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Commentationes Mathematicae Universitatis Carolinae 

12,3 (1971) 

ONE REMARKABLE PROPERTY OF THE BICYCLIC SEMIGROUP 

P. GORALCfK, Praha 

Given an algebraic monoid M » ( X , e,* ) - a set 

X together with an associative multiplication posses

sing an identity element e , it may happen that from 

our knowledge of the multiplication on the left by a 

single element a, in X , i.e. from the amount of "in

formation11 about M represented by its left transla

tion ta , 

(1) t^(x) * a,.x top All x Ln X 9 

we can determine M uniquely. That means, we can say, 

in a unique way, which element e in X is the identi

ty element of JVt 9 and, what ia the product X • ty> of 

an arbitrary ordered pair (xfy>) of elements of X # 

Let us call such an element a, in X a left determi

ning element and the left translation £. correspond

ing to it a determining left translation of M # Repla

cing Jill by the monoid M°** opposite to M we get 

the dual notions of a right determining element and of 
a determining right translation* 

AMS Classification,Primary 20M20 
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Any monogeneous monoid M » icv > is an example 

of a commutative monoid having (both left and right) 

determining element - just the generator a, , in this 

case* A question was, whether there existed any non-

commutative monoids possessing both a left and a right 

determining element - we shall call them non-commuta

tive (1.1)-monoids. The present paper aims in the proof 

that, essentially, the only one noncommutative (1,1)-

monoid is the well known bicyclic semi/group 3 -» <a,ir> 

with the identity e and the two generators a,, £r sa

tisfying the defining relation 

(2) a,Xr m e . 

More precisely, we state 

Theorem 1. There are exactly two non-commutative 

(l,l)-monoids: the bicyclic semigroup 3 and 3° - the 

3 with zero adjoined. 

More elementary description identifies 3 with 

the set H x U of all ordered paira ( W - m , ) of non-

negative integers supplied with the multiplication 

(&, Jb-tm, +/n ) for * £ mv , 

/nv ~/99m>) for * <> m, # 

Then we have a, m (4,0), tr m (094), e m (070) . The 

left translation f^ has a form 

cdt-A-A) for A, 2s A , 
(4) tjK,,X)m(ifO)(H,9to)9 \ , A _ ' 

* ' ' 9 lU + 4,0) for A> m 0 , 
and it is worth while to visualize it as follows: 

f (/Cf* 
(3) ŕ/wг,/n-Д/&,*>)-* < 

1 íłV+ê 
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(0,0) < (0,1) < (0,2) < (0,3) 

(1,0) < (1,1) < (1,2) « (1,3) 

I 
(2,0)^ (2,1) < (2,2) ̂  (2,3) 

1 
(3,0) < (3,1) « ••• 

1 
(4,0) •£-

I Pig. 1 

To prove Theorem 1, we shall start with a general 

transformation t: X — > X and, under the assumption 

that £ be a left determining translation of some non-

commutative (l,l)-monoid, we shall specify step by step 

its form, finally showing f to be isomorphic with 4^ 

described by (4) (possibly extended by a single fixed 

point), and f^ , in its turn, to be a determining left 

translation of 3 (or of B° when extended by a fixed 

point). 

The whole proof will be carried out in a sequence 

of Statements 1 - 8 and it depends essentially on pa

pers tl],C2],t3] whose results are restated here with

out proofs as Statements 1 - 4 . 

A transformation systemt or shortly a T -system* 

is a couple ( X > 5 ) , where X is a set and S c X 

is a set of transformations of the set X , i.e. the 
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members of S are mappings of the form £ : X—** X • 

A T-system ( X, T ) is a T -monoid if 

(5) 4X € F 

where 1 is the identity transformation of X , and 
(6) £ , 9* c F =»-}• £9, 6 F , 

where £9. is a composite transformation written left-

hand, i.e. 

(7) £fy(x) m £C9^C*» for x e X , 

For any T -system (X, S ) there is defined a T-mo-

noid (X,C(S)) called the centralizer of (X,&) by 

(s) CCS)** <q,eX*\£<), • fr£ for all £ in 5 ? • 

A point /& is a source (exact source) of a T -system 

C X ,«5 ) if for every x in X there exists (unique) 

£ in 5 with £ C/fe) • x # For an algebraic monoid 

M - C X , e , . ) designate by (X9KM)) and CX,X CM)) 

its T -systems of all the left and all the right trans

lations, respectively. Call a T -monoid C X , F ) a re

gular T-monoid if there exists an algebraic monoid 

ML m CX, €,* ) such that F » L C M ) .A transformation 

£ contained in some regular T -monoid will be cal

led a (potential) translation* 

Statement 1. The following three assertions about a 

T -system (X f S) are equivalent: 

(A) ( X t & ) is a regular T -monoid, 

(B) C X , S ) is a T-monoid with an exact source, 

(C) C X , S ) and CXjCCS)) have a common source. 
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If these assertions hold, then for each exact sour

ce ft of the regular T-monoid (X,&) there exists 

a unique algebraic monoid Jd -*» CX, e, • ) with L C A D M - S ^ 

whose multiplication is defined by 

(9) X. 4, • tx (y) , 

where £^ is the unique member of S with £ x Ce) « «x . 

Let a transformation £ * X —* X be given. A sub

set A of X is stable with regard to £ if £CA) c A . 

A transformation g. * A — * A is induced by £ on its 

stable subset A if fy(o<) -* £(«*) for every x in A -

®*« kernel 6L of £ is the union of all the subsets A 

of X such that £ C A ) » A , i.e. flL is the greatest 

stable subset such that the transformation induced on it 

by £ is surjective. Qf course, 6L may be empty. The 

kernel GL of £ is called an increasing kernel if the 

transformation induced on it by £ is not infective and 

is called a bi.iective kernel otherwise. 

For a given x in X , the intersection of all 

stable subsets of I ; X —> X containing x is the 

path P Cx) of x formed by all iterates of x by £ : 

(10) Pf(x)«(f^)U^05 . 

Two elements x, n^ of X are E* -equivalent if their 

paths meet, i.e. if £m% (x) sti^Cx ) for some non-nega

tive integers /vit, /n . The relation E- OTL X thus 

defined is an equivalence relation by which X is de

composed into components of £ . By £ Cx) is denoted 

the component containing x . A transformation £ is 
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connected if all elements of X are mutually Ef -equi

valent , otherwise it is disconnected. Call I .• X — * X 

a quasi-connected transformation if it either is connec

ted or has exactly two components one of which consists 

of a single point. 

Statement 2. Any quasi-connected potential transla

tion with bijective kernel and no one with an increasing 

kernel is a translation of a commutative monoid. 

An element * in X is called a cylic element of 

f : X — > X if x * Vf <£(*)) . The g£t Zf of all 

cyclic elements of £ may be empty in the case X is 

infinite. If £ has no cyclic elements then an equality 

f^Cx) m i^Cx) holds if and only if /m. m m. . 

Statement 3. A connected non-surjective transforma

tion £ : X — * X with an increasing kernel is a poten

tial translation if and only if 

(i) Hf - 0 , 

( i i ) there exist -e in X and Jk: flf —> flL such 

that £"n'CX)c Qf whenever f ' m 'Ce )€ <3tf , 

(11) fJhCx) m .x for a l l x in <Jtf , 

(12) JHC<3.f) n Pf C-e) - 0 . 

Call £ J X — • X an increasing transformation if 

it is surjective but not infective. It is "increasing* 

in the sense that for some proper subset Y of X it 

is £ C Y ) - X . 

Statement 4. A connected increasing transformation 

t : X — • X is a potential translation if and only if 
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Z„mj8 and there exists an element e in X and 

an injection q, in CC£) such that 

(13) fCe)* 9-Ce) and g,Ct)-#€ for any t in X with 

fCt) - e . 

Moreover, for any fixed •£ and c^ satisfying 

(13) there exists a regular T -monoid CX, F ) auch 

that £ € P and q. c C C F) . 

For proofa of Statementa 1 - 4 aee £11tC21 »I3J-

Statement 5» Any determining left tranalation 

it X —• X of aome (1,1)-monoid H m (X,"€,») is qua

si-connected. If it is disconnected, then X--&-(«)»{* J 

and M * K° (a monoid X with zero adjoined) , where 

K •» C £ C-e),€,•) is a (1 ,l)-aubmonoid of M with the 

same determining elements (left or right) as M and x 

is the zero adjoined. 

Proof: Assume £ disconnected and define a monoid 

Mf • < * , « , # ) by 

{ * , /u. for x e E i ( i ) . 

x for x m X - E f C«c) . 

The left translation £ of M correaponds to the e-

lement fCe) contained in E, C-e); hence £ is, by 

(14) , also a left translation of M ' , and,aince £ is 

a determining left translation of M , it ia M » M f » 

By (14) , X » C E # f e, * ) ia a submonoid of M and all 

elements in X - E~C«) are left zeros of M * 

Now, M has also a determining right translation 

g, which ia disconnected, since £. Ce) and X -

- E- C«e) are disjoint stable subsets of every right 
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translation of M , So ^ is a disconnected determi

ning left translation of a (1,1)-monoid W^ opposi

te to M 0 By the same argument as applied above to i . 

we conclude that MP** must have a left zero, i.e. M 

has a right zero* It follows that X - £*(e) contains 

exactly one point, the bothsided outer zero x of M * 

Clearly, elements determining M are the same as tho

se determining K -» M - i % ? * 

Statement 5 enables us to regard only connected de

termining translations of (1,1)-monoids since all dis

connected ones can be obtained from them by a single fi

xed point extension* 

Statement 6. A connected determining left transla

tion I f JC—*X of a non-commutative (l,l)-monoid M 

must be surjective. 

Proof: Assume i not to be surjective. By State

ment 2, £ must have an increasing kernel, hence State

ment 3 applies* 

Starting with <g and H t QL~-*> <3L satisfying the 

condition of Statement 3, we shall give a construction 

of a regular T-monoid (J(. fj^) containing £ : 

For every x in X define a non-negative integer 

(15) A*,(X) & /mim,€h> I £**Cx) m <3f t . 

Designate by Y the set of all *x in X such that 

i^MU) € ^ U > , i.e. i"MCx) mimU)to* some 

m. * 0 , Since %4 m 0 by Statement 3, such m is 

unique and we can define for every ,x in V a non-
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negative integer dLCx) by 

(16) cLCx) - m - AX,CX) if f^Ce) = £»°*U) . 

Since 5T -" J0 . we can decompose X into classes 

X* « so that 

X e T^ ^ if and only if /ft, a are the least 

non-negative integers such that 

(17) f ^ ^ C e ) - £*U) , 

i . e . if for some jt\ q,', <fl'6 fi>, % --* £ , i t holds 

£^Ce>^Ce> « £*7x> , then tf«^i and #' * $ . 

Now, for every * in X define a transformation 

For * e VM put 

(18) £x Ce> » * , 

£M Ct) ** £dCx}Ct) for t + e , 

for x € T ^ e - 1£ 

(19) £x Ce> » x , 
f^Ct) -r tfi^+^Ct) for t + e . 

The T -system (X , F^ >, J^ ** <£x I x e X ? , has e for 

its source and its centralizer is formed by a system of 

transformations CCTj^) m < q^ I /JJ, e X i 9 defined as 

follows: 

Put fy*mi« • the identity transformation f and 

for ^ +r e put 
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(20) tV.. Ct) m Ч 

^ Лгľ* **Ct)' ljK-f*****^ foг * e T
*V*"

 v< 

After checking mutual commutativity of *^ and <j^ 

for arbitrary X9ty in X ,it i« Been immediately that 

i is a common source of both (JCjlJ^) and CX fCCIJ^) .) f 

hence by the "regularity condition" (O of Statement 1 

(X, Tfr ) ia a regular T-monoid, and £ m £ 

Let JhJ i 6L—¥ CL be another transformation sa-

tiafying ftogether with the same € aa above, the condi

tions of Statement 3 and let us construct, by the con

struction just described, the corresponding regular T -

monoid CX, T^) , T^ « -f£̂  I * e X i , If JhS + Jh,, 

then also f f̂ * P^ ; Assume it'Ci) * ; M i ) in some 

point t of flL . Choose some x in TA - % e.g. ** 

« jfcf*c#Ce),and * in flf such that f ^ ^ C * ) * t . 

Then by (18) we have 

t^Cjb) m Jh,t"MC*) m Jh,Ct) , 

whereas 

f^C*) m Jhfi"-**^*) °* rmtu'Ct) , 

that is, i^ -fr f^ and hence ^ 4* F^, . 

Since f is, by assumption, a determining transla

tion, the two regular T -monoids R f and Ijl cannot 

be distinct. This means that the transformation hi &-*" 

—* <JL satisfying the conditions of Statement 3 must 

be unique. On the other hand, every choice function on 

the disjoint family of seta 
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(21) (£~A(x) n Q± > - Pf <e>, x € Qf 

meets these conditions. It follows that each member of 

the family (21) must contain exactly one point, which 

amounta to saying that Tm ^ n fl consists of a 

single point X ^ ̂  for every pair (<m,m,) of non-

negative integers. The assignment of (<m,fn) to xm ^ 

establishes an isomorphism between the transformation 

induced by £ on its kernel GL and the transformation 

fa defined by (4). Note that (0,0) is assigned to 

£UfU)C-e,) - the first of iterates of € by f which 

is contained in the kernel 6L of f » 

We have proved, thus far, that the only regular T-

monoid containing £ is CX,F^) described by (18), 

(19) with the only possible Jh, : G L — • flL given by 

(22) ^ < * ^ » V < * + < f 0 r 6Very m' ^ * ° ' 

It remains to Show that CX,CCF^)) does not con

tain any determining translation. Using the description 

(20) of CCP^) } we can easily see that for every y , 

in y or in T ^ ~ "̂  with xt(e) + ,ffc-£ 4* 4 the 

transformations fy are not quasi-connected: For /u, 

in V as well as for any q, in T ^ - V with 

.u, C-e) + <fi - ̂  2fc 0 the sets VJ and X - T£ are 

disjoint infinite stable sets of fy • for y , in T ^ * " 

- y with a, 9 £ - C44 Ce) + ^ ) 2 2 we have 

iVo T*,*i and *Vo T1>,*+< di8^0int 8table 

seta of q> . 
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Our last step it will be to show that also ^ 

for an arbitrary ^ in T^t^c#)+#+-f f -p> * 0 , fail 

to be determining translations of C CT^) . Using (20), 

we have 

(23) */<>** W ^"f*^i+V- ̂ -V^.>-Vy 
for all <L & 0 and arbitrary ^ 2! 4 « This means that 

all the points •X^,* • for v £" 0 and #. 2r 4 are con

tained in the kernel (3L, of ̂  . Since we have 

the point X^c+^+z * 9 > C , e > cannot be the 

first iterate of € by q$. contained in the kernel of 

(fa. .If <y* m Xfi&Wni + i we are in P r e c i s e l y the same si

tuation because of 

% 4M4C*>+<fi>. ** *«fii.4fcCe)+<fi+i "* fyr***4f*JuC*,)+#,+*V • 

In the case ^ 4- *^f44,c#^.M V is not in ®p , there

fore by (20) it is 9^(i> -* ̂  only if i 6 TJ and dCt)s 

* 0 t Since there is no /& with <fajC/$)m t for such a 

t t it follows that neither y , a fy»Ct.) nor e - y ^ C e ) 

is in the kernel of ^^ # 

So in CX*CCT*_)) there is no determining transla-

tion - a contradiction due to the assumption that £ is 

not surjective. 

Statement 7.A connected and surjective determining 

left translation of a non-commutative (l,l)-monoid M 

must be isomorphic to the transformation £ given by 

(4). 

- 514 -



Proof: By Statement 2, £ must be increasing. By 

Statement 4, we can choose an element e in X and an 

injection 9. in C C£ ) satisfying (13). Since, by Sta

tement 4, £ has no cyclic points, every x in X de

termines uniquely the least non-negative integers 

<m, Cx ) , <n Cx ) such that 

(24) £*»<«>(€) m £^M (x) . 

This defines a decomposition of X into classes T ^ ^ 

such that x 6 Tm if and only if m Cx) &mt, d% Cx) » m 0 

Next we shall prove that 

for a l l /m-, /rv 2r 0 , 

From (13) i t f o l l ows that for every m%9 <rri 3r Q ^ i t 

i s ( j ^ C e ) m i^^C-e) m £"*+*(€) ** ££mCe) , thus 

* ( T**,(,> s T **-M, 0 > 8 i n c e c l e a r l * T*M * < * ~ < * > * • 
From £^Ci) • a£Ci) we get 

(26) 9-Ci) 6 £-4C^.£Ct)) for i e X . 

If t e T M » £-*Ce) , then g.£Ci) m <frCe) * £Ce) , and, 

by (26), fyCt) e £^C£Ce))-r ^ U < * » . But by (13) 

i t i s 9/Ci) 4-- e , thus <j,Ci) € 1^ and hence <^CTQ1 )c 

If t e T for *n- S 'I ,then i t i s ^fCi) *r ^f^Ce)** 

x £**1fe) ,and, by (26), %Ct) € £-"(£«•+<<*»« ^ t M U ti^Ce)*, 

Since 9, i s infect ive, i t follows from tyi**'1 Ce)« £**Ce) 

and from t 4= £**•' Ce? that g,Ci) 4B £mC<e,) , Thus 
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c^Ci) € Tm+i9i , and we conclude that fyCT^a 

a *m+<i9<i * 

We have yet proved the inclusion (25) for m, » 

* 0 9 4 and all mu & 0 . Assume that (25) holds for 

some m, £ 4 and for all m> ** 0 , Since for any t in 

*$*,«+< U i s f C i ) * T"»><* f « • n a v e «*<«« T*W*> 

and, by (26), q,(i) e i~H Tm„fJ - T m i M f J M., , which 

completes the proof of (25)• 

From (25) it follows that no T , ̂  i» void, sin-

ce T 4* 0 for all /n 2* 0 * On the other hand, each 
0,4* 

class T contains at most one point: If I T „ I > 4 
miftti, nm>tm> 

for some /m., /n , choose * in Tm^ and ̂  in T ^ ^ 

so that nj, -# 9. Cx) and define 9/ by 

• £ * ( . ^ ) for i» f*Cx), 4^*0,4,,,,,.*,--*, 
(27) ̂ 'Ci)-r «( 

I ^Ci) otherwise* 

We have tf(x) 4-> g.(oc) while 9/ is easily shown to sa

tisfy the conditions (13). By Statement 4- there exist 

regular T-monoids CJC,F) and (X,T9 ) , both contain

ing f , with <}, in C C D and 9/ in C(F') . Since 

9? + 9, , it is CCF') * CCF) and thus F> 4* F , in 

contradiction with f being a determining translation 

of M . 

Let us identify the set X with the set H x N of 

all ordered pairs of non-negative integers so that 

(/m,,/n) denotes the single point contained in the 

class T^ ̂  • The transformation f then coincides 

with < described by (4). 

- 516 -



Statement 8. The element (1,0) is a left determi

ning element of the bicyclic semigroup 3 as defined 

by (3). 

Proof: The only possible choice of -e and of an 

injection 9. in C(£cu) satisfying (13) for £€ given 

by (4) is e a(0, 0) and 

(28) g,(m,/n,) m (m + 4,/n,) tor all m, m, - 0 . 

By Statement 4, there exists a regular T -monoid 

C J f x N , F ) with f in F and 9. in CCF) - In F 

there must be a transformation Jh, such that Jh,(0f0)m 

m (094) . Since fM, (090) m (0,0) , it is £M, (m9m) m 

m (<m,fm)toT all mf m, and therefore 

(29) M,(Q,m,)** Jk(09m + 4) tor all m, % 0 . 

Vaing commutativity of 9. and Jh, it follows from (28) 

and (29) that 

(30) M(mv9 m )» (*»,/»*-M ) for all /m,t m> S 0 . 

By Statement 1, the unique multiplication on «W x H 

with the identity (0,0) for which F is the system of 

all the left translations is given by 

(3D (m,m,)(>t9/o) m £im^ (K9*>) , 

where f,_ % is the only member of F withf,^ mA0,0)*> 

~(m,m).B\it clearly £(m$/l%} - Jti*'£""* and (31) is easily 

checked to give the same multiplication as ( 3 ) , i.e. the 

multiplication in 3 . 
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