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APPROXIMATION BY HILL FUNCTIONS II
Ivo BABUSKA, College Park

1. Introduction. The problem of the approximation in
Sobolev spaces by piecewise smooth function plays a very
important role in applications today. In [1] [see also (8]]
we studied this problem for a special class of approxima-
ting functions. [2) deals with a related problem. [3] stu-
dies the problems very similar to those in [1]. There are
other eignificﬁnt results in this field, see e.g.[4],15},
and [6] and others.

Another approach to the approximation problems by pie-
cewise smooth functions is in [7).

* Problems of the mentioned type play very important ro-
les in the finite element method. See e.g. [8] - [15] and
others.

This paper deals with the problems of approximation
on less dimensional manifolds and simultaneous approxima-
tion on manifolds of different dimensions.

These queationa are important in the application, in

finite element methods etc.

AMS, Primary 41A63, 41A65 Ref. %.7.518.827,
Secondary - 7.978.8



2. Some Notions. Through the entire paper R, be the
m -dimensional Euclidean space, X m (X ,..., X, ),
Ix1 = 4-£4 x5 and dux = dx, ... dx, .
Further let
R:‘ = ELxyx, >01 ,
R,= ELx; x, <01 .
Let 2 ¢ Rw be a bounded region and Q° its boundary.
We assume that f' is an (m -4)-dimensional manifold.
Mostly we will asume that £0° is infinitely times diffe-
rentiable and we write in this case Q' e C® .
For b >0 let Ly = ELxe L yd(x, ") < /] and
D, =Elxefl; dx, Q) >h1,
where d (x, £)') means the distance from x to ° .
Let L,_C.Q.) (resp. L, ( Rm) ) be the space of square in-
tegrable functions & on £ (resp. R, ) such that

i 2
l.wllbzc_m = fnl,wl dx < o0 . .

Analogously we define LZCR@) ., Sometimes we shall write
L) =W)(0) (reep. L,(R,} = W](R,) ).

Let €(JL) (resp. €(R, ) ) be the space of all
infinite times differentiable functions on 3L (resp.R,,)
and such that all derivatives are continuously prolongable
on .

Furthermore let D( ) c¢ €(XL) (resp. D(R,) ) be the
subspace of all functions with compact support in Sl (resp.
R, ). Let £ be an integer £ = 4 , The Sobolev space
W: (Q) (resp. W:_(Rn) ) will be the closure of € (1)

(resp. D (R, ) ) in the norm '.lwi @y (resp.



Bell g ) -where
Wwhr,)
2 « 42
““‘"wfm.) = . ,atz“) 7 lem_)
where

9‘-,,4'...4- [y
D¥ =2 o« = (0, 4..., 0C,. )
At dugm 12 T

R m
«, 20, i=4,.,m, locl =, & ) .

(Quite analogously we define [+l Wi (R, W)

Let Vol:(.ﬁ.) c W: () be the closure of ()
(resp. D(R,) ). Let £ €() , then £° be a function
defined on £)1* such that for x € Q° we have £°(x) = £(x) .
Later we shall also use this notation if £e W‘i () and
£° may be defined on Q° in a sense of traces.

Let now ' € C® and let ¥, e D(R,), ¥;(x) =0,

dom 4,000, » be a system of functions such that
>
(] [
1,’-24 y; =1 on £ .

Further let there be a system of local coordinates .)('E.:'J R

‘=4,...,m, A=A4,...,% and (m-1)-dinensional do-
mains J, c R, , J, € C* and functions g, defined on

Jh such that there is one to one infinitely times diffe-

rentiable mapping %4, ©0f J, such that g,(J,) = .0.;

where

175] (73] 125 [») (73] Lal
L0 e B U ey Xy s P Xgponny Xy 1) 5 (X es, Xlg ) € 3]
and so that

Elxe Q' ;y,(x)>0]c
)] Al c
e LG, %500, g (i, xid 00 (o, 50 ) 6 (9,0, 1,
with H >0 .
It is easy to see that such a system of functions
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¥, ¥, and domains J; really exists.
Let £ be defined on (1’ ., Then the functionf =, £ = 0
everywhere outside of Q) .
Therefore the function £, (7, (x)) is defined on J,
and has compact support.

Let us introduce the Sobolev space on Jf)° , Let £ be
an integer £ = (0 . The Sobolev space W: (£*) with the

norm Mo th ., is the space of all functions £ defi-
4 a0 .
ned on f)* and such that
>
hen = = g 13 o .

wlean T oagn e wEe,)
We defined the Sobolev aspace W: Q) for £ = 0, £ in-
tegral. For £ negative, £ integral we shall define the
space as a dual one, namely for £ 2 0

WAoo = (wheat)y .
More about that see [1%], p.35.

We have introduced the Sobolev spaces with integral de-

rivatives. It is possible to show that tne norm Hell, ¢
wiir,)

may be introduced in terms of Fourier transform also (up to
equivalency). For £ with Q' e C*® [and R, 1 we may
construct Hilbert scales and gef spaces with fractional de-
rivatives. See [1¥] and [18].

The norms of these interpolated spacea W:’ ),
W:"( 20, W:' (R,) are equivalent with Aronszajn-Slobo-
detskij norm. See e.g.[18). E.g. for 0 <« ov = [c] + ¢,
0< <41 and [e] ‘integral we may define

2 2 ’ 2
2.1 p-3

where



(w(t) - wle)?
(2.2) hut? dtdr .
“me)"[{ (t-2)n+36
Analogously to (2.1) and (2.2) we may define the norm
Rell

We (a°) which is equivalent with the interpolated norm.
2

By interpolation we may define also Ygf:(ﬂ.), 0 & <
for « non-integral. We have to underline here that for
& = integer + —;- the space V./: Q) , obtained by in-
terpolation for ¢ integral is not an equivalent one with
the closure of D( L) in the norm (2.1). More about that
see [1¥].

Let us state now a lemma.

Lemma 2.1. Let £, 4% be real,l2l ¢ L,Ikl€L L<ow.
Then there exist operators .Ah, O< M « 4 which map
Wicas) into WRCQ®)  so that 1)

-
(2.3) ., % CHth o W
3N VApfhymio, Wt ca%) ’
where
(2.4) “ =minl0, -]

and for W & L
LM
(2.5) If-Abl Iw:.m” = GI!I“.“A,,D\,

and C does not depend on $ and £ (may depend on I,
and 2 ).

Proof. Because of our definition of W: (£)*) with
t.((,. (x)) baving compact support in J, , it is enough
to show the existence of such an operator which maps

1) Through the paper ( is a generic constant with diffe-
rent values on different places.
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Wf(R“_,,) into W:' (Rp.q) , which has the proper-
ties (2.3) - (2.5) and furthermore is such that if £ has
compact support & , then Ahf has a support S“"’ .
where
SPCcElxeR, ,;d(x,5) & Ah)

and d(X,S) is the distance of x to & and A does not
depend on b and £ ,

Using the technique of Fourier transform such an ope-
rator may be easily constructed.
The operator has a form of a convolution and its properties
may be checked up the same way as in Part 1 of the proof
of the theorem 4.1 in [1].

A notion which plays a basic role is a (t, ft)-regular

systen % *™(R,),where 0 < h <1, t = 4 20 .

A one parametric system of functions ¢ € 'b:"f"" (R,,)

defined for every 0 =< f < 1 is called a (t, % )-regu-
lar system (¢t 2 % = 0) if and only if
(1) PR (R, c WE(R,)
’
(2) if 2 e W: (R,) then there exists g €
e ’Ux’“fkn)such that for any 0 € » £ fo £ £

~
(2.6) ‘9"£“WA’_'(R,,) £ Ch llfﬁw:n“)’

where
= min(L~n,t-»)

and C does not depend on », /2~ and £ .

(3) If £ 6 W': (R, ) has compact support S theng

s('b)

in (2.6) has compact support ,



S BIxeR, ; d(x,8)& an]

where A  does not depend on v and £ (depends only on
e, ).

The notion of (t, #&)-regular system T‘f"“CRm) is a
generalization of the system of the hill functions intro-
duced in [1].

In [1] we defined the system ’D“:’“ (R, ) as the totality

of all the functions of the form
(2.7) S S olp,glay(L-pn)
2.7 351 5 elip,glayl g =1

where fr = (f1y,...,41,), f; integral and ay(x) e W;"(R,,,)
are fixed functions with compact support.
In [1] we have studied sufficient conditions for

01- (x) such that the system (2.6) be(t , M) -regular.

3. Approximation by Hill Functions on fl gnd Q°.

We studied in [1] the approximation problems by Hill func-
tions in the case that Ll = R, .
In this § we shall study the case if Sl is a bounded
domain and Q" € C*® ,
First let us state a theorem about approximation on Q. .
Theorem 3.1. Let £ e Wf(.ﬂ..) , £ 20 and let 0 <
&€ n5 £ £, 0°eC% . Then for & = » there exists

g e B™(R,) such that

(3.1). hg-£10 £ CAM LN

3 ¥ W2 () Wi
where

(3.2) w=min(l-n,t=-n)
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and C does not depend on h and £ .

' Proof. The proof follows immediately by the application
of the well known continuation theorem. See e.g. [13]. By
this theorem there exists a function F e W: (R, ) such

that P=£ on 0 and AF\ < CILN where C

whc,,) wtca)
does not depend on £ .
Using the basic property of (t - A ) -regularity there exists

9 e T‘:"'( Ra) such that

dg-FI € CA*IFI £ Can“itl

Wi Ry Wt )
By restriction to L we obtain our theorem.
Remark. Everywhere we assume that ‘' e C® .

Because the continuation theorem%is valid for Lipschitz do-

Wr(R,)

main theorem 3.1 holds in the general case when () is a
Lipachitz domain.

The theorem 3.1 solves the problem of the approximation
on. Q) . Let us prove a theore:_n dealing with the approxima-
tion on the boundary Q° .

Theorem 3.2. Let £¢W:(-Q.‘) s £ >0  andlet 0 <
‘< p & £, Then for t = /af-;-*, % a,n-o-% there exists

g e .’J;:’“.( R,) guch that

[ ] “
where
(3.4) : (L-am'mv(l.—/o,t-/a-—';‘)

and C doss not depend on s and £ .
Proof., Using the "inverse” embedding theorem (see
e.g. [1%] or [20]) there exists F ¢ W:’i (R,) such
-8 - ’



that F’ = £ and

IFi £ Cl£N

4 .
Wi ) wiea
where C does not depend on £ . Therefore there exists

g€ z;j'_‘*cn,,, ) such that
“®

“

“« Ch™ Ity ..
and

@ mmin(lon,t-h-5).

Applying the embedding theorem we have
L] L] o

-~
ACIF-Q,IW:,_%“”) < Ch M2

wica)
and the theorem is cmnpletely. proved.

Remarks. (1) Obviously we do not need N’ € C* , but
we need that (L° be sufficiently smooth.

(2) Comparing Theorem 3.1 and Theorem 3.2, especially

the expressions (3.2) and (3.4), we see that we lost 4

2

in the second term and we need in Theorem 3.2 larger regu-
“larity functions than in Theorem 3.1. )

So far it is not clear whether this situation occurs
because of the way we prove it or whether this is necessary
for the theorem itself. The firat term in (3.2) and (3.4)
is an optimal one. It follows in general by applying the
theory of the m-width or in special case by Theorem 4.2
in [1].

(3) In Theorem 3.2 we did assume that £ > 0 and
o > 0. In Theorem 3.1 we assumed L =20, & 0. The

-9 -



assumption £ > 0 , A > 0 stems from using the embed-
ding theorem.

This theorem does not hold for £ =0 or o = 0 (see e.g.
Theorem 9.5 [1¥]). Perhape the theorem holds for AL = 0
(resp. A = 0 ).

4. Simultaneous Approximation on fl and fl° . Using
the results of the § 3 we may approximate the functions

e Wl () (resp. £eWi(Q') )bygeah®(r,)
(resp. g¢* ).

In applications another px_-oblem plays an important ro-
le. It is the problem of simultanenus approximation on £L
and Q° .

Let us introduce the space W:’”(.ﬂ.) c W: (L) with

the norm
2 2 oy
Vilytmny = VEVye ) * 1E W ym (5.,

Obviously using the embedding theorem we see that for m &

1
€ L -3 wehave lfﬂw:.,”“” £CH£UW:‘A, and
hencea W™ () = Wica) .
Iftm ""-!f then the space w"""’(.n.) is smaller

than the space ‘W: Q) .

The problem of the simul taneous approximation with a
weight ¥ is the problem to find @ such that for every
fe W:“"'( ) there exists g € 'r,f"‘cn,> such that

e . . [od
V-G hay o) ¥ 4 1E = lysy gy & CAT 1SNyt

and C does not depend on £ and h , .

«l0 -



The most important case in applications is the case of
>0 .

As introduction let us prove a theorem which was in
fact proved in [131.

Theorem 4.1. Let £ cW:(.ﬂ-) , 4 Z 1 . Then for
mzd,t2d mavat-3-¢,va2-d-¢, e>0

arbitrary, there exists g € T‘:"’(R”) such that

(4.)  Uf-gl * WINE -G o oy <

Py
€ CHN8 lw:

W; ()

Q)

where
(4.2) w -mu‘m«(t-d,t—hl-%-&-c,t-iz-e-e)

and ¢ does not depend on £ and / (generally depends
on € ). .
Proof. Obviously, f € W:"" () ., There exists
ye 7":"“' (R, ) such that (see Theorem 3.1)
o~
.?‘f'w:m.) € Ch Iflwf‘.m
and
“© = mim (l-h,t—h) .
Using =4 and b= -;-_-t-‘ﬁ , £ >0 .and the imbedding

theorem we get
15 -g + WEHE-g Hye “
~F W o : ¥ w0

ar'}

< CLn™ 4 HATET NE 0L g,

where

m, = min (L-4,¢-1) ,

-1l -



, 1 1
@y = M(l-i—a,t-?—s) .

Theorem 4.1 will not change if instead £ e Wzl () we
have £ € W:’m(.ﬂ.) with m > £~ ji' .

Intuitively it is possible to see that perhaps the re-
sult is too restrictive because of simplicity of the proof.
Let us show that we may really get much better results.

‘Theorem 4.2. Let £ e v’rz‘(.n.) ,Lzez0, L,

A integral. Then for M = 4, t 2 A there exists
g€ 7;:""( R, ) such that ¢’ = 0 and such that

: «
““*"w:(m £ Ch BElye cq)

where
= min(L-H,t-n»).

Proof.(1) Let @(x), x € £  be the distance of the
point X to the boundary £)° . Because ' € C® the func-
tion @(x) has all derivatives in the neighborhood of Q.
Let ¥ (x), xeR,, 0 £&x be a function with all de-
rivatives and such that

Y(x)m 4 for D=x &£ 4 |,
Y(x) =0 for x =2 .

Such a function obviously exists. Let further denote
%,(6) =y (£) and let g (x) = 4, (@(x)) . The func-
tion 9“,(«) is defined on L and gi;(x)-li on 'Q'.h ,

and 9”(«) =0 on 'Q'nu .

Further for sufficiently‘ small M the function @, has all
, 1

derivatives and \D‘%i € wH c .

(2) let £ € WE(Q) . Donote £, = £ @ (x).

-12 -



Let us show that for L =z 4 zo,lf,"lwbm) & c,af"lﬁwtm,.
- 2 a

Because Q' € C® , using partition (;f unity and local trans-
formation of ' to a plane, we may restrict ourselves to
proving the following special estimate.

Let £ ¢ C®(R,,),£=0 on R, and let £ have compact
support.
Let @ (x) =1y (x) eand £, = £g, .
Let us show that for L 2 » 2 0

2-
(4.3) Vg byrcry € 4 * Vbt oy -

In fact because @ (x)= 0 for x, & 24 we have
£,(x)= 0 for x, Z 2.4 .
On the other hand we have
a"%(x) [
axq 8«"“‘ wn
Therefore to prove (4.3) it is sufficient to show that

e 7 £ (x) }'v 8% £ (x) !
[ ax‘* - ] ) [&x" &xi"‘} *n &

. Lecx)
fu.mﬂ/ [:x‘fx a.x‘*] dx, -

®.

Writing g () = -a—:'-;-f——a:; we havea{:‘"—ffa‘-?w- '.g;ci‘—_,

e ~
Obviously we have @ = 0 identically on R .
Therefore we may vrlte
1
§ 0= 4 o f(x”-t)"" —,—?—(.x,,...,.u‘,1 trdt .
Using now the Hardy inequality (see Theorem 3. 29 of [21] we
get.

- 13 -



20 28 2%
_{?’(x)dﬂxus [g,"(‘x)dxm' € C..Z; 2m - xm)acz-p
a"é' 2 g_(‘.‘_, 0 az." 2
(——-;—‘%—ax L Vdsy & ¥/ (axﬁ Pax, -

Therefore (4.3) is proved.
o
(3) In ’2) we proved that every function £ ¢ W: ()
can be written in the form
£f = £"'4 + £"’2
where

£ ChEll

HEy,5 Nwt cay wheay o

W EyoMwtcay € CHENye
and f”,ﬂ. - 0 on ..Q...“ ’

' 2-»
Ny lyscay © CHPHENL o,

and H{ > 0 is an arbitrary number.
Choosing H = & S for a proper &« and using the basic

property of the (t,f)-regularity we may findg e 7;:’“(1,,0.

¢ =0 on f* and

such that -

€ Ch¥“ig

Vg -ty l‘w,’fc.m

w2 Ywt ca)
where

= min(L-p,t=-1H) .
Therefore we get

hqg -£1 & Cn“ sl

/g ¥-9) wi o)
and the theorem is proved.
Theorem 4.2 may be easily rewritten for £, A noninte-

gral,

- 14 -




Theorem 4.3. Let £ @ V.f: (), Lz » = 0. Further
let ™ be the smallest integer such that x®* = A . Then for
S 2 p* and t = ™ there exists g€ 7::’“(1!,,,_) such
that ¢ = 0 and such that

Kf-gl &« Cua™usn

wr wic
where
@ = min(L-p,t-n) .

The proof follows immediately from the well known in-
terpolation theorems.
Let us remark that for £ = integral + % the space
ﬁ(:’(.ﬂ.) should be understood in a proper way. See § 2.

Theorem 4.4. Let £eWa‘(ﬂ.), N ec”® , 4 integral

and such that -%—m%— =0 on f forj=0,4,.,2 &l-1.

Then for t 2 £ and /a>¢'+-42-+n,,thzo, g=20,

v 20 1) there exists g € REP(R,) such that
X -6+5 &%
lf—q,ﬂwzq:m)-fé‘zoh l—-—%—an lwf(m <
< eI Ht e
where
t - 1

w = ?:%— (L-@); 1 = mac(p,z+7 +6)
with € > 0 arbitrary and C (&) does not depend on -h
and £

Proof. Let us define functions @j, g = 0,4,.., £~1
defined on {1’ such that

-

1) @,6,T need not be integral.

-15 -



o ¢ )
(4.12) %" - W—-’ »7-0,4,:.-,4‘-4.
By assumption we have @, = Q, = ... = Q, = o .
Let « & WS (D) be such that '
L i .

d'uw - 0 ’ —a-ﬂg— - q"‘, ?-0,4,...,1-4 .
For the existence of such a function see e.g. [17].

Obviously the function 4 may be written in a form of

a sum namely

A1
(4.13) y7R -4.%*1 “wy
where
Lug = 0

and

ai“’ .

—é-;;t-—-gi%'é ,‘.M+4,oa-,;¢—4 ’

é- 0, 4,00:, 1-4

with

’%‘-4 foré-i’
=0 for 4o 4 .

Because of the embedding theorem we have

(4.14) lg‘lv‘g.,‘-!! can ‘.cul,,:w .

Further using the basic theorem about the regularity of the
solution (see [1F), p.203) we obtain ‘

(4.15)  Nagdyniqy & CPg;hyanicg o

for arbitrary A» .

- 16 -



% 40
Let us remark that %—nf'f— =0 on fL' for 4 =

=0,4p0yn and 4 = £ + 4,0, £ =1 .
In § 2 we introduced the operator A“ . Let us denote

(4.16) Q= Ay i
and let .u,‘-,’“ be an analogous function to the function
) applying g“»"“ instead q; . Using Lemma 2.1 and
(4.15) for ¢ & =i~ 7 ve get

. 4 -
t-(""-l, .,
(4.17) ““4"4'4,u"w:m> &« CH lLq; 'wf )

and fort & A =4 - 1 we obtain

2
t-u-i-i) ‘

Using (4.14) we obtain for £ 2 @

-

L-i-d-Gp-i-3)
(4.19) Nag - any “w,_?cm %« CH '“w,fm)

= cH'PUet,e g,
For [ 2 L we obtain

-(p-2)

(4.20) N, & CH
4

NEh, e .
¥ "WP) W,)° ()

Hence for P £ y )

@) hate & s e c'ieny,
dsxerThH Wfey T M@

-1

Denoting o - . then we have k4
=a n*%w"" ! ms 0

on 0 for 4 = 0,4,..., & .

It is easy to see that £ -« & W;‘(.ﬂ.) .

We may write

-17 -



2-4
(4.22 - . .
4.22) f = f u.-o-ar-o-"%a."u

There exist g, e 9::"’(1“),” Z @ such that for

z =24

-(x-£) o 44
V92 -4y Iypeay € CH™ O " Myt ca,

where

(4.23) (u._‘-mim(z—gb,f-P) .

Because -—5;‘—4— =0 on  for 3=0,.,% ,we have
?

for b>q:+4.+iz y 2=0,0,n0

4 . -a-l, %
P%9i < I
(4.24) | Sy "wfcm CH o UE wfm
where

(4.25) u.m(z-r-%-é,t-z—iz'é)'ﬂ ’

¢ > 0 arbitrary.
Let us take now z = £ 2 £ (Remark that we did
not fix the value of 2 .)
Under this assumption we have

4-1 R-1

“4.26) 0. Z Q- 4sulupeny £

a(t=l) o $-¢
and for;b,:y-t-z-q-é

o At
(4.271) 1l m l?ﬂ ¥ 'W:le’ €
< cH"f‘t’h""*-“‘ u£ l w‘l(a) , £ > 0 ,

Using the theorem 4.2 we may find g, ¢ %“"(Kn) such that

- 18 -



9% =0 in Q) and

P CHL.' (K] .N‘(A)
and obviously

3¢ .
(4.29) “ —a—”:—‘by—nw.'(n-’ o 9 = 0,..., r .

Further using (4.21) we have

L-¢
(4.30) wl &« CH Nen,e
\ Nc?gng c W, )
and 65
'
S 0 Fm Ok

Let us take H = S* , Then
HoCt-8) g top _ gxtealetop hﬂﬂ-c’*&t-P

Therefore denoting
-1
we have

(4.31) lg- ”w!’cm + z Wt ll-g—%"wfuw “
%« CH“®

where
(4.32) ¢ =minla(l-p),t4-)+xl-p,
tM-&’+dl—¢—%;6L£>Oawnmm.

Denoting

(4.33) %-MCQ,G‘-\-%*-‘)

- 19 -



we get by optimal choice of e
(4.34) @=L (s-p).

Theorem 4.4 assumes that £l has a smooth boundary.
It is not clear whether the theorem holds for domains which
are not sufficiently smooth. Certainly we do not ﬁeed
N'e L% but a sufficient smoothness of the boundary is
necessary for the proof.

Different situation occurs in Theorem 4.2 where the
assumption about smoothness of fL° wmay be much weaker.

In Theorem 4.4 we have assumed that -3%— =0 on 0,
m

Combining the results of Theorem 4.4 with the results of

§ 3 we obviously obtain the general case.
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