Commentationes Mathematicae Universitatis Carolinae

Karel Najzar
Error-estimates for the Ritz's method of finding eigenvalues and eigenfunctions

Commentationes Mathematicae Universitatis Carolinae, Vol. 12 (1971), No. 3, 485--501

Persistent URL: http://dml.cz/dmlcz/105360

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1971

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/105360
http://project.dml.cz

.Commentationes Mathematicae Universitatis Carolinae

12,3 (1971)

ERROR - ESTIMATES FOR THE RITZ S METHOD OF FINDING
EIGENVALUES AND EIGENFUNCTIONS

K. NAJZAR, Praha

In [1) - [3] , we studied the method of least aqua-
res for approximating the eigenvalues and the eigenfunc-
tions of a DS-operator. In this paper, we present a pri-
ori error-estimates for the Ritz’s method for eigenva-
lue problems. Upper and lower error bounds are found.

We assume throughout this paper that A is a DS-
operator whose domein 3(4) is dense in a separable
Hilbert space H , i.e., A 1is a symmetric operator in
H such that the set of its eigenvalues is of the first
category on the real axis and the spectrum & (A) is
the closure of this set.

Suppose A is bounded below end such that the ei-
genvalues {A;} of A eatisfy the relations

(1) ;L4< 9»2<... <J.;-<... .

Let H; be the closure of linear manifold generated by

the eigenfunctions of A associated with the eigenva-
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lue .7\.4 . The aymbol P;« will be used to denote the
orthogonal projection «4 on H«'. ., We introduce the ope-
rator B= (A - w I)i , where I denotes the iden-
tity operator in H and (@ is a real number such
that @ < A . It is evident that @ = VA7 — '
4= 4,2,... are the eigenvalues of B and H»i ia
the closure of the linear manifold generated by the ei-
genfunctions of B associated with the eigenvalue @, .

Therefore B is DS-operator. We remark that

-4 2
DB =fueH/Z @ IR ul’<0}>D)

o
and Du:,g"@.% , 4 for each w e DCB) .

Let {Y; }r’” be a B-complete system (cf.[61,[1]1) ard
let R, and R, be subspaces of H determined by
functions { Y. > and {.‘B‘!Q}‘."’ respectively. Deno-

1 =1 =1 )
te
o) 2 ( )
Q,m' = Auw-piw, ),

in
“ € Ry n HD,
ek =4
m-

1 -
where HY = X @H;, H =HOH form>1

ana H =501, HP = H .

Then the sequence {0.::"" :.4 is monotonically de-
creasing and converging to A, - « (cf. Theorem 5 of
[11).

Let @, be a normalized eigenfunction correspon-

ding to t“ﬁ . Let us construct the sequence of numbers

- J .
{Qminaq Buch that g, = “n%”nbul , By Lemma 3
Rl =1
end Remarx 3 of [3lwe have for m = m,
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(n)
@ R P T

(m) -2
where C = (A -w)-U=-lqg -"g ™",

¢ . . .
) is the orthogonal projection of % on

[
&< BY4}ﬁ1 and m, is a positive integer such that
(""‘)% %0 and (“"4’% =0.1¢ ¢, is a simple eigen-
value of B, then
2 2 . _m) 2
(3) G-, 26 lg I

¢, = éx.: . ((u;'- cwf)- ((u,:'-r (.o:')""

and there exists { ., {:_’:4 such that the following con-

ditions are satisfied:

1) wm,eR, , lu,l=1,

2) NBu,l=q,,

(4)
3 m%“""= Py

4) (u,,9)Z20 for m=4,2,... -

The proof is similar to that of Theorem 1 in [31 and
Theorem 3 in [2]. Further there exist constants C3 and

C’,‘* such that for m 2= m, we have
@19, -"p ) £1Bu,-Bg 14 (- 19 -"g 1

(5)
19 - ™1 &ty gll & Cp gy -1,

where g‘c"") is the orthogonal projection of & on

RM' (cf. Theorem 2 of [3]).
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1. In this section, we give upper and lower bounds
for G,f:’-.?«.,‘ and for luw, - ¢ 1 , where lu,ll:' =
= (Auw - wu-u,u) , respectively.

Since (@« is smaller than A, , the bilinear form
defined by (uw,nr) = (Au-psa,v), w,v in DCA),
is a scalar product. Denote by 784 the complete hull
of D(A) with the norm lull = m - Let 4% 57

be a complete system in 784 and let .ﬁ:"") be an ap-

proximation to 2, obtained by applying the Ritz’'s

method to the subspace R, = S{¥ 37,  of ¥ . It

e sz m) (4]
follows from the definition of B , that A\V= @ "+ «=
- 93,‘_ + @ . If, in addition, .7(.4 is a simple eigenva-
lue of A, then {u, 1, , has the following properties

1) M.”GR“, la, h=1,
(6) 2) lum .1""’-4.4. ,

3 Cuy, sy, ) 2 0 .

Therefore Loy is an approximation to % obtained by

applying the Ritz ‘s method to R, -

Since
) .2 2 M 2
M g - &,n =t g - ulie 5o af g -l
and 1Bu, - B%I = hu,-gl, |,
the following theorem is a direct consequence of (2) - (7).

Theorem 1. Let A be a DS-operator which is bounded
below. Let .2.4 < ?\h < .., be an enumeration of its dis-

- 488 -



tinct eigenvalues increasing order of values and let
@ be such a number that e < A, . Let {¥, 32,
be a complete system in ze1 . Denote by .ﬂ.‘:" an ap-
proximation to /\4 obtained by applying the Ritz’s
method to subspace R, = LAY 3., of ¥ . Then there
exists a positive number D which does not depend on

m such that for m = m,

m) . . T
Moo M & Dt (e, Ol
k=1

where H1 ia the closure of linear manifold generated
by the eigenfunctions of A aassociated with the eigen-

value .7L1 and

m, -“"’4"1 mac {mi(uw ) =0, »eR, % .

If, in addition, A, is a simple eigenvalue of A ,
then there exist constants J,,D,#* 0, 2, , D, which

do not depend on m such that
m)y2
D+ (Ef™)2 <A™ -2, «3 - (E™)"
(m)
B:mé Yoy - ¢ 1y < Dy E, ’

luy - ¢ I & D, - EM

where 4, is the Ritz ‘s approximation to a normalized
eigenfunction ¢ with the properties (6) and E:""’ is
the error of the best approximation to - by functions
. ) . m) 3
of R, in the norm Nl , i.e. Ej -v%lqg'-vlﬂ.
Remark 1. It follows from Lemma 3, Theorems 1 and 2

of [3] and from (7) that Theorem " is also valid when we
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replace D. by D“"“ for 4 = 1,2,3,4 , where

* -2 "i (m)
D1-C4_4’n) 7"51-"(11"4"’) - E7,

A, - &
* 4 -1
Df = (4+2 2, - A, ) ,

D} = (DF/DFE :

4
*
Dr=L2D*/ (2, -2)1%
Consequently &m D* = 1 .
m->co 1

2. In this section, we derive upper and lower bounds
for the errors of Ritz’s approximation to .9&.’; and g ,

4 > 1 . For simplicity we assume that

® A <A <..<N<Ay,, end QA i=d,., 4 are

simple eigenvalues of A ,
Let P be a normalized eigenfunction of A corres-
ponding to the eigenvalue A; for 4 = 1,..., F -

We now present a number of results which is useful
to have on record for later use. First of all we consider
the problem of approximating the eigenfunctions of B .

Lemma 1. With assumption (8), let {43y, , be a se-
quence of normalized functions belonging to D(B) such
that”%ﬂbv—”n = @ and  Mm (a, , @)= 0 for
A= 4,..,(3~1), Then there exists a convergent subse-
quence {v”&!:‘4 such that its limit is an eigenfunc-
tion of B belonging to g

Proof: By direct computation it follows that
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(2 2
By, 1P - @l 2 (e, —l) 5 IR+
=1
T3¢ SO SR | XV L
Since Am Ilam“ﬂzn%lf%, @) =0 for 4 =
=1,..,(G=-1) and tm IBw, I = @« we have

) ( ; i i -
2 1 (s, @)l =4 and the remainder of this lem
ma may be proved in the same way as Lemma 2 in [2].

The following theorem is a generalization of Theo-
rem 3 from [2) and gives information on the construction
a imati t .,
of the approximation to 93

Theorem 2. With the assumptions of Theorem 1 and

(8) construct the sequences {u_f;’;’ 32, =y, &
with the following properties
) ) .
1 g% =1Buy Il = w%@
(w, )= 0,4 =4,..,G-1)
Nwl=1
for £ =2,00,3 3 M= 4 ;
o @ min IBal
n = V3w u-wc Ry latll=1 ’

2) WS l=d, i, d ; nZi ,

3) (u,‘;:-",uf,:’iﬂ) Z20,d=40,4d;m= 4+ .
Then

i)
mn

lized eigenfunction @ of B aasociated with the ei-

a) The sequence {fu }:p’ converges to a norma-

genvalue ¢, =W - for 4i = 1,..., %
) (Bul® Bu) = 0 for 4 sk Ao i, hes 1y, 5
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Proof: In case 4 = 1  the proof follows from Theo-
rem 3 and Lemma 3 of [2]. We now proceed inductively. L.t
the theorem be true for 4', =41,...,(3 -1) It then fol-
lows, since Lm, ll,u, - N=0 fori=4,.,(-1,
that om o« = 0  for 4= 4,..,(F~1), where
P s (uP,9,) = (u¥, g - ) .
Now, if 3’," >e >0 , there exists a positive integer

m, such that for m 2 m, 1Byl % g%” + € , whe-

re
Il 2'. o & ?u'

Since 4 L% {¥, 332" | wehave 1Byl z (AT |

iw1 )
Therefore
1
R . 218 S
@ Ky am 2 M (07 = wy

On the other hand, let us construct normalized functions
I |
v, € R, nH‘-" m 2 4 8o that (B, I=(Gg")1 .

3
Let B = (u,, ) = (4, - ;) .

Since l.m /3“’ - 0 for i = 4,.,.,(j-1), there ex~

ists a poaitxve integer m, such that for j-" >eg >0

lbwl‘(@d’)i-re for m =2 m
where w = Z {A“"’ ()
Since ar L & { }f;:’ , it follows that gf: P

& Bl and hence
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(10) Lm P = &‘mcaf:”)% =@y .

m —¥ 00 L d m -» 00

Therefore, we see by (9) that , 4m c;) = @y -
Since &m (w® @) = for 1 = 1,.. (3 ~1),
we know by Lemma 1 that the sequence {w"’ 3eeq cCOD-
tains a convergent subsequence and that every its con-
vergent subsequence converges to a limit which is & nor-
malized eigenfunction of B associated with the eigen-
Yalue &5 . It follows that the sequence {w‘p pogp
contains at moat two accumulation points. These points
ere @, and (- g ), where @ is a normalized eigen-
function of B associated with the eigenvalue &4 -The
remainder of the proof is similar to that in the proof
of Theorem 3 in [2].

The assumption 3) implies that {w"”}n‘,, has
one accumulation point. It then follows, by virtue of
Lemma 1, that the sequence {u.“"!::.,, ia convergent
and so the first part of this theorem is proved.

To prove b), let {X, }h”' be an orthonormal
basis of the space X = 4w /w e R, (u-,u_u’)- 0

oc,,xh .

m 4-4«

for £=4,..,(i-N3} . Let u& = -
(27

I
B, (B, BX)- o, - (g% %] = 0
for h=4,.'..,(m+4—4.) :
and hence
(Bu “, Bxh)- (%‘:)2. Oge » o= 4,.”,(01-!"1'4‘-).
By direct calculation we see that
(Bul®, Bor) m (492, (& “’ ) for any o € X

Using the definition of oy we have
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and this completes the proof of b). Theorem 2 is comple-
tely proved.

The following theorem states how accurately the
eigenfunction ®; and the eigenvalue s of B can

be approximated by functions of £<{¥;3] , for m =

Z 4 .

Theorem 3. Under the same hypotheses as in Theo-
rem 2 there exist a positive integer m, and the con-
stants C, ,C, % 0, Cy s C“ which are independent of

m such that for m = m,

(m) 2
(8) Cye 19~y 17 & @~y & C» max Do, -Tg, 17,

: n)
(b) (""5’"91“%’;‘” &« ABu,,,"’-—B%lé Cy .mac g, ~"g; 1,

3 iz d

g, - %, 11,

@_ ol & C .
(e) hay? = @ I £ C, imae . b,

where (”)q{‘. is the orthogonal projection of @; on

@”’ z{B?h}:.q for 4’! = 4,4:;, é .

Proof: We proceed by induction. For 4 = 41  the
statement follows from Theorems 1 and 2 of [3]. We now

define T as the restriction of B to X, = &L{ ’i"‘.!:;,, .

Since 0 & € (B) , it follows that T and T~ are

continuous linear operators on R, and R, = L{BY L,

)

respectively. In a similar way, by methods analogous to
those employed in the proof of Lemma 1 from [3], we can

obtain

n“‘&;’.n’- t“';' cll 'r"“‘?;’. et < I _""’g,’: '
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for each positive integer m .

Let

-4 (m) PL 23]
m = T ¢?"+1',§4 e, Uy

where
)

-4 (m)
c’i:"(’r"m‘? y A ) s

Then («, u.,:f)) =0 for 4 = 4 (4~1) and from

PREZD]

Theorem 2 it follows that
Nwl? = 1T g, 1

KN
S
.

- AT
It is easy to see that

- ¢ 1 . .
¢, == (T, k0 ) - &, o, @), =ty (G- 1),

Since
1 1
-4 (m; ., -
T &aéllé “ "o, I & &

é(«

and 1"y, @01 & lg =g Il for i =4,..,(G-1),

we conclude by induction that

(11) le, 1« C-£; for i=41,...,(4-1),

n)
where ,e?- -1:3% "9’-;‘ . I and ( 1is a constant

which does not depend on m .,

But 4&m ,ta-_ = 0 and hence there exists for 0 <

m=>eo
< £ < c‘,;’ a positive integer m, such that bl =

1
ZG“;‘ e > 0.

)
By the definition of gf: , Wwe have

12) gF -, £ Cp (WBul®— @} - Hul?)

where

1
Nalle (UBaw 4wy - laeh)

Cp =
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By direct calculation we see that

m-yoo ™

. 1
(13) Lm C ="2"£“'1'-

We have
(n, 2 Am) .2
IIfBulz..d,‘,;.l.u.l"=(M &i.uﬁ-,a.,..n'r g, 1%) +

(14) .

%>
by Theorem 2.
Further, by induction
(P, Bug)l = 1%, Bu - Bg,)l +
(15)
1", - ¢, , By )l £ Doy
for 4 = 40.,C3=-1) , Where D is a constant which

does not depend on m , On the basis of (11) - (15)

@ _ 2
Lm =& C;-e’- for m Z m, .

For proving (b) we remark that
s’ 2 32 _ 2 2 (73]
(16) 1B - D g 12m (@P)2- i + 22 - (1-cfF)
where oc‘: = c“'n , 9’._ ) . BY Theorem 2 it follows
that 4 2 o\'.g') = 0, whence 1 - «,?’é.'i-(ac?’)a .
@)
%

2 2 )42 2 2
2 e~ 4 ";%:, (“?) “Cen— i),

a,?:’, 91.') , Wwe have

= ()2 1 . 7 N )
1 (oc,-)é(““_&, ((gn)-@;) +

+ &in ] ’z Cec <a’)1
(%344 = g i
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We now show that an estimate for :z:fcc‘__."’,)" leads
= .

to an estimate for (g‘;’i’)" - (a,; . Let us consider the

matrix A = {“;:)3h,4'.-4,u.,(4-4) . By the induction

we have y = o . . From this it follows that the-
mn o0 Ao ‘*"1'

re exists for 0<g < 1 a positive integer m such

1
that for m =2 m,
(18) 1A M<41+¢e and AWl 2U-¢€)lul,
where | .| denotes the Euclidean norm.
Define for m = m,
(19) r = A1 xfa" ,
@, (P 3 d n =<k, 37"
where oo™ = 1% Stenq an i 7ia1
2 1 .

We introduce 41;' Pk 17, -_”‘-i"ﬂ'y' for 4 =
= 4,:;:, ca‘-— 4) . Then

) S ptat P R Ll
o) Z, M= Yy

It follows from (18) - (20) that

"1 2 . = C,'r) 2
QL Z p; = C & CxT) for m 2 m,,
where (1-¢)? S 0
€= 141+ ¢)? )
)

i 3 find ol =1
Letting _V:i.Z4 i, w, we fin vl =

and (v, @, ) = 0 for i=4,.,(3-1).Hence, by the de-

PYXETY

ctas 3)
finition of 0»,,2 s

B 2 = O,f:') = c“i'



and using Theorem 2 and (21) we fipd for m = m
(@@ - Wl z (g~ 1Bwr” =

(22) =:‘:7-: [(g®)%- (@) p2 = D *':(ac."")’-

where ] is a conastant which dees not depend on =, .

It follows from (16),(17) and (22) that there exists a

constant C > 0 such that for m = m 4
(23)  IBu@ - Bg 17 S C-[(gE - wi] .

This, together with (a), leads to the first assertion of
(b).

It is easy to see that

. 1 :
(24 NBud- B 1= @i o) o Bufl g I = w1 g "

and this completes the second assertion of (b).

Since ﬂb.u.f,f’- Bol = @ - Ha.?:,- g I, the
right side of (c) follows at once from (b). Thé left si-
de of (a) follows from (23) and (24) and this completes
the induction and the proof of Theorem 3.

As a corollary to Theorems 2 and 3, we obtain the
main result of this paper.

Theorem 4. Let A be a DS-operator which is boun-
ded below. Let Aq < .7t2 < ... be an enumeration of
its distinct eigenvalues increasing order of values and
let « be such a number that ® < .7(1 . Suppose .7\1: R
A=4,...,4  are simple. Denote by («, ) the
scalar product (Aw - @4, ). Let %, be the
complete hull of D (A) with the norm |l.w "4 .
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Let (¥, 37

the sequences {w

be a complete system in '.381 » Construct
Wyw b=, F with the

following properties

. ) 1) (<))
1)“%(!*’“;:4(.&4,“) =(Awy, ,u,)=2," ,
bak=d
. @) &2 (1-)
wm?{’[“_!‘_.gAa' “)= (A“ 1 %m )= 4"'2”",9' 5
(w, M—‘h,)= 0, k=..0y (4 =4)
luﬂ- )
2) ”M, g l = "
3) (WP, uflz 0 .

Then

()
01-31

malized eigenfunction g, of A associated with the

a) The sequence {u, converges to a nor-

eigenvalue A, for 4 =4,..., 3 and

b) Denote by Ei"“’ the error of the best approxi-
mation to ¢@; by functions of £4%Y, }:1 in the

norm -, , i.e.,

(ﬂ) 3

.= amf | @, ~ ] .
& e iy, : i v

014

There exist a positive integer m, and constants

¢, C,_ += 0, Ca , Cq_ which do not depend on m such

that for m 2 m,

m)\2 (i) . (m).2
EI Y £ .2. & C:t EL%;’- E;717

n) ¢ m)
:E'é < "“’,,,' - ?’ ﬂq < Cs» m fxf,m’é Ei« )

) _ m)
Lu.“ ?’._ I < Cl.. &”.:‘?f,j.z .
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Remark 2. The function u.,ff’ and the number Aif’

in Theorem 4 are the Rayleigh-Ritz approximations to 93:

and .7{.?- respectively.

,
Proof: let B = (A ~ cwI)i . The proof of a) fol«
lows at once from Theorem 2. Since
m) m)
E; -M:n‘f{%’pqﬂb(%—v)ﬂs A, - g -"9)

and .A.:f’- Aé = ( (0’;’)2- c«,; the assertion of b) fol~

lows from Theorem 3.
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