Commentationes Mathematicae Universitatis Caroline

Pavel Goralčík
 One remarkable property of the bicyclic semigroup

Commentationes Mathematicae Universitatis Carolinae, Vol. 12 (1971), No. 3, 503--518
Persistent URL: http://dml.cz/dmlcz/105361

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1971

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

$$
12,3(1971)
$$

ONE REMARKABLE PROPERTY OF THE BICYCLIC SEMIGROUP
P. GORALCXK, Praha

Given an algebraic monoid $M=(X, e, \cdot)$ - a set X together with an associative multiplication possessing an identity element e, it may happen that from our knowledge of the multiplication on the left by a single element a in X, i.e. from the amount of "information" about \mathcal{M} represented by its left translation \mathfrak{f}_{a},

$$
\begin{equation*}
f_{a}(x)=a \cdot x \text { for } 211 x \text { in } x, \tag{1}
\end{equation*}
$$

we can determine M uniquely. That means, we can say, in a unique way, which element e in X is the identity element of \mathbb{M}, and, what is the product $x . Y$ of an arbitrary ordered pair (x, y) of elementa of X. Let us call such an element a in X a left determining element and the left translation f_{a} corresponding to it a determining left translation of M. Replacing M by the monoid $M^{0 / L}$ opposite to M we get the dual notions of a right determining element and of a determining right translation.

AMS Classification, Primary 20120

$$
\begin{align*}
& \text { Any monogeneous monoid } M=\langle a\rangle \text { is an example } \\
& \text { of a commutative monoid having (both left and right) } \\
& \text { determining element - just the generator } a \text {, in this } \\
& \text { case. A question was, whether there existed any non- } \\
& \text { commutative monoids possessing both a left and a right } \\
& \text { determining element - we shall call them non-commuta- } \\
& \text { tive (1,l)-monoids. The present paper aims in the proof } \\
& \text { that, essentially, the only one noncommutative (l,l)- } \\
& \text { monoid is the well known bicyclic semigroup } B=\langle a, b\rangle \\
& \text { with the identity } e \text { and the two generators } a, b \text { sa- } \\
& \text { tisfying the defining relation } \\
& a b=e \text {. } \tag{2}\\
& \text { More precisely, we state } \\
& \text { Theorem 1. There are exactly two non-commutative } \\
& \text { (1,1)-monoids: the bicyclic semigroup } B \text { and } B^{0} \text { - the } \\
& \text { B with zero adjoined. } \\
& \text { More elementary description identifies B with } \\
& \text { the set } N \times N \text { of all ordered pairs (} m, m \text {) of non- } \\
& \text { negative integers supplied with the multiplication } \\
& \text { (3) }(m, n)(n, \infty)= \begin{cases}(n, \Delta-m+m) & \text { for } s \geq m, \\
(n+m-n, n) & \text { for } 力<m,\end{cases} \\
& \text { Then we have } a=(1,0), b=(0,1), e=(0,0) \text {. The } \\
& \text { left translation } f_{a} \text { has a form } \\
& \text { (4) } \dot{\mu}_{a}(\mu, \infty)=(1,0)(n, s)=\left\{\begin{array}{l}
(n, s-1) \text { for t } \geq 1, \\
(n+1,0) \text { for t }=0,
\end{array}\right. \\
& \text { and it is worth while to visualize it as follows: }
\end{align*}
$$

The whole proof will be carried out in a sequence of Statements 1 - 8 and it depends essentially on papers [1],[2],[3] whose results are restated here without proofs as Statements 1 - 4 .

A transformation system, or shortly a T-system, is a couple (X, S), where X is a set and $S \subset X^{X}$ is a set of transformations of the set X, i.e. the
members of 5 are mappings of the form $f: X \rightarrow X$. A T-system (X, F) is a T-monoid if

$$
\begin{equation*}
1_{x} \in F \tag{5}
\end{equation*}
$$

where ${ }^{1} x$ is the identity transformation of X, and (6)

$$
£, g \in F \Longrightarrow f g \in F
$$

where $f g$ is a composite transformation written lefthand, i.e.

$$
\begin{equation*}
f g(x)=f(g(x)) \text { for } x \in X \text {. } \tag{7}
\end{equation*}
$$

For any T-system (X, S) there is defined a T-monoid ($X, C(S)$) called the centralizer of (X, S) by
(8) $C(S)=\left\{q \in X^{X} \mid f q=g \notin\right.$ for all f in $\left.S\right\}$.

A point s is a source (exact source) of a T-system (X, S) if for every x in X there exists (unique) f in S with $f(o)=x$. For an algebraic monoid $M=(X, e, \cdot)$ designate by $(X, I(M))$ and $(X, R(M))$ its T-systems of all the left and all the right translations, respectively. Call a T-monoid (X, F) a regular T-monoid if there exists an algebraic monoid $M=(X, e, \cdot)$ such that $F=I(M)$. A transformation \pm contained in some regular T-monoid will be called a (potential) translation.

Statement 1. The following three assertions about a T-system (X, S) are equivalent:
(A) (X, S) is a regular T-monoid,
(B) (X, S) is a T-monoid with an exact source,
(C) (X, S) and $(X, C(S))$ have a common source.

If these assertions hold, then for each exact source e of the regular T-monoid (X, S) there exists a unique algebraic monoid $M=(X, e, \cdot)$ with $L(M)=S$, whose multiplication is defined by

$$
\begin{equation*}
x \cdot y=f_{x}(y), \tag{9}
\end{equation*}
$$

where f_{x} is the unique member of S with $f_{x}(e)=x$. Let a transformation $f: X \longrightarrow X$ be given. A subset \mathcal{A} of X is stable with regard to f if $f(A) \subset \mathcal{A}$. A transformation $g: A \rightarrow A$ is induced by f on its stable subset A if $g(x)=f(x)$ for every x in A. The kernel Q_{f} of f is the union of all the subsets A of X such that $f(A)=A$, i.e. Q_{f} is the greatest stable subset such that the transformation induced on it by f is surjective. Of course, Q_{f} may be empty. The kernel Q_{f} of f is called an increasing kernel if the transformation induced on it by $£$ is not injective and is called a bijective kernel otherwise.

For a given x in X, the intersection of all stable subsets of $£: X \rightarrow X$ containing X is the path $P_{f}(x)$ of x formed by all iterates of x by $f:$ (10)

$$
P_{f}(x)=\left\{f^{m}(x) \mid m \geq 0\right\}
$$

Two elementi x, y of X are E_{f}-equivalent if their paths meet, i.e. if $f^{m}(x)=f^{n}(x)$ for some non-negative integers m, n. The relation E_{f} on X thus defined is an equivalence relation by which X is decomposed into components of $£$. By $E_{f}(x)$ is denoted the component containing x. A tranaformation $£$ is
connected if all elements of X are mutually E_{f}-equivalent, otherwise it is disconnected. Call $f: X \rightarrow X$ a quasi-connected transformation if it either is connected or has exactly two components one of which consists of a single point.

Statement 2. Any quasi-connected potential translation with bijective kernel and no one with an increasing kernel is a translation of a commutative monoid.

An element x in X is called a cylic element of $f: X \rightarrow X$ if $x \in P_{f}(f(x))$. The set \mathcal{Z}_{f} of all cyclic elements of f may be empty in the case X is infinite. If f has no cyclic elements then an equality $f^{m}(x)=f^{n}(x)$ holds if and only if $m=m$.

Statement 3. A connected non-surjective transformation $£: X \rightarrow X$ with an increasing kernel is a potential translation if and only if
(i) $Z_{f}=\varnothing$,
(ii) there exist e in X and $h: Q_{f} \rightarrow Q_{f}$ such that $f^{m}(X) \subset Q_{f}$ whenever $f^{m}(e) \in Q_{f}$,
(11) $f \sin (x)=x$ for all x in Q_{f},
(12) \quad \& $\left(Q_{f}\right) \cap P_{f}(e)=\varnothing$.

Call $f: X \rightarrow X$ an increasing transformation if it is surjective but not injective. It is "increasing" in the sense that for some proper subset Y of X it is $£(Y)=X$.

Statement 4. A connected increasing transformation $\pm: X \rightarrow X$ is a potential translation if and only if
$Z_{f}=\varnothing$ and there exists an element e in X and an injection g in $C(f)$ such that
(13) $f(e)=g(e)$ and $g(t) \neq e$ for any t in X with $f(t)=e$.

Moreover, for any fixed e and g satiafying
(13) there exists a regular T-monoid (X, F) such that $£ \in F$ and $q \in C(F)$.

For proofs of Statements 1 - 4 see [1],[2],[3].
Statement 5. Any determining left translation
$f: X \rightarrow X$ of some (1,1)-monoid $M=(X, e, \cdot)$ is qua-si-connected. If it is disconnected, then $X-E_{f}(e)=\{x\}$ and $M=K^{0}$ (a monoid K with zero adjoined), where $K=\left(E_{f}(e), e, \cdot\right)$ is a (1,1)-submonoid of M with the same determining elements (left or right) as \mathcal{M} and \boldsymbol{x} is the zero adjoined.

Proof: Assume $£$ disconnected and define a monoid $M^{\prime}=(X, e, *) \quad$ by

$$
x * y= \begin{cases}x \cdot y & \text { for } x \in E_{f}(e) \tag{14}\\ x & \text { for } x \in X-E_{f}(e)\end{cases}
$$

The left translation $\&$ of M corresponds to the element $f(e)$ contained in $E_{f}(e)$, hence $£$ is, by (14), also a left translation of M^{\prime}, and, since $£$ is a determining left translation of M, it ia $M=M^{\prime}$. By (14), $K=\left(E_{f}, e, \cdot\right)$ is a submonoid of M and all elements in $X-E_{f}(e)$ are left zeros of M.

Now, M has ulso a determining right translation q which is disconnected, since $E_{f}(e)$ and X -- $E_{f}(\ell)$ are disjoint stable subsets of every right
translation of M. So q is a disconnected determiing left translation of a (1,1)-monoid $M^{0 / t}$ opposite to M. By the same argument as applied above to f, we conclude that Mon must have a left zero, ie. M has a right zero. It follows that $X-E_{f}(e)$ contains exactly one point, the bothsided outer zero \boldsymbol{z} of \mathbb{M}. Clearly, elements determining M are the same as those determining $K=M-\{\approx\}$,

Statement 5 enables us to regard only connected determining translations of (1,1)-monoids since all disconnected ones can be obtained from them by a single piwed point extension.

Statement 6. A connected determining left translaion $\&: X \rightarrow X$ of a non-commutative (1,1)-monoid M must be surjective.

Proof: Assume \& not to be surjective. By Statemont 2 , f must have an increasing kernel, hence Statemont 3 applies.

Starting with e and $k: Q_{f} \rightarrow Q_{f}$ satisfying the condition of Statement 3, we shall give a construction of a regular T-monoid $\left(X, F_{n}\right)$ containing $£:$

For every x in X define a non-negative integer

$$
\begin{equation*}
\mu(x)=\min \left\{k \mid f^{k}(x) \in Q_{p}\right\} \tag{15}
\end{equation*}
$$

Designate by γ_{f} the set of all x in X such that $f^{\mu(x)}(x) \in P_{f}(e)$, i.e. $f^{\mu(x)}(x)=f^{m(e)}(e)$ some $m \geq 0$. Since $Z_{f}=\rho$ by Statement 3, such m is unique and we can define for every x in V_{f} a non-
negative integer $d(x)$ by

$$
\begin{equation*}
d(x)=m-\mu(x) \text { if } f^{m}(e)=£^{\mu(x)}(x) \text {. } \tag{16}
\end{equation*}
$$

Since $Z_{f}=\varnothing$, we can decompose X into classes $T_{n, q}$ so that
$x \in T_{R, q}$ if and only if $\not \approx, q$ are the least non-negative integers such that

$$
\begin{equation*}
f^{u(e)+k}(e)=f^{a}(x), \tag{17}
\end{equation*}
$$

i.e. if for some $\eta^{\prime}, q^{\prime}, q^{\prime} \leqslant \eta, q^{\prime} \leqslant q$, it holds $f^{\mu(e)+r^{\prime}}(e)=f^{R^{\prime}}(x)$, then $R^{\prime}=\left\{\right.$ and $q^{\prime}=q$.

$$
\text { Now, for every } X \text { in } X \text { define a transformation }
$$ ε_{x} :

For $x \in V_{f}$ put

$$
\begin{align*}
& f_{x}(e)=x, \tag{18}\\
& f_{x}(t)=f^{d(x)}(t) \quad \text { for } t \neq e ;
\end{align*}
$$

for $x \in T_{\imath, q}-\gamma_{f}$

$$
\begin{align*}
& \mathbf{f}_{x}(e)=x \tag{19}\\
& f_{x}(t)=h^{q^{u} f^{u(e)}+n}(t) \text { for } t \neq e .
\end{align*}
$$

The T-system $\left(X, F_{k}\right), F_{h}=\left\{f_{x} \mid x \in X\right\}$, has e for its source and its centralizer is formed by a system of transformations $C\left(F_{k}\right)=\left\{q_{y} \mid y \in X\right\}$, defined as follows:

Put $g_{e}=1_{x}$ - the identity transformation, and for $y \neq e$ put
(20) $g_{y}(t)= \begin{cases}£^{d(t)}(y) & \text { for } t \in V_{f}, \\ h^{n} £^{\mu(e)+m}(y) & \text { for } t \in I_{m, n}-V_{f} .\end{cases}$

After checking mutual commutativity of f_{x} and g_{y} for arbitrary x, y in X, it is seen immediately that e is a common source of both $\left(X, F_{h}\right)$ and $\left(X, C\left(F_{h_{2}}\right)\right)$, hence by the "regularity condition" (C) of Statement 1 (X, F_{h}) is a regular T-monoid, and $f=f_{f(e)} \cdot$

Let $h^{\prime}: Q_{4} \rightarrow Q_{f}$ be another transformation satiafying, together with the same e as above, the conditins of Statement 3 and let us construct, by the construction just described, the corresponding regular T monoid $\left(X, F_{h},\right), F_{h^{\prime}}=\left\{f_{x}^{\prime} \mid x \in X\right\}$. If $h^{\prime} \neq h$, then also $F_{k} \neq F_{k}$: Assume $h^{\prime}(t) \neq h(t)$ in some point t of Q_{f}. Choose some x in $T_{0,1}-V_{f}$, e.g. $x=$ $=h f^{u(e)}(e)$, and s in Q_{f} such that $f^{\mu(e)}(s)=t$.
Then by (18) we have

$$
f_{x}(b)=h f^{\mu(e)}(p)=h(t),
$$

whereas

$$
f_{x}^{\prime}(s)=h^{\prime} f^{\mu(e)}(s)=m h^{\prime}(t),
$$

that is, $f_{x} \neq f_{x}^{\prime}$ and hence $F_{h} \neq F_{h}$.
Since $£$ is, by assumption, a determining translation, the two regular T-monoids F_{h}, and F_{h} cannot be distinct. This means that the transformation $h: Q_{f} \rightarrow$ $\rightarrow Q_{f}$ satisfying the conditions of Statement 3 must be unique. On the other hand, every choice function on the disjoint family of sets

$$
\begin{equation*}
\left(f^{-1}(x) \cap \mathbb{Q}_{f}\right)-P_{f}(e), \quad x \in \mathbb{Q}_{f} \tag{21}
\end{equation*}
$$

meets these conditions. It follows that each member of the family (21) must contain exactly one point, which amounts to saying that $T_{m, n} \cap Q_{f}$ consists of a single point $x_{m, n}$ for every pair (m, n) of nonnegative integers. The assignment of (m, n) to $x_{m, n}$ establishes an isomorphism between the transformation induced by f on its kernel Q_{f} and the transformation f_{a} defined by (4). Note that $(0,0)$ is assigned to $f^{\mu(e)}(e)$ - the first of iterates of e by f which is contained in the kernel Q_{f} of f.

We have proved, thus far, that the only regular T monoid containing f is ($\left.X, F_{q}\right)$ described by (18), (19) with the only possible $h: Q_{f} \longrightarrow Q_{f}$ given by

$$
\begin{equation*}
h\left(x_{m, n}\right)=x_{m, n+1} \text { for every } m, n \geq 0 . \tag{22}
\end{equation*}
$$

It remains to show that ($X, C\left(F_{h}\right)$) does not contain any determining translation. Using the description (20) of $C\left(F_{a}\right)$, we can easily see that for every ψ in V_{f} or in $T_{r, q}-V_{f}$ with $\mu(e)+\neq q \neq 1$ the transformations g_{y} are not quasi-connected: For y in V_{f} as well as for any y in $T_{n, q}-V_{f}$ with $u(e)+\eta-q \geq 0$ the sets V_{f} and $X-V_{f}$ are disjoint infinite stable sets of q_{y}; for y in $T_{p, q}-$ $-V_{f}$ with $d=a-(\mu(e)+\neq) \geqslant 2$ we have $\bigcup_{i=0}^{\infty} T_{n, i d}$ and $\bigcup_{i=0}^{\infty} T_{p, i d+1}$ disjoint stable sets of g_{y}.

Our last step it will be to show that also for an arbitrary y in $T_{\neq \mu(\varepsilon)+れ+1}, \uparrow \geq 0$, fail to be determining translations of $C\left(F_{m}\right)$. Using (20), we have
(23) $q_{y}\left(x_{12+i+1, j}\right)=h^{j} f^{\mu(s)+1 h+i+1}(y)=h^{j}\left(x_{p+i, 0}\right)=x_{\mu+i, j}$ for all $i \geq 0$ and arbitrary $j \geq 1$. This means that all the points $x_{n+i, j}$ for $i \geq 0$ and $j \geq 1$ are containe in the kernel $Q_{q_{y}}$ of q_{y}. Since we have
$q_{y}\left(x_{n, \mu(e)+1+1}\right)=x_{p, \mu(e)+t+2}=q_{y}\left(x_{p+1, \mu(e)+1+2}\right)$, the point $x_{n, \mu(e)+\pi+2}=g_{y}^{2}(e)$ cannot be the first iterate of e by q_{y} contained in the kernel of g_{y}. If $y=x_{n, \mu(\beta)+\Re+1}$ we are in precisely the same situation because of

$$
g_{y}\left(x_{1, \mu(\varepsilon)+k}\right)=x_{1, \mu(\varepsilon)+n+1}=g_{y}\left(x_{1+1, \mu(\varepsilon)+1+1}\right) .
$$

In the case $y \neq x_{\uparrow, \mu(\&)+\Re+1} \quad y$ is not in Q_{f}, therefore by (20) it is $g_{y}(t)=y$ only if $t \in V_{f}$ and $d(t)=$ $=0$. Since there is no s with $g_{y}(s)=t$ for such a t, it follows that neither $y=q_{y}(e)$ nor $e=q_{y}^{0}(e)$ is in the kernel of g_{y}.

So in ($X, C\left(F_{f_{2}}\right)$) there is no determining transladion - a contradiction due to the assumption that f is not surjective.

Statement 7.A connected and surjective determining left translation of a non-commutative (1,1)-monoid M must be isomorphic to the transformation f_{a} given by (4).

Proof: By Statement 2, f must be increasing. By Statement 4, we can choose an element e in X and an injection g in $C(f)$ satisfying (13). Since, by Statement 4, $£$ has no cyclic points, every x in X determines uniquely the least non-negative integers $m(x), n(x)$ such that

$$
\begin{equation*}
f^{m(x)}(e)=f^{m(x)}(x) \tag{24}
\end{equation*}
$$

This defines a decomposition of X into classes $T_{m, n}$ such that $x \in T_{m, n}$ if and only if $m(x)=m, n(x)=m$.

Next we shall prove that

$$
\begin{equation*}
g\left(T_{m, n}\right) \subset T_{m+1, n} \tag{25}
\end{equation*}
$$

$$
\text { for all } m, n \geq 0
$$

From (13) it follows that for every m, $m \geqslant 0$, it is $g f^{m}(e)=f^{m} g(e)=f^{m+1}(e)=f f^{m}(e)$, thus $g\left(T_{m, 0}\right)=T_{m+1,0}$, since clearly $T_{m, 0}=\left\{f^{m}(e)\right\}$. From $f g(t)=g f(t)$ we get

$$
\begin{equation*}
g(t) \in f^{-1}(q f(t)) \text { for } t \in X \text {. } \tag{26}
\end{equation*}
$$

If $t \in T_{0,1}=f^{-1}(e)$, then $g f(t)=g(e)=f(e)$, and, by (26), $g(t) \in f^{-1}(f(e))=T_{1,1} \cup\{e\}$. But by (13) it is $g(t) \neq e$, thus $g(t) \in T_{1,1}$ and hence $g\left(T_{0,1}\right) c$ $c T_{1,1}$.

If $t \in T_{m, 1}$ for $m \geq 1$, then it is $g f(t)=g f^{m}(e)=$ $=f^{m+1}(e)$, and, by $(26), g(t) \in f^{-1}\left(f^{m+1}(e)\right)=T_{m+1,1} \cup\left\{f^{m}(e)\right\}$. Since g is injective, it follows from $q^{m m-1}(e)=f^{m}(e)$ and from $t \neq f^{m-1}(e)$ that $g(t) \neq q^{m}(e)$. Thus
$g(t) \in T_{m+1,1}$, and we conclude that $g\left(T_{m, 1}\right) \subset$ c $T_{n+1,1}$.

We have yet proved the inclusion (25) for $m=$ $=0,1$ and all $m \geq 0$. Assume that (25) holds for some $m \geq 1$ and for all $m \geq 0$. Since for any t in $T_{m, n+1}$ it is $f(t) \in T_{m, n}$, we have $g f(t) \in T_{m+1, n}$, and, by (26), $g(t) \in f^{-1}\left(T_{n+1, m}\right)=T_{m+1, n+1}$, which completes the proof of (25).

From (25) it follows that no $T_{m, n}$ is void, since $T_{0, n} \neq \varnothing$ for all $n \geq 0$. On the other hand, each class $T_{m, n}$ contains at most one point: If $\left|T_{m, n}\right|>1$ for some m, n, choose x in $T_{m, n}$ and y in $T_{m+1, n}$ so that $y \neq g(x)$ and define g^{\prime} by
(27) $g^{\prime}(t)=\left\{\begin{array}{l}f^{k}(y) \text { for } t=f^{k}(x), k=0,1, \ldots, m-1, \\ g(t) \text { otherwise. }\end{array}\right.$

We have $g^{\prime}(x) \neq g(x)$ while g^{\prime} is easily shown to satisfy the conditions (13). By Statement 4, there exist regular T-monoids (X, F) and (X, F '), both containing f, with q in $C(F)$ and q^{\prime} in $C\left(F^{\prime}\right)$. Since $g^{\prime} \neq g$, it is $C\left(F^{\prime}\right) \neq C(F)$ and thus $F^{\prime} \neq F$, in contradiction with f being a determining translation of M.

Let us identify the set X with the set $N \times N$ of all ordered pairs of non-negative integers so that (m, m) denotes the single point contained in the class $T_{m, m}$. The transformation f then coincides with f_{a} described by (4).

Statement 8. The element (1,0) is a left determining element of the bicyclic semigroup B as defined by (3).

Proof: The only possible choice of e and of an injection q in $C\left(f_{a}\right)$ satisfying (13) for f_{e} given by (4) is $e=(0,0)$ and
(28) $g(m, n)=(m+1, n)$ for all $m, n \geq 0$. By Statement 4, there exists a regular T-monoid $(N \times N, F)$ with f in F and g in $C(F)$. In F there must be a transformation h such that $\&(0,0)=$ $=(0,1)$. Since $f k(0,0)=(0,0)$, it is $f k(m, n)=$ $=(m, n)$ for all m, n and therefore

$$
\begin{equation*}
h(0, n)=h(0, n+1) \text { for all } n \geq 0 \text {. } \tag{29}
\end{equation*}
$$

Using commutativity of g and h it follows from (28) and (29) that

$$
\begin{equation*}
h(m, n)=(m, n+1) \text { for all } m, n \geq 0 \tag{30}
\end{equation*}
$$

By Statement 1, the unique multiplication on $N \times N$ with the identity $(0,0)$ for which F is the system of all the left translations is given by

$$
\begin{equation*}
(m, n)(r, \phi)=f_{(m, n)}(\kappa, \phi) \tag{31}
\end{equation*}
$$

where $f_{(m, n)}$ is the only member of F with $f_{(m, n)}(0,0)=$ $=(m, n)$. But clearly $f_{(m, n)}=h^{n} f^{m}$ and (31) is easily checked to give the same multiplication as (3), i.e. the multiplication in B.
References
[1] Z. HEDRLIN, P. GORALCfK: O sdvigach polugrupp I,

PeriodiCeskije i kvaziperiodiCeskije preobrazovanija, Matem.Časop.3(1968)

161-176.
[2] P. GORALCIK, Z. HEDRLfN: 0 sdvigach polugrupp II, Surjektivnyje preobrazovanija, Matem. Casop. 4 (1968) , 263-272.
[3] P. GORALCIK: 0 sdvigach polugrupp III, Preobrazovanija s uveličitělnoj i preobrazovanija s nexpravilnoj surjektivnoj castju, Matem.Casop.4(1968),273-282.

Matematicko-fyzikání fakulta
Karlova universita
Sokolovská 83, Praha 8
Ceskoslovensko

(Oblatum 7.4.1971)

