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Commentationes Mathematicae Universitatis Carolinae

12,4 (1971)

ABSTRACT SEMILINEAR EQUATIONS WITH SMALL NONLINEARITIES
Miroslav SOVA, Praha

Let U, X be two linear topological convex Banach spa-
ces over the real or complex number field, & a linear ope-
rator from U into X and F a transformation of U intoX.

For simplicity, we shall denote by ]D.(G) the domain
of definition of € ; R(8)=40u: u e D(O)} |
N(O) ~fu:ueD(@O), P = 03 . Naturally D(6) ,

N(8) are linear subspaces of U, R(8) of X .

We shall consider and try to solve the equation Bw =
=¢eF(w) where ¢ 20 is a ("small") parameter.

We shall give two existence theorems for this problem
with fairly detailed proofs and three applications to semi-
linear wave equations without detailed proofs which .will be
treated in another paper. Our main purpose is to solve also
the so called critical case. The non-critical case
(N(8)=10},R(8)=X)is naturally included but is itself es-
sentially simpler.

Our approach to the problem is geometrical but we have

eliminated the complementability of the subspaces MN(8) ,
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R(8) (i.e. the existence of corresponding projectors)
by means of quotient spaces. The solvability of the so cal-
led bifurcation equation is postulated, but the necessary
properties of the solution are deduced from the properties
of 8 and F

Geometrical approach to problems of this type was ini-
tiated by Cesari and used by many authors (Hale, Lovicarové,
de Simon-Torelli, Torelli, Bancroft-Hale-Sweet, Hall, etc.

- see the bibliography at the end).

Theorem 1. If

(I) U is_a Bsnach space and X a _normed space,

(II) for every sequence Ay, € Do) such that 6w, is
compact, there exists a compact sequence Ehe W  such that
sy - &, e N(6) ,

(1I11) N(6), R(O) are closed,

(IV) for_every s € U  there exist an open subset M € U

and a conatant m such that « e M and for every Ly,
w, e M

IF () -Flu )l &« m la, - a, Il
then for every open subset S = U satisfying

(ec) there exists a constant ¢ > 0 such that for eve-
oy w,u"eS, uW-u"eN(B) and for every x € R(8)
WFw) -Flu")~xllz2 ml-u"1

(ﬁ) for every 4« € S | there exists a @ € S guch
that w -4 € N(P) and F(m)e R(O) ,

() S n NCE) g |
there exist 8 % > 0 and s function 4% on (0,4%) inte S
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such that
(a) 4 is continuous on <0, %) |

(b) 44 (e)eD(O), B4 (e)=eF (4 (e)) for every
0<eed,

(c) there exists a constant d > 0 such that for eve-

Yy M € Sand 0 £ ¢ % & satisfying
-0l 2d, u eDB®), 0&€E 2>, Qu=cecF(u),
there is w = 44 (e) .

Proof. Let us denote Wa= IN(8) Y= R(O) . As these
subspaces are closed by (III), we can introduce the quotient
spaces V= u/W and Z = X/y  with norms denoted by

. and with zero denoted by 0 .

Moreover, let TT be the canonical transformation of X
onto Z which is defined by TTX = x - Y for every
x e X,

Now, we can replace the inequality in (ecc) by
(1) NTTF) - TF I = m ha, - s, ll
and the inclusion F(&) € R(O) in (B) by
(2) MP(&) =0 .

Let S be a fixed open subset of W satisfying (o) -
().

Let us take S ={v:veV, vnS g1 .

It follows from (3 ) and (2) that there exists a trans-

formation J of & into U such that for every o € S

(3) Ja)e vyrn S ,
(4) TF(JIa)) = 0 .
Further (4°) implies
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Bearing in mind the openness of S5 we obtain from

(IV) that there exist two constants 9 and m such that

(6) ¢ >0 ,
(7) {uw:lw -JO) £222 S ,
(8) IFCw,) —P(un)ﬂ emlu, -, 1

for every lu, - J(O)I « 9¢, Na, - J(O)l £ 9 .
It is clear from (8) that
(9) m 2 0 .
Now we shall prove that
m
(10) #1ICw) =yt & (= + 1) Hw -l

for every Hwll & £, 10(e) - 201 & % -

To this purpose, let us first fix 4 and @, 80 that
(11) el & % ,
(12) 1ICw) - 30 & F .

It follows from (3),(6),(7) and (11) that for every 0 < m £

& -’Z:- there exists an element 2 € U  satisfying

13) wewnsS, -3yl £ lo-a, 0l +1 .

On the other hand, as J(W,) e A, end J(0)e @ by (3),

we obtain from (12) immediately that oy ll % which

implies together with (11) that

(14) e - o 0 =
Now, from (13) and (14) we obtain

(15) o= 20 & Har = (Al + 1 D) - ICO) ) <
6-[“@'-@3“(-0—4}_4—% e%ae-r{-u £ 2

Using (8),(9),(13) and (15), we have

(16) MTFQOMN -TF@)Il € m lj(ar;)—n/“ <

£€mllo-ayll+rmn .

On the other hand, (oc),(1),(3) and (13) imply
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(17) WTF(I ()N -TF(ar)ll 2 m 1I(r)=ar | .
Now we see from (4),(16) and (17):

0= NTFQ(er)N)-TFI (NIl =
ZHMFI()-TIF ()l = ITMF(I(y N-TTF ()Nl =
Zmlodw)-vil-millv-vll-mang

which may be rewritten as
18) NIw)-wle - llo-agll+ 2 5
Using (13) and (18), we have, finally,

NI () - Do)l £ 1ICar) = arl+ 1I(w) - vl £
£ (Z+Dllv-vlle(Z + )7

which implies (10) since 7, mey be arbitrarily small.
Let us now denote §, = {ar:we V, ol £ LY
 m
It is clear that
(19) 8, is a closed ball in ¥, contained in § ,
We shall prove

m
(20) u3<qq)-a(~i>1|5<;k—+4>m«\;-vam

for every o, ¥, € S, .

To prove these, we use (10). Let us first take &' = v,
and ¥, = @ in (10), which is evidently admissible. Then we
obta’i‘n 1900)- IO £ (R ey l< (B+DF e =
= 7 . Consequently, we can take ar = v and v = ""a. in
(10) and obtain immediately (20).

Now we see easily from (6) and (20) that
(21) 1 J(w) - (0N £ 2 for every v € S, .

Let us now define 8 as an operator from ¥ into Y

~
by the following way: « € D (6) if and only if
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vcD(8) and 8o is the common value of all 6
for A € A .

We need to verify now that
(22) 'év is a one-to-one operator from ¥V onto ¥ and
is bounded.
In fact, 5 is a one-to-one operator from ¥V onto
Y by definition. We see almost immediately from (II) that
5'1 transforms compact sequences from Y into compact
sequences from VYV , This implies that 5'4 is a bounded
operator on Y into V , If this were not true, then the-
re would exist a sequence ng, € Y  such thatlgy, I £ 1
and Ml g“ry”lll-» oo . Moreover, we can suppose Ml 81 e M >
>0 . Let us now take G = m 5—4%'“'5 . Then evidently
g —> 0 and Il 5‘4«.“@&!!!: oy, N g‘qa’/hﬂl -+ oo . But this
leads to a contradiction: Cpe Yo, is undoubtedly compact,
on the other hand, 5-4"9';".’19 cannot be compact.
Let us rewrite (4) as
123) FlI(w)) € 1 for every v € § .
Now, (22) and {23) enable us to define
dw) =B8""FIw)), weS .
e obtain from (7),(8),(20) - (22) that
(24) WP - QI & AT Nem (T + ) My - v, Wl
for every w,, v, € S, .
It' follows from (19) and (24) that we can find a con-
stant 4 such that
(25) 0< & T OAE M m (B sa)sa17"

’
(26) 2 pw)e S, for every weS, ,
CIN R CARE Y 2A R Ry |
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for every w,, v, € §, .

In virtue of (I),(19),(25) - (27), we can use the Ba-
nach fixed point theorem to the tranaformation ¢ & in the
complete metric space Sa for every 0 £ € < % and we
obtain a function 2 on <0,%) into S, such that
for every 0 & € = 2%

(28) wie) e —;— s, ,
(29) ef(pCe)) = y(e) ,

(30) x»(e) is the unique solution in 8§, of the equation
eP(v) = v .
By the definition of ¢ , we can rewrite (29) as
(31) »(e)eD(d), Fple) = eF(I(n (el
for every 0 < € £ 2 .
Now we shall prove that
(32) 2 1is a continuous function on <0, >
In fact, it follows from (24),(25) and (29) in view of
the definition of $, that
Mple)-ple )l =lled (9N -6¢(ple,Il &
<le,-¢g,l N pe )l + el PloeN-plpieg,Nl <
< lg - NN+ I1E Nm(FE+DF (+"T 4
-1 m
+ > N8 M (Ze+ 1) Nyple) - plg )N =
1 0. 1 _
=le,- g, I LIGON+ 18" Nm F1+ 5 Hyle) - nleyll
which implies
“Um L3le -
e, - He M & 2CNON+1EIm TIie - ¢,
and (32) is an immediate consequence.

Let us now take 4 (e) = I(m(e)) for0se < 5 .
It is easily seen from (3),(28),(31) and (32) that 4
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satisfies (a) and (b).
Thus we have only to prove the unicity assertion (c).
It follows from (3),(4) and (« ) that
(33) for every 4 € S  such that MF(w) = @  we have
am=Jdluw +W) .
Let us now take d = %(—3— +4)"7 and let . sa-
tisfy the suppositions astated in (¢) for some fixed 0 < € =

£ 2% , Let us take = + W . According to (28), we ha-
ve N - (Ol = N =IOV & d = 2 (Z+ 1)

which implies, in view of J(0) € 0@ that
®€ m -1 .

mv.é-;f'(a—+4) ,i.e

(34) veS, .

As u € D(O),0u = eF(u) , we see first that
MF(w) = 0 which implies in consequence of (33) that

(35) m o= Jlw) .

On the other hand, we see that

(36) veD@) , v =eFw).
Using (35) and (36), we have

(37) = ed(v) .

Hence we obtain from (30),(34) and (37) that v = (€g) and,
as AL (e) = D(w(e)) , we have from (35) that w = 4 (€) ,

which was to verify.

Rewark 1. Theorem 1 generalizes many results provable

under different hypotheses for special types of operators 6@

and F , In particular, the differentiability of F plays

an important role and was used in many papers - see the bib-

liography at the end. We shall give an abstract form of

- 792 -



sufficient differentiability conditions in a aeparaté note.

Proposition 1. If the condition (JII) of Theorem 1
holdg, then the condition (IJ) of the same theor is equi-
valent with: (IT°) for every sequence 4, & D(8)  such that
Guy, is compact, th ists a weak
Ay e W such that w, - i, e N(O) .

Proof. We shall use the operator 5’ congtructed in
the preceding proof.

First, if (II) holds, then by (22) of the above proof,
5 is bounded and consequently it transforms the compact
sequences of Y into the compact ones, and thereby as well
into the weakly compact sequences of ¥ . From here immedia-
tely (II°).

Conversely, if (II”) holds, then we obtain by almost the
same argument &8s in proving (22) that 5 is bounded and con-
sequently it transforms the compact sequences of Y into the
compact sequences of V . But this implies (II) by a simple

way.

Remark 2. According to the preceding Proposition 1, we
can replace the hypothesis (II) of Theorem 1 by the condition
(II°) of this proposition.

Proposition 2. e _conditio II in Th 1
are_equjvalent with
(II°’) @ 4is a closed operator,

(111°°) R (®) is a closed subspace.
Proof. Let us construct the operator 5’ as above in
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the proof of Theorem 1. Moreover, we shall use the notation
of this proof.

We shall first verify that (II),(III) imply (II’"),
(III°°). Obviously it sufficest to verify (II'"). Using
(22) from the above proof, we see that &-7 is a bounded
operator on ¥ into W . Consequently 5 is a closed ope-
rator from ¥ onto Y and it is easy to deduce from this
the closedness of @ itself.

Conversely, let (II"°), (III’’) hold. It follows imme-
diately from (II’‘) that IN(8) is closed. Therefore (III)
holds. Further we obtain easily from (II”’), (III’’) that &
is a one-to-one closed operator from V onto Y . Consequent-
ly, §-1  is also closed, which implies, according to Banach
closed graph theorem that it is continuous. Then (II) is an
immediate consequence.

Cf. also T. Kato: Perturbation theory of linear opera-

tors, p. 231.

Remark 3. _According to Proposition 2, we can replace the
hypotheses (II),(III) of Theorem 1 by the conditions (II'”),
(III1°°) of this proposition.

Theorem 2. 1f

(1 u,x re normed spaces,

(11) for every sequence w, & D (0) such that Qw, is
bounded, there exists a compact sequence Ehc W  such_that
My - i, € NC(O) ,

(I11) N(®) ,R(8) re closed,

(Iv) P is contjnuous on W imto X ,
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then for every open subset S & U

gatisfying
(¢ ) for every two sequences u..;‘, u“y e S guch that
u."‘— u."'” e N(8) and that for some sequence X, €
€ R(Q)

Fap) = Flugp) = x,, — 0,
there is g — agy —> 0,
(3),(9#) as_in Theorem 1,
there exist a constant 2% > 0 and a function 4+ op <0,%?>
into S such that

(a) A(e) —> 4 (0) (e — 0,)
{Mme)r10ce €2*¢ is_compact,

and the set

(b) as_in Theorem 1.

Proof. We shall use the first part of the proof of Theo-
rem 1 till (5), only (1) must be replaced by

(1) for every two sequences Aty , &} € S such that

My - 4y & N(O) and that TTF () )-TF(ug) — 0,
2 1 ”
there is w, - 4y —> 0.
Hence we continue the numbering by (6).
Now we shall prove that

(6) J is continuous on.$ into U

In fact, let o e .8 and let Vh,he{4,2,...? be

an arbitrary sequence from 8  such that
M Ve —> V.

As J(w)ew by (3), it follows from (7) thet we can always
choose a sequence Ve » M oe 11,2,.., 3 for which

(8) g, € awy, for every fo e £1,2,...3%,

(9) Yy —> (W) .

Moreover, as S is open and J(w) € S likewise by (3)
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it follows from (9) that there exists a M, € €1,2,... %

such that
(10) % e S for te = &,
According to (4), we have TTF(J(v) =@ andTTF(J(%)-O

for f € £4,2,... % and consequently we can write

(11) TFI (N -TF(2p) = MF(I(+)) = TF ()

for k€ 44,2,...% .

But it follows from (IV) and (9) that TF(J(v)-TF(yg)> @
and therefore in consequence of (11)

(12) TF(I(w,) -TTF(n,)—> 0 .

Further, we see immediately from (3),(8) and (10) that

13) Imye S, n eSS, I(vp)-v eW  for ke zi.
Thus (12) and (13) enable us to apply (1) from where we ob-
tain

(14) OCog) - 5, — 0 .

Finally, combining (9) and (14), we see that O(‘Vh)—b I(e),

which was our aim to prove (6).
In consequence of (IV) there exists a constant s such

that
(15) : e >0 ,
(16) St lu-JO0l&entas ,

(17) IF(w) -F(XONN & 1 for hu-2(0)1 £ 2 .
On the other hand, in consequence of (6), we can find a
constant 2, such that
(18) \ 0<o2, €  ,
(19) 10(w) = J2(0)1 & ¢ for Horl & o, .
Let us now take $) w (s Dol < o, 3 ,
It follows from (18) that
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(2¢) $, is a closed ball in V , contained in S .
We see immediately from (17) and (19) that
(21) BIF(I(w)) ~F(IONN &1 for wve S, .

Let us now define the operator 5 as in the proof
of Theorem 1.

We prove without difficulty under use of (I),(II),(ITI)
that
(22) 3 is a one-to-one operator from ¥V onto Y such
that é’-‘ is compact.

Especially, in consequence of (22), there exists a
subset K & V such that
(23) K is compact and convex in W .
(24) 5"44 e K for every 4 € Y,

hy - FOOW@ONN £ 1 .

Owing to (4)
(25) F(i(vw)) e Y for every v € S .

Thus (22) and (25) enable us to define

d(v) =8 'FLIw)), veS .

Now, we shall prove that
(26) dveK , velS, ,
(27) & is continuous on ,So into V ,

In fact, (26) follows immediately from (21) and (24),
and (27) from (III),(6) ard (22).

Using (20),(23) and (26), we can find a 4 > 0 such
that
(8) dd(v)e S, for vel, .

So, (20),(26) - (28) enable us to api)ly the Schauder

fixed point theorem to the transformation € ¢ in S,
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for every 0 & £ £ 2 and thus we obtain the exia-

tence of a function o on <0,)> into §, such
that for every 0 & ¢ &

(29) we)e eK

(30) td(n(e)) = n(e) .

But we can rewrite (30) as

1) ) e D), Fpe) = eF(I(ple))

for every 0 &€ ¢ £ & . .
Finally, let us take 4 (&) = J(1(€)) for O &
ce € D . ' .
It is now an easy matter to deduce (a) from (6),(23)

and (29) and (b) from (3) and (31).

Remark 4. The assertion on local unicity of the type
(¢c) in Theorem 1 seems unprovable here, at least by the abo-

ve method.

Remark 5. The condition (f3) in Theorems 1 and 2 postu-
lates the solvability of the so called bifurcation equation
in a completely general form. ;

We give two more suggestive formulations:

(3°) for every s € S  there exists a w € N(8) such
that

mt+weS, Flurw)e RO ,
(B3°") for every « € S  there exists a ar ¢ N (@)
such that

wa+rweS, TF(u+rw)=0

where TT is the canonical transformation of X onfo
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x/K(g) defined by Tx = x + R(8) for x € X .

In the sequel we shall deacribe (Examples 1 - 3) some
applications of Theorems 1 and 2 to the periodic problem
for semilinear wave equations, without detailed proofs. Gn
these examples we denote by R the real number field and
by C® the set of all infinitely differentiable functions
@ on <0,2x)  whose derivations are 24r -periodic,
i.e. 9)“”(0) - 9‘”’(2#) for every 1 € {0,1,... % .

Example 1. Let £ be a_real function on <0 ,2s > x

»x<0,7r> xR  such that

(1) 2(0,§,n) = £(20m, §, 1) forell 0 &« f &,
r~»e&R ,

(1I) £ 4is_continuous in all variables and

150, §,m - £C¢,§,8,)1 & @w(@in -x,)
forall 0&t<2mw, O0&fFSor ,lnl,ln,l « @,

(III) there exist a constant ¢ > 0 and @ number » €
610,11 so_that

(=DPCeCt, §,n)-£Ct, § 1] 2 clny,~x,)

for all 0 &t & 27, O0& f & o7, 1 & £

2
Then there exist g constant 2% > 0 nd a r func

4 on <€0,2r) > <0,7> x <0, such that

(A) 4 (0,§,€) = 4 (27, §,¢) for 811
D& feamr, 0& e £ | gna 4 continu
in all varigbles,

aw

(B) {QCz)iCe,g,g)d,c is twic -

tinuously derivable in 0 & § & % ever,
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pel®, 0<e = & ,

LY cer (e, €, e)dn - g-;; L P @i 2,8, O de =
-t [ o) E(e,§, 8 (e, f,e)de

for every @ e ¥, 04§ £ O0<e = P and
4Ct,0,e) = 4i(t,me)m0 for every O &t < 277 ,
l<e = ,

(C) there exists a constant d > 0 such that for
any real function « on <€0,27>x <0,7 > and for
0< e £ 2>  satisfying (w(t,§)— 4 (t,§,0)I&d
for every 0t & 2, 0& § &£ and the above
properties (A),(B) with w4  instead of 4¢ , there is
wclt,§)e s (t,§,8) for every £t & 27w ,
0% §f = .

Qutline of the proof. We choose U = X =< = the real

Banach space of all real continuous functions on
<0,2m> %<0, > such that (0, §) = w (2, ¢)
for 0 % § & ¥ with the maximum norm. ]

Now © is defined as follows: &4 € D(8) &>
1) w e <€ ,
(2) wCt,0) = wlCt,ar) forall 0&t < 249 ,
(3) J:,a’rg) (e)ulz,-ddw is twice continuously
derivable for all o ¢ C* ,

(4) there exists a function h e € such that

2. _amw
LMy w e, frde - %—i Lo wce, prar =

- ./;Mrg;(e) h(z,§rde

for a1l ¢ € C® anda 0 & f &
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Then Gu = h .
Further F is defined for all w 6 € by the for-

mula
Flu)(t,§) = £Ct,§f, w(t,§)).
Finally we choose S = U .
Now it suffices to verify that 6, F, S  satisfy the
hypotheses of Theorem 1. But this is elaborate and will be
described elsewhere.

Example 2. Let £° be a real function on <0, 2> x
x €0,y > xR xR x R such that

(n £00,§,n,n,)=£(2m, §, 1, 10, Q)
for all 0 £ §<«m, 2, n,qe€R ,

(11) £° is continuous in all variables and

'f'(trgx”a."‘:,:ﬁq)"f.(tyg»”'g_;‘f"z:ga.” i
P (w(@)(lvlb,,-/bzl+lrfz1-4zzl +lg, —q.D
for all 0 £t £« 2 , 0<% § &7, e, l, lmzl,ln4l ,
In,l, Ig 1,12,1 « @ ,

(III) there exist three constants a,%,c,a+& -4we >0
and a number 2 € {0,413} guch that

» . . .
(A LECE, §,0,,1,,9,0-£Ct, $ 10, 2,,2,7] 2

Zalpm=-a)+ b(g,-2)~-clr-r|

forall 0 &t &« 2, O § &, n % n,

U £ s %% €R .

Then there exist a constant 2 > 0 and a real function

M on <0,2sr> % <0,sr> x <0, > such t
W) #4(0,§,e) = #£(2x,§,€) for all
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0 §&om,04€ £, 4 jis continuous in all vari-
bles, 4‘4’3 , 4‘&5 exist everywhere and are also continuous

in all varigbles,
(B) fﬁwp(z)d(c,f,a)d'z‘: is twice continu-

0

ously derivable in 0 & f £ o for every o € C* ,

0<e = &,

29

Y 4
4 @iz, £, 8)dr - ;;,—_ L Pl e, f,e)dr=

=t [ Q18 (2, §, (2, F €, 4, §,8), 4, feNdT
for every g € L%, 04 f, &, 0<e £ B, #(t,0,e) =
= #(t,or,e)=0 for every 0 £t £ 2,
0<e € B,
(C) as_in Example 1.
Qutline of the proof. We choocse X = ¢ (see Example 1)

and U = %’ = the apace of all continuously differentiab-
le functions from ¢ with the norm lwl, = | P72 I, +
+ gy, + lfwg e .

Now ® is defined as the restriction of the & from
Example 1 to the space €° and it operates consequently
from U = €° into X = ¢ .

Further F is defined for all « € €’ by the formula

Flu)(t,§) = £CE, §, (8, ), u, (8, §), 4 CE, £)).
As in Example 1 we choose S = U .
Our example follows again from Theorem 1, but the ela-

borate verification of its hypotheses will be given elsewhe-

r‘.
Exemple 3. Let £ be as in Exgmple 1 with the following
properties:
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(1) as_in Example 1,
(11) £ is continuous in all varigbles,
(I1I) there exist two constants @ >0, « =21 gand a
number » ¢ 10,4% such that
- PLECE, §, 0,0 £, F,2,0] 2 a iyl <y~ 1 1%, 1
forall 0&te 2y, 0§ oo, 1, & 1,
Then there exist ® oonstant 2% > 0 and a real function
A on 0,27 x<0,wr> x<0,> guch that
, (A A (0,f,ed)= 4 (2o F,8) forell 0« F§ <«
£g,0& € €7, the function 4 is uniformly bounded
in all variables, 4 (t,§,e) —> 4 (t,§,0)(e—0,)
uniformly in 0 &€t &« 2o , 0 & § & 7, e c=
tions 4 (,-,e), 0 £ € & 2%, are equicontinuous in both
variables,

(B) as_in Example 1.

Outline of the proof. We chocse U ,X and we con-
struct & , F as in the proof of Example 1.

Further we choose S = U .

Then we can verify the hypotheses of Theorem 2, but
this will be given elsewhere. Our example is an immediate

consequence.

Repark 6. The assertions (B) in Examples 1 - 3 say that
the function 4% (-,-, € ) ia a generalized solution (in the
sense of Petrowsky) of the wave equation gy = “'if -

=.ef(t,§, w(t, ¢)) (Exampleal and 3) or «, -
- uggm e £ 0t § (L, §), Aoift,f),uy(t,g»(henple 2).
This is easily verifiable by means of the integration by

parts and by approximation.
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Remark 7. An application of Theorem 2 to the case stu-
died in Example 2 is not possible. In fact, for the opera-
tor & constructed in Example 2, operating from ¢’ into

¢ , we cannot verify (I) of Theorem 2. This problem will

be solved in a subsequent paper.

Addendum. After this note was written, we have been
acqgainted with two preprints of W.S. Hall (The bifurcation
of periodic solutions in Banach spaces I,II), where the met-

hod of quotient spaces is used, too.
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