F, x}(x)$ with $f\left(Z_{1}\right) \subset Z \Rightarrow x \in \mathcal{F i}_{Z_{1}}^{x}\left[F Z_{1}\right]$, $F f(x) \in F\left(f \circ i_{z_{1}}^{x}\right)\left[F Z_{1}\right] \Rightarrow F f(x) \in F i_{f\left(z_{1}\right)}^{y}\left[F f\left(Z_{1}\right)\right] \subset$ $\subset F i_{Z}^{y}[F Z] \Rightarrow Z \in \mathcal{F}_{F, y}(F f(x))$.

> Q.E.D.

Lemma 2.6: Let F be a functor, $\mathscr{H} \in \mathcal{F}_{F, X}(F X)$. Let f be mapping from X into Y such that f / Z is a monomorphism for some $Z \in \mathscr{H}$. Then $\mathbb{F} f\left(\mathcal{F}_{F, x}(x)\right)=\mathcal{F}_{F, y}(F f(x))$ where $\mathcal{F}_{F_{X}}(x)=\mathscr{H}$.

Proof: There exist a $g: Y \rightarrow X$ such that $g \circ f / Z=i d / z$. $\mathscr{H}=\mathcal{F}_{5 x}(x)=\mathbb{F}_{q} \circ f\left(\mathcal{F}_{F_{,} X}(x)\right) \in \mathbb{F}_{g}\left(\mathcal{F}_{F, y}\left(F_{f}(x)\right) \subset\right.$ C $F_{F x}(F(g \cdot f)(x))=F_{F, x}(x)$.

Lemma 10.6: Let $f: X \longrightarrow Y$ be not a monomorphism. Let $F f$ be a monomorphism. Let $\alpha=\sup _{y \in y} \operatorname{card} f_{-1}(y)$. Then F is semiconstant functor up to \propto^{\prime}.

Proof: If α is a singular cardinal or $\alpha=\max _{y \in y}$ card $f_{-1}(y)$ then the proposition follows from the lemmas 3.6 and 4.6. Now let α be a regular cardinal with no predecessor. Lemma 5.6 implies that F is a semiconstant functor up to \propto. Presume \propto is an unattainable cardinal of F. There exists $Z \subset y$ such that $Z \simeq \propto$ and $y \in Z \Rightarrow f_{-1}(y)=1$. For every $y \in Z$ choose $x_{y}^{i} \in f_{-1}(y), i=1,2$; $x_{y}^{1} \neq x_{y}^{2}$ and put $x_{i}=\bigcup_{y \in z} x_{y}^{i}, i=1,2$. Clearly $X_{1} \simeq X_{2} \simeq \alpha$ and $f / X_{1}, f / X_{2}$ are monomorphisms. Let \mathscr{H} be a filter such that $\|\mathscr{H}\|=\alpha$ and $\mathscr{H} \in \mathcal{F}_{F, x}$ (FX). Let $Z_{1} \in \mathscr{H}$ with $z_{1} \approx \alpha$, let $h: X \rightarrow X$ such that h / Z_{1} is a monomorphism and $h(X) \subset X_{1}$. Define $k:$ $: X \rightarrow X$ as follows: $k(x)=x_{y}^{2} \Longleftrightarrow h(x)=x_{y}^{1} \cdot$ Lemma 9.6 implies $F h\left(\mathcal{F}_{F, x}(x)=\mathcal{F}_{F, x}(F h(x)), \mathbb{F} \&\left(\mathcal{F}_{F, x}(x)\right)=\right.$ $=\mathcal{F}_{F, x}(F \mathscr{H}(x))$ as soon as $\mathcal{F}_{F, x}(x)=\mathscr{H}$. Further, $F f \circ F h(x)=F(f \circ h)(x)=F(f \circ k)(x)=F f \circ F$ he (x). But $F h(x) \neq F l e(x)$ and therefore $F f$ is not a monomorphism. That is a contradiction. Q.E.D.

Theorem 1.6: Let $f: X \rightarrow Y$ be not a monomorphism and let $F f$ be a monomorphism. Then F is a semiconstant functor up to max (min (card $\left.X+1, x_{0}\right)$, ($\sup _{y \in y} \operatorname{card}_{-1}(y){ }^{\prime}(y)$.

Proof: $A) X \leqq Y$. Then there exist a monomorphism $g: X \rightarrow Y$ and a morphism $h: X \rightarrow X$ such that $g \cdot h=$ $=f . h$ is not a monomorphism and $F h$ is a monomorphism. Let $X<\mu_{0}$. Then there exist isomorphisms g_{1}, g_{2}, \ldots \ldots, g_{n} such that $h \circ g_{1} \circ h \circ g_{2} \circ \ldots \cdot h \cdot g_{n} \cdot h(x) \simeq 1$.

As $F\left(h \cdot g_{1} \cdot h \cdot \ldots \circ g_{m} \cdot h\right)$ is a monomorphism, Lemma 10.6 implies the proposition. Let $X \geqq \kappa_{0}$. Then for every finite cardinal γ there exist isomorphisms $g_{1}, g_{2}, \ldots, g_{m}$ such that $h \circ g_{1} \circ h \circ g_{2} \circ \ldots \circ g_{n} \circ h=\bar{h} . F \bar{h}$ is monomorphism and $\gamma<\sup ^{2} \in x^{2}$ card $h_{-1}(y)$. Lemma 10.6 implies the proposition.
B) $X>Y$. Then there exists a monomorphism $g: Y \rightarrow$ $\rightarrow X$ such that $g \circ f$ is not a monomorphism and $F(g \circ f)$ is a monomorphism. Then we proceed as in the case discussed above. Q.E.D.

Lemma 11.6: Let $f: X \rightarrow Y$ be not an epimorphism. Let $\boldsymbol{F f}_{\mathrm{f}}$ be an epimorphiam. Then F is a semiconstant functor up to $(\operatorname{card}(y-f(X))+1)$ '.

Proof: Let z be a set such that $z \simeq(Y-f(X))+1$. Then there exists an epimorphism $g: Y \rightarrow Z$ such that $g \circ f(X) \simeq 1 . F(g \cdot f)$ is an epimorphism and therefore for every morphism $h: Z \rightarrow Z$ for which $h \circ g \circ f=g \circ f$ we have $F h=i d$. Let $\bar{h} \rightarrow \sum \rightarrow E$ be a constant morphism with $\bar{h} \circ g \cdot f=g \circ f$. Then $F \bar{h}$ is a monomorphism and sure eard $\bar{h}_{-1}(y) \simeq$ \& . Lemma 11.6 is proved due to Theorem 1.6.
Q.E.D.

Theorem 2.6: Let $f: X \rightarrow Y$ be not an epimorphism. Let $F f$ be an epimorphism. Then F is a semiconstant functor up to $\max \left[\min \left(Y+1, N_{0}\right)\right.$, (card $\left.\left.[Y-f(X)]\right)\right]$.

Proof: A) $X \geqq Y$. Then there exist an epimorphism $g: X \rightarrow Y$ and a morphism $h: Y \rightarrow Y$ such that
$h / f(X)$ is a monomorphism and $h \circ g=f \cdot h$ is not an epimorphism and Fh is an epimorphism. Let $Y<$ $<w_{0}$. Then there exist isomorphisms $g_{1}, g_{2}, \ldots, g_{n}$ such
that $h \cdot g_{1} \cdot h \cdot g_{2} \circ \ldots \cdot h \circ g_{n} \circ h(y) \simeq 1$ and $F\left(h \cdot g_{1} \cdot h \cdot \ldots \cdot g_{n} \cdot h\right)$ is an epimorphism. Lemma 11.6 proves the proposition. Let $y \geq w_{0}$. Then for finite cardinal γ there exist isomorphisms $g_{1}, g_{2}, \ldots, g_{n}$ such that $h \circ g_{1} \circ h \circ g_{2} \cdot \ldots \cdot h \cdot g_{n} \cdot h=h . F \bar{h}$ is an epimorphism and $\gamma<(Y-\bar{n}(Y))+1$. Lemma 11.6 proves the proposition.
B) $X<Y$. If $Y \geqq \aleph_{0}$, the proposition is evident. Let $Y<\kappa_{0}$. Then there exists an epimorphism $q: Y \rightarrow X$ such that $f \cdot g$ is not an epimorphism and $F(f \circ g)$ is an epimorphism. Then we proceed as in the case discussed above. Q.E.D.

Corollary: Let X, Y be sets such that $\boldsymbol{X} \neq \boldsymbol{y}$. Let $f: X \rightarrow Y$ be a morphism such that $F f$ is an isomorphism. Then F is a semiconstant functor up to $[\max (X, Y)]$. .

In [2] P. Freyd considers the reflecting of retractions, co-retractions and isomorphisms. Much stronger results are obtained when we work with set functors only.

Theorem 3.6: The following conditions are equivalent:

1) F reflects isomorphisms.
2) f reflects epimorphisms.
3) F reflects monomorphisms.
4) F is not a semiconstant functor.

Proof: Implications 1) $\Longleftarrow 4$), 2) $\Longleftarrow 4$), $3 \Longleftarrow 4$) are consequences of Theorems 1.6 and 2.6. Let F be a semiconstant functor. Let $v: \mathbb{1} \rightarrow 2$ be morphiem. Then $F v$ is an isomorphism and so an epimorphism. Let $f: 2 \rightarrow 1$ be a morphism. Then Ff. is an isomorphiam and so monomorphism. Implications 1$) \Longrightarrow 4$) 2) $\Rightarrow 4$), 3) $\Longrightarrow 4$) are proved. Q.E.D.

Proposition 4.6: The estimate of the amallest unattainable cardinal of the functor in Theorems 1.6 and 2.6 is the best possible.

Proof : Let $\alpha<\kappa_{0}$. Then the functor ${ }^{1} R_{\alpha}$ proves the proposition. Let $\propto \geqq \kappa_{0}$. Let \cong_{x} be an equivalence on ${ }^{1} \mathrm{R}_{\alpha} X$ defined as follows: $y, z \in{ }^{1} \mathrm{R}_{\alpha} X$, $y \cong \cong_{X} X \Leftrightarrow(Y-Z) \cup(Z-Y)<\propto$.This equivalence defines a factorfunctor B_{α}^{+}of the functor ${ }^{1} R_{\alpha}$. Let β be a cardinal with $\beta<\alpha$. Let f_{β} be a morphism defined like this: $f_{\beta}: X \rightarrow X ; X \geq \alpha ; 3 z \subset X, z \cong \beta$, $f_{\beta} /_{X-Z}=i d / X-Z, f_{\beta}(Z) \simeq 1$. Evidently f_{β} is neither an epimorphism nor a monomorphism. Clearly $B_{\alpha}^{+} f_{\beta}=$ $=B_{\alpha}^{+} i d_{x}$.
Q.E.D.

References

[1] P. FREYD: Abelians Categories, New York 1964.
[2] P. FREYD: On the concreteness of certain categories (preprint).
[3] V. KOUBEK, J. REITERMAN: Of the category of filters, Comment.Math.Univ.Carolinae 11(1970),19-29.
[4] B. MITCHELL: Theory of categories, New York 1965.
[5] V. TRNKOVA: Some properties of set functors, Comment. Math.Univ.Carolinae 10(1969),323-352.
[6] V. TRNKOVA: On descriptive classificstion of set functors, I, II, Comment.Math.Univ.Carolinae 12(1971), 143-175(Part I); Part II to appear in the same journal.

Matematicko-fyzikálni fakulta

Karlova universita
Sokolovská 83, Praha 8
Ceskoslovensko
(Oblatum 23.9.1970)

