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Commentationes Mathematicae Universitatis Carolinae

12,1 (1971)

SET FUNCTCRS

Vdclav KOUBEK, Praha

In the following paper we shall investigate set func-
tors. We shall characterize the behaviour of a functor on
all objects (sets) from its behaviour on its unattainable
cardinals, where a cardinal o is an unattainable cardi-
nal of a functor F if there exists X with card X = o
and X e FX such that x ¢ Im F¥f as soon as
card (domain £) < oo .(A precise definition is given in the
part three.) We shall give a necessary and sufficient con-
dition for a functor to reflect monomorphisms, epimorphisms,
isomorphisms.

In the first part we introduce some definitions and
necessary conventions. In the second part we form some au-
xiliary propositions about sets. With their help we inves-
tigate the behaviour of a functor with respect to its unat-
tainable cardinals in part three, where there is also the
formulation of the main theorem on estimation of the beha-
viour of a functor. In the fourth part we show some construc-
tions of functors with a given class of unattainable cardi-
nals. Semiconstant functors, i.e. functors naturally equi-

valent with a constant functor up to a certain cardinality,
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are investigated in the part five. In the sixth part we
discuss the relation between a functor and the preservation
of monomorphisms, epimorphisms and isomorphisms.

I want to express kind appreciation to doc. Véra Trn-
kovd and RNDr Bohuslav Balcar with whom I discussed various
parts of the manuscript and especially to doc. Trnkové for

her encouragement in my work.

1.

Convention: Denote by S5 the category of all sets and
their mappings. Let o be a cardinal. Then S% denotes
the complete subcategory of S with X € (S%)7 ¢ card X < .
In agreement with the set theory a cardinal o« is a set and
so caxd X = oc means that there exists a bijection of X
and o .

Convention: Writing X £ Y we mean card X £ caxd ¥
while X c ¥ means X is a subset of Y. By X =Y we
mean tard X = card ¥ . An ordinal also means the naturally
ordered set of all smaller cardinals. Denote by < the na--
tural ordering of the ordinals.

‘If. A,B ‘are seta (categories), £ a mapping (func-
tor) s A— B and C a subset of A (subcategory of A )
then §f/( denotea the restriction of f to the domain C .

Definition: A set functor F is regular if:

1) Pd’x ia a monomorphism where Q}K g —>X .

2) Every monotransformation from C, /S, to F/§ in S,
has an extension to a monotransformation from 64 to F in
. S . where 6% is the category of nonvoid sets and their map-

pings and C, is a constant functor to one-point set.
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There is a difference between the notion of the regular
functor, as defined above, from the one in [5].

Lemma 1.1: A functor F is regular if and only if it
preserves prosections i.e.

VA, B F'iA[FAJ N f‘éBEFBJ = F".’Ans LF¢(An B)]

where 1 are the inclusions from A,B, Anb

A? oB 4 4‘,403
to AuB respectively.

Proof: see [5] .

Lemma 2.1: For every set functor I there exists a re-~
gular set functor F”® such that F¥/S§, = F/§ .
Proof: see [5] .

Convention: All functors throughout this paper will be

covariant regular functors from S to S . The superposition
F o G of arbitrary functors F and G is written left-hand
i.e. :
(FoGYX = F(GX) .
Let us introduce some of the most commonly used functors:

I - denotes the identical functor,

CM ~ a constant functor to M .

Convention: XY denotes thHe set of all mappings from

Y to X where Y and X are sets. Let A c B. Then 13:

denotes the inclusion from. A to B.
We recall the definitions of a distinguished point and

of a component of & functor.

Let T be a functor. A peint. a € F1 will be cal-
led a distinguished point of F if there exists a transfor-
mation & : C,— F  such that 2%0) = a where 1 is
ordinal. ’

Subfunctor F'.' of F, v ¢ F1 is a component of F
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if
X quX<==>}"h(x)=a,, H:X—> 1 .
There is a difference between the notion of a distinguished
point, as defined above, from the one in [5] .
Convention: Let X be a set, F a functor. FX deno-
tes the subfunctor of F  where F¥Z = U <oy FFLFY].

Y<X fe
Let o« be a cardinal. Denote by &’ the follower of o .

2.

Definition: Let X be a set, o a cardinal such that
« £ X . let & be a system of sets such that:

Ceceep X; Z2e@ =22 2x; 5, E, 6A=>(F nE )< <.
Then we call the system & a (£ ) -system.

Lemma 1.2: Let oo £ X £ ¥, . Then there exists a (i()—
system ¢ such that

$ = (cszX) i.e.wmd¢=(cw‘$x)

?

Proof is evident.
Lemma 2.2: Let o < ¥, £ X . Then there exists a (i) -
system ¢ such that & =~ X .

Proof is evident.

Convention. Denote by (i) the system of all sub-
sets Z of a set X with Z =, « < X, .

Clearly (i) is a ('ﬁ) -system.

Lemma 3.2: Let f,% o £ X.Then there exists a (fn)-
system.‘Q auch that § =~ X .

Proof is evident.
Let us introduce this known lemma:

Lemma 4.2: Let us assume the generalized continuum hy-
pothesis. Let o¢ = &, be a cardin_al. Let X be a set such
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o . Then there exists a (‘i ) -system & such

that X =
that = 2%,
Proof: Let w, be an ordinal such that W, = o« and
. Let §=- U 2% where 2 is
WL ay
to

that o’ o, = W<
ordinal. Clearly § = o . Let f be a mapping from o,
2 .Llet s, =6glg = f/domain g, g €5} .Clearly g =

n d, < o as there exists an
2

and 1’1 * Fz = ’bf,
@, o
and £, (@) *+ £ (). As 277 = 27,

ordinal W, <
{m 1 f e 2“3} jis the system we were looking for. Q.E.D.

3.
is said to be an un-

Definition 1: A cardinal o > 1
if Foo # F¥ % ,

attainable cardinal of a functor F
Carcl (Fx -F%x ) is said to be the increase of the functor F

on o .
Denote by .RF the class of all unattainable cardinals of the

functor F .

Lemma 1.3: Let o be an unattainbale cardinal of F .
Let £: X — Y be a monomorphism Then Ff(FX -F*X) c

c FY-F*Y .
Proof: Suppose x &€ FX — F*X and Ff(x)= gy, % e
€ F®Y ., There exists g :Y — X such that g o ¥=4d and
so Fg(y) = x. We have Fg (F*Y) ¢ F*X , hence x €
€ F*X That is a contradiction, Q.E.D.
Lemma 2.3: Let o be an unattainable cardinal of F .
be sets such that Z c X, Z c X,(Z nZ)<

Let Z,, Z,

Then
(Fij [FE1-F=X)n (Fi} [FZ,1-F%X) = 4 .
1 2
Proof: There exists a morphism ¢ : X—> 24 such that
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9,.,{,:= <d and 9czz> < oc . Suppose
x € [(Fi} (FE1-F%X)n (Fi} [FZ,]1- F*X) .
4 2
As 9,-1'.:= <ol there exists z e FZ, - F*Z, such that
. X ! . X
P“z’ (z) = x and therefore Fg (x)= =z, 9,01-«!23 ,h,q ° hz
where A, : Zz—*}’, )b‘,:}'—* Z1 and Y < o . Then P*Y=FY
and therefore
Fg (F4LFZ,1-F%X) e Fa, [FY] c FA [F*Y] c F*Z2,
and Fg (x)e F* Z, . That is a contradiction. Q.E.D.
Lemma 3.3: Let oo be an unattainable cardinal of F .
X
Let & bte a (q__)-system .
Then there exists a monomorphism %= : $ — FX - F*X .
Proof: Lemma 1.3 implies Fi) [FZ1n (FX-F%X) 4 ¢
for every Z € § . Lemma 2.3 implies (}"4‘..; [FZ 1-F*X) n
1
N (Fi,gz[FZz]-F"‘X)= @ for every Z,,E € ¢ . Choose
xze}"i; [LFZ1 - FP*X for every Z € & . Put v :
: 92> FX-F*X, v(Z)= Zg

dently a monomorphism. Q.E.D.

for every Z e d . T is evi-

Convention: Denote
max (X,Y)= mac (eand X, card Y), min (X,Y) = min (card X, card Y),
where X and Y are sets.

Lemma 4.3: Let « be an unattainable cardinal of a fune-
tor . Then FX 2 max(Fx, X) for every set X with
X 2 mac (x, #,) .

Proof: Lemmas 3.2 and 3.3 imply FX = X . As every
functor maps monomorphisms into monomorphisms it holds that
Fx & FX . Q.E.D.

Lemma 5.3: Let o , o, be cardinals such that there
exists no unattainable cardinal <y of the functor F with

oK < a, < o

. s -, - Let o, Z ¥, . Then for every X with
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X<cc2, FX £ (WP«;,,XW").

Proof: As there does not exist any unattainable cardi-

nal « of F with o« <o £ X , we have FX =

=L m Ff{F«, 1. It implies FX & (max Fx,, X*7). Q.E.D.

mma 6.3: Let o, , o, be unattainable cardinals of

F  with K < x,,x < K, and let there exist no unattain-

able cardinal o<, with ® < X < x, . Let Foc,, be fini-

te. Let @ be the increase of F on o . Let X be a set

with o _é.sx<mwn(ooz,xa).ThenFXﬁF“”Xva.( « 0.
Proof: We prove FX 2 F“ X v a . (““‘;‘1 X)
every ¥ c X, X = o there exists a monomorphism Fx from

For

oc, into ¥ . Lemmas 1.2 and 2.3 imply FX 2 F™ X v

(cwwl« X} A
v a. ac;, .Aa for every monomorphlsm g o, —> X there

exists an isomorphism h o, —> o, and £ € (?) such

1 1
that gty + f, o h,  we have Fg[F, 1= FGif. g‘)ch 1.
Evidently F"xu(L(J F( £)[Fa, 1) ~FYXyv a. (ot X

Also clearly F“"xw F(onf P D=F* X u (Y, FflFxl).
As there does not ex1st any unattainable cardlnal o of F
with x <o £ X it holds that FX = F™ XU( U F‘f‘EPcc 1)
and therefore FX = F™X v a. (Wx) Q.E.D.

Lemma 7.3: Under the presumptlone of Lemma 6.3. Let &, £
6 X < <, . Then FX = X .

Proof: Lemma 2.2 implies. FX = X . As there does
not exist any unattainable cardinal o« of F with x, <ok
€ X we have FX =‘¢Lx)<' FflFx, 1> X . Q.E.D.

Remark: Let oc be a finite unattainable cardinel of T
snd let Fo & X, . Let X be a set such that o = wfuﬂFx
Then FX =& max (Fe«, X) .
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Proof is evident.
Theorem 1.3: Let X be a set with sup Ay = B = 1.

1) If X is finite then FX = FAX v a . (*% %)  where

a is the increase of FF on f3 .
2) If X is infinite then max (F@B,X) £ FX £
£ max (Fp, XP) .

Proof: The theorem is a consequence of Lemmas 4.3, 5.3,
6,3 and 7.3.

Corollary: Under the presumptions of Theorem 1.3 and as-
suming the generalized continuum hypothesis it holds for eve-
ry set. X = g, with conf X > f3 that FX & mac(Ff3, X).

Proposition 2,3: Let us assume the generalized continuum

B = 2% . LetFB>mac(Fx, 3).

hypothesis. Let x = X, ,
Then (3 is an unattainable cardinal of F .

Proof: It follows from Lemma 5.3 that Fﬂfs £ max (Fx, (373
R > Fﬁ[,’, and therefore FpJ3 — Fﬂﬁ + ¢ , hence @
is an unattainable cardinal of P

Proposition 3.3: Let oc = s, be an unattainable car-
dinal of F . Then 3 & o where (@ is the increase of
F on « .

Proof: Lemmas 3.2 and 3.3 imply /(3 =% Fa -F%« 2 o .

Proposition 4.3: Let us assume the generalized continuum
hypothesis. Let &« 2 %, be an unattainable cardinal of F.
Then (3 2 2% where (B3 is the increase of F on o« .

Proof: Lemmas 4.2 and 3.3 imply (3 = Foc - F¥%x = 2%.

Corollary: Let us assume the generalized continuum hy-
pothesis. Let ¢ £ %
Then Feo 2 2%

° be an unattainable cardinal of F .
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4.
Convention: Let e« , 3 be cardinals. Define a func-
tor "‘}1/3 _
Ry X=1(A, g, ) AN B, Ac X, yextu {0}, f: X' X7,

“Rof A, ¢, ) = 0= F(A) < B, RpfC0) =0,
“Rof A, g, x) = (FLA), g,u) = £(A) =4 .

Proposition 1.4: Let A be a class of cardinals with
x € A ==> x > 1 . Let £ be a mapping from A
to the class of all cardinals with f(e) = 2% . Then

there exists a functor F such that A = A and F(o)

(4
is the increase of F on o

Proof: Define a functor F

FX = U“")R‘X; g: X'— X", Fg,le‘X’= “")K‘g,Yoce A.

xXE€EAR

Clearly F 1is correctly defined and satisfies the condi-
tions of the proposition. Q.E.D.

Corollary: Let us assume the generalized continuum hy-
pothesis. Let A be a class of cardinals with o« € A =
=2 & = K, . Let 4+ be a mapping from A  to the class
of all cardinals. Then there exists a functor F sauch that
A = A, and f(x) is the cardinal of increase of F
on oc if and only if € () = 2% .

Proposition 2.4: Let A be a class of cardinals with
xe A =>« = K, . Let § be a mapping from A to the
class of all cardinals with f(«x) = 2* and «, 3 €
€Al x < =flx) € £(3) . Then there exists
a functor F such that A = .AF and P = £(x) for

every «< € A .
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Proof: Define a functor P
FX =¢EJA‘(‘)R¢X; g X’___’xn, FQ/ /{(cdxxxt =

=“°°K~g, Yce A .

Clearly F is correctly defined and satisfies the conditions
of the proposition. Q.E.D.

Corollary: Let us assume the generalized continuum hy-
pothesis. Let A be a class of cardinals with o« € A =)
=> o« = §,. Let f be a mapping from A to the class
of all cardinals. Then there exists a functor F such that
A=A, and Fa Xf(x) Ve A if and only if .
fl) 2 2% and «x, B e, xc<p@B=>f(x) £ f(3) .
We recall the definition of a small functor.

Convention: Denote by a“ a functor from the category
K into & defined by

O & = {g |gix — &3 for & an object from K ,

G,f(g)=fog for a morphism fir — ¢ andg e Q ¥,

R, ia called covariant homfunctor.
A functor FK —> S is emall iff it is a colimit of a
diagram the objects of which are covariant homfunctors.

Lemmg 1.4: A functor is small iff it is a factorfunctor
of a disjoint union of a set of covariant homfunctors.

Proof: see [2] .

Lemma 2.4: If F ias a factorfunctor of G , then
A ¢ A .

Proof is evident.

Lemna 3.4; A‘GM ={axl e« is a cardinal, M =

200> 1% .

Proof: A) &« £ M . Let f be an epimorphism with
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f: M —> o. If Q.Ma(, -(GM)“«. holds then there
exist g+ M —=> 3 M:B — o, 3 < o such that f =
=geh .Img £ 43 and therefore Im g < o« .

That is a contradiction and therefore QMoc + (@, ¥

and “’G‘R‘GM . Bl > M . Let € € QM«. .

Then € = &M € (1’d.M) and therefore GM«. = (QM)“oc

and o« A . .E.D.
¢ Aq, o

Theorem 3.4: A functor F is a small functor if and
only if .ﬂF is a set.

Proof: The theorem is a consequence of Lemmas 1.4, 2.4
and 3.4.

Definition 2: A functor F is said to be a semicon-
stant functor up to e

if F® is a constant functor on § .

F is said to be a semiconstant functor if there ex-
iats o such that F is a semiconstant functor up ta o .

Definition 3: A functor is said to be a big functor if
it is not a small functor.

Remark: F is a big functor if and only if AF is
a proper class.

Lemma 4.4: Let F, G be functors. Define & mapping
h

¢ from J!.G into the class of all cardinals:

h (@)= min d if the minimum exists; if contrary ,
G Foz2a

put ha'(a:) =141.If G 1is not a semiconstant functor then
(Ap v hs(JLG)) -1c RAeoe -
functor then [(A_ v hg(A.)) - (1 vy AF,,)lc Ag.e)

If G is a semiconstant

where 3 = Fa,tgu'n_y Aed" .

Proof: We have (Fx - F¥ax) 2 « where « € ./lF
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(Proposition 4.3). If G 1is not a semiconstant functor or

Fa =2 30 where 7 =min £, and x € A  , then
G(Fx-F*x)nG*F, ¢ G# and G(Fx -F%x )+ GF .
Therefore o -is an unattainable cardinal of G o F .

d e ‘h’e (‘ﬂe) is evidently an unattainable cardinal of

GoF. Q.E.D.
Theorem 4.4: Let F be a big functor, let G be a
non-constant functor. Then Fo G .and G o F are big

functors.

oof is evident.

5.

Theorem 1.5: Let F be a semiconstant functor. Let o
be the smallest cardinal such that {Ff|fe «*3 > 1.
Then o« = mim A,

Proof: Every point of the set F 4 is a distinguished

point of the functor F and therefore for every a € F1 ,

' (0)= a defines a transformation < : C1 — F . It im-
ia a constant functor and the-
Q.E.D.

plies that the functor F*
refore oc is an unattainable cardinal of F .

Theorem 2.5: Let F be a functor, X a set with
FX < X . Then F is a semiconstant functor up to

(card X -1) .
Proof: We shall prove that every component has a dis-

tinguished point. For every component .F;' of F where a ¢

eF1, F LX< X and therefore there exist 4, f,: 1>
— X with Ff, = F§ and vj,4: 41— 2 anda
morphism 4 : 2 — X such that voey; =, oy, =

As F _(v) is a monomorphism it holda that F, (v;)= F, (23)

f, .
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snd therefore a is a distinguished point. If X = 4 ,
then FX = g and therefore F = C, . If X = 2,
then FX = 4 and therefore the cardinal 2 ia not an un-
attainable cardinal of F. If X > 2 and there exists
an unattainable cardinal o« of F  such that X-1 = «
then FX = X (Lemmas 4.3 and 6.3). That is a contradic-
tion. Therefore there does not exist any unattainable car-
dinal of F smaller or equal to card X - 1 and hence
F is a semiconatant functor up to (ecara X -1)’. Q.E.D.
Corollary: Let F be a functor and let «= = mnim,.ﬂr .
Then there exist. A, B such that (I C,) v C, /S“'

is naturally equivalent F /.. -

6.

Lemma 1.6: Let X be a set with X > 4. Let
{(Felse X*3 = 1 . Then the functor P is a semi-
constant functor up to (ecand X )’ .

Proof: Let Y . be a aet with Y £€ X . Let f: Y =2 X
be a monomorphism. Then there exists an epimorphism
$: X —>Y such that g o f = <d . It implies Fg o Ff =
= Fid . It follows from the assumptions that F (€ 9,) =
= 4d. It implies that Ff and Fg  are isomorphisms.
Suppose there exist h1, h,: Y=Y, Fh1 + Fh, -
Then P(#o)p1og-)#r'(¢-hzag_) which is a
contradiction. Therefore for every h:Y— Y, Fh = id .
Hence for every &R:Y — X it holda & = Ryof ok, ,
where &k, ;: X— X, %,: Y —> Y andFhk = F(te,ofok,)=
= F+£ . The lemma is proved. Q.E.D.

Lemma 2.6: Let X, Y be sata with ¥ > 1, X > £
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and {Fflfe ¥Y*3 = 4. Then

1) Every point of the set F 4 is a distinguished point
of F . ‘

2) If X > 4 then the functor is a semiconstant functor
up to [mim Cecaxd X, card Y )1’ .

Proof: The proposition 2) implies the moposition 1)
with the exception X =~ 41 in which case the proposition
1) ias evident. We shall prove the proposition 2). Let X <
€ Y . Then for every f: X—Y , F¢ is a monomorphism
and therefore for every g : X — X , Fg = Fid, and
the rest follows from Lemma 1.6. Let X 2> Y . Then for eve-
ry f:X— Y, Ff is an epimorphism and therefore for
every g : Y — Y ,Fg = Fidy and the rest follows
from Lemma 1.6. Q.E.D.

Lemma 3.6: Let £+ X —> Y be not a monomorphism and
let Ff be a monomorphism. Let there exist
w (carc £ (y)) . Then I is a semiconstant func-
tor up to [’WW Ccard £, Cy))1°.

Proof: We shall prove that 4 = (Ff|f e B%) where
R = w C(card £, (¢)) and the proof then follows from
Lemma 1.6. There exista 4 e Y with £ (g )= 3 . There-
fore there exists a monomorphism g.: A — X such that
fog(f) =41  clearly F(fo g) is a monomorphism.
For every %t 3 —> (3 , fog o b = feog . Itim-
plies Fh = Fid, for every h:p3 — 3 . Q.E.D.

Lemma 4.6: Let £2 X —> Y -be not a monomorphism and
let F¢ be a monomaorphism. Let b«{; yuva £, () be
a singular cardinal. Then F is a semiconstant functor up
to ¢ »ug.‘g;aut £,y
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Proof: If ¢ Maymd f,(y)) =(nn:.‘uy¢a/od.f1(ry)),
the proposition of Lemma 4.6 is & consequence of Lemma 3.6.

Let there not exist ""g%f“’w“fq (y).Let
nc-mi(ua:g.glm £, (%)) . Then there exist g: X— Y,
s X —> X such that f = g - h nnd»u"{:sagd,f_1(,y_)=
- mg:;.axd, 4-'_1 () . Clearly F# is a monomorphism.
There exists % c X such that Z zm'ﬂgam b, (y)

and h (Z) = o« . Therefore there exists a monomorphism
&: X — X such that h ¢ Je 0o L (Z)= 1 and Lemma 3.6
implies the proposition. Q.E.D.

Lemma 5.6: Let £: X—> Y be not a monomorphism and
let Ff be a monomorphism. Then F is a semiconstant func-
tor up to /N".fl.« ’t;.aut £, () -

Proof is evident.

Definition: Put FX = {F| F 1is a filteron X3 v
viegp Xt.#: X—>Y, ZeFf(¥)= 3Z, 6 ¥ with
+ CZ,,) € Z. Clearly F is a functor. Define a mapping
TF,x from FX into FX, Z e ?F,X (x) &= x €
e Fif (F2] .

There is & difference between the notion of mapping 3,:., X
as defined above, from the one in [6]. In [6] the mapping
?F,x is not defined in case £ (x) where x is a dis-
tinguished point and £: 4 — X .

Definition: Let ¥, q. 6 FX . Define ¥ c G ¢=>
=> (ZeH =>Z2eq).

lemma 6.6: The relation c is an ordering.

Proof is evident.

We recall the definition of essential cardinality.

For every ¥ e FX put m."n::‘mw(. Z = | ¥ H . The number
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121 will be called essential cardinality of ¥ .
The definition of essential cardinality is the same as
in [3] in case P is a filter.
Lemma 7.6: Let F be a functor, o an unattainable
cardinal of F. Let X 2 o . Then there exists ¥ €
€ £, (FX) with Nl = o .
s X
Proof: oc is an unattainable cardinal of F and the-

refore for every X 2 o, P X - F*X 4 4 . Put x € P<'X-

- F . Definition 1) and definition F  imply
’
X ~
x6Fi, [FEl=> 22,35 ~ o, xeF{IFF] .
Therefore l?'F I = o . Q.E.D.
X

Lemma 8.6: Let F be a functor. Then for every x e
e FX and every f: X — Y it holds F-F(?’F,x (x)) c
c ‘3;'), (Ff(x)) .

Proof: Zst‘(?‘:’x(x))<=> 32, e ‘%,x (x) with

X
P(Z)c Z =>x eFL,ﬂ (Fg 1,

Fé(x) e F(feiy YLFE ] = P (x) € Fiy, | [Fé(Z)] c

.Y
c F": EFZI—v» 2 e 3;’7 (Ff(x)) .

Q.E.D.

Lemma 9.6: Let F be a functor, ¢ € .?'F’x (FX ). Let

f be a mapping from X into Y  such that £/Z is a mo-

nomorphism for some % € ¥ . Then Ff(?';‘(x))c %Y(F-F(.x»
where F_, (x) = ¥# .

Proof: There exists ¢ :Y — X auch that g o f/BA=4d/Z.

R=F, ()=Fgef (£, c Fg(F (FFGO)

c ?nx(F(gmH(x))- 5;_’ (x).

X

FolZ (F£(x))= %x“‘"’ Ff(Fy )= gy (Ff(x)). Q.E.D.
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Lemma 10.6: Let £#: X — ¥ be not a monomorphism.
Let F¥f be a monomorphism. Let o = bug:ﬂa )ga&d- f,() -
Then P is a semiconstant functor up to e’ . _
Proof: If « is a singular cardinal or ac-.-n»;,g‘};axd £, )
then the proposition follows from the lemmas 3.6 and 4.6.
Now let e« be a regular cardinal with no predecessor. Lem-
ma 5.6 implies that F is a semiconstant functor up to o« .
Presume o is an unattainable cardinal of F . There ex-
ists Z ¢ ¥ such thet Z = o and gy e Z=f_ (y) > 1.
For every 4 € Z choose x;_ e f (y), i=4,2

5

4 2 - Fi D
X =+ .x,y_ and put X; = ‘DLGJE Xo , 1,2 . Clearly
X, 2 X, ¥« and f/X , £/X, are monomorphisms.

Let ¥ be a filter such that | ¥l = o« and & ¢ ?‘F’X<F.X).

Let Z e ¥ with Z =~ o« ,let S X— X such that

A /24 is a monomorphism and £ (X) c X,, . Define e :

s X —> X as follows: h(x)=.x;_<===> h(x) = .x;_ . Lemma

9.6 implies PM(?;,X(.x)s ’r';.,x (Fh(x)), Fh(.’r‘;’x (x)) =

= ?;_'x(Fth)) as soon as ‘?l;,x (x) = % . Further,

FfoFh(x) =F(fe M)(x) =F(fo k)(x)=F+ o Fh (x) .

But Fh (x) ¢ Fl (x) and therefore Ff is not a

monomorphism. That is a contradiction. Q.E.D,
Theorem 1.6: Let f: X — Y be not a monomorphism

and let FPf be a monomorphism. Then F is a semiconstant

functor up to max (mim (card X+1, H,),(M;ft‘qlﬂd £, ().
Proof: A) X £€ Y . Then there exist a monomorphism

g: X—> Y and a morphism A : X—> X such that ¢-°h =

=4, 4 is not a monomorphism and Ff is a monomorph-

ism. Let X < 1", . Then there exist isomorphisms ¢4, @5 ,--.

wey Gy 8uch that ho%eh.%o...-h.?n.h(x) ~ 4 .,
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As F(heg,oehe...ogy o h) is a monomorphism, Lemma
10.6 implies the proposition., Let X = #, . Then for every
finite cardinal 9  there exist isomorphisms ¢4,95,:-->
such that heg,oh 2g,°...c g, oh = k. Fh is a mo-
nomorphism and ¥ < wup, gaxd #._,C(y) . Leuma 10.6 im-
plies the proposition.

B) X > 7Y . Then there exista a monomorphism g.: Y-
~» X such that g° f is not a monomorphism and F (g o *)
is a monomorphism. Then we proceed @s in the case discussed
above. Q.E.D.

Lemma 11.6: Let £: X — Y  be not an epimorphism.
Let Ff be an epimorphism. Then F is a semiconatant
functor up to (cand (Y- £(X))+ 1) .

Proof: Let £ be a set such that 2= (Y~-f(X)) + 1.
Then there exists an epimorphism 9 Y ~—» Z such that
g*f(X) > 41, F(ge+f) is an epimorphism and therefore
for every morphism h: & — Z for which hog ef= gof
we have Fio = 4id . Let 5 - & — Z be a constant morph-
ism with R e g e f = gof . Then Fh is a monomorph-
ism and %%wcd 5_1 (y) = Z . Lemma 11.6 is proved
due to Theorem 1.6. Q.E.D.

Theorem 2.6: Let £3 X —> Y be not an epimorphism.
Let Pf be an epimorphism. Then F is a semiconstant
functor up to max [Lmim (Y + 1, 8,), (caxd LY-F(X)1)].

Proof: A) X 2 Y . Then there exist an epimorphism
g.:vx ~» Y and a morphism Mk : Y—> Y such that

M /ecx) isa monomorphism and. 0o g = £ . R is
not an epimorphism and Fh  is an epimorphism. Let Y <

< #, - Then there exist isomorphisms @4, 95,:.., @, 8uch
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that hoe g efrogyeo...o hog, ch(Y)= 1 and
F(heg,ehe...oq, ch) is an epimorphism. Lemma 11.6
proves the proposition. Let Y 2 ¥, . Then for finite car-
dinal 9* there exiat isomorphisms @, @, ,..-;, @,  8uch
that 4o gy 0 o B0 e g = h. Fh is an
epimorphism and ¢ < (Y - R (Y)) + 4 . Lemma 11.6
proves the proposition.

B) X< Y.If Y2 s, ,the proposition is evident.
Let Y « X, . Then there exists an epimorphism g¢g.: ¥ — X
such that ¢ ¢ g is not an epimorphism and F(f o g ) is
an epimorphism. Then we proceed as in the case discussed
above. Q.E.D.

Corollary: Let X, Y be sets such that X 4 Y; Let
t: X — Y be a morphism such that F+¢ is an isomorph-
ism. Then F is a semiconstant functor up to [max (X,Y)1’ .,

In [2] P. Freyd considers the reflecting of retractions,
co-retractions and isomorphisms. Much stronger results are
obtained when we work with set functors only.

Theorem 3.6: The following conditions are equivalent:

1) F reflects isomorphisms. '

2) F reflects epimorphisms.

3) T reflects monomorphisms.

4) T is not a semiconstant functor.

Proof: Implications 1) &= 4), 2) ¢== 4), 3¢= 4) are
consequences of Theorems 1.6 and 2.6. Let F be a semicon-
stant functor. Let o+: 4 — 2 be a morphimh. Then Fo ia
an isomorphism and so an epimorphism. Let £: 2 —> 4 be
@ morphism. Then F+4 . is an isomorphism and so a monomorph-

ism. Implications 1)=» 4), 2)=s 4), 3) => 4) are proved.

. Q.E.D.
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Proposition 4.6: The estimate of the smallest unat-
tainable cardinal of the functor in Theorems 1.6 and 2.6 is
the best possible.

Proof : Let o« < &, . Then the functor 4]{“ proves
the proposition. Let o = K, . Let "="x be an equivalen-
ce on 'R_X defined as follows: ¥, Ze 'R, X ,

,Y:_:'x X (Y-Z) U (& -Y)< «.Thia equivalence defines
a factorfunctor B: of the functor 4R“ ., Let B be a
cardinal with @ < oc . Let f; be a morphism defined li-
ke this: f: X~—>X; X2, 3ZcX, 22743,

’n’x-z = «'.d./x__z , fa (2)= 4 . Evidently f, is neither
an epimorphism nor a monomorphism. Clearly B; 4-'5 =

= b:c 1’.ch . Q.E.D.
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