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ON EQUALIZERS IN GENERALIZED ALGEBRAIC CATEGORIES

Pavel PTAK, Praha

Introduction. Universal algebras of a given type
A ={e,lA<pi( A is a family of ordinal numbers in-
dexed by ordinal numbers) form the category A(A) whose

objects are the pairs (X, {w: A< f3) where X isa

X ¢ X *,
a set and [ are mappings o, : X - X and

a
morphisms from (X, { w: $) to (Y, {m; $) are map-
: y %, X
pingsa f: X—> Y such that o, o f “m fo @, for

%, _, ,

every A, A<(3 , where £ 7: X "—> Y is £ acting
*

coordinate-wise on oe, -tuplea from X x>,

Now, let this device work in a general situation. Gi-
ven two functora F and G of the covariant variance
from sets to seta, we can define the generalized algebraic

category as follows: objects are again pairs (X, {v: 3)

but operations w; range over F(X) and take values
%,

in G(X) (so they are mappings w;: F(X)*— G )

and morphisms are mappings £ : X — Y such that

Y o Feer x
@, ° sG(f)oaa for every A, A < f3 .,
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It is known that A(A) = A(I, I,a) always has
limits. The general problem of the existence of limits in
categories A.(EU G, A) 1is not so clear. Some results
are known ([2],[4]).

The subject of the present paper is the study of equa-
lizers in A(F,G,a) .

The first part of the paper gives some basic defini-
tions and results. In the first paragraph, we prove that
the existence of such equalizers in A(F,G,41) that the
natural forgetful functor % preserves them is, roughly
speaking, equivalent to the fact that the functor G pre-
serves equalizers. In the second paragraph, we shall give
up the requirement for the equalizers to be preserved by
the functor X . The essential part here is whethar the
functor F preserves unions. The theorems 2.1, 2.2 give
the necesssry and sufficient condition for the existence
of equalizers.

I should like to thank V. Trnkovéd for her encouraging
help.

O. Basic defi i c n i
1. An ordinal number o is the set of all ordinal numbers
ﬁ)ﬂ‘“ ¢
2. All functors throughout this paper will be covariant
functors from the category & of all sets and all their
mappings into itself. Natural equivalence of functors will
be denoted by == ,
3. The identical functor will be denoted by I .
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4. Let P, M be sets, p:P—> M a mapping. Then

i i by £
C’-#,M is the functor F given by formulas

F(#) =P eandif X# g, then F(B)=p , &: 0>

S>X, FX)=M, F(f) = id, whenever f: X -

— 7Y, dd ia the identical mapping. If P c M
and f is the inclusion, we write simply CP w o

’
5. O‘M denotes a hom-functor from the set M , i.e.

G, (X) = Hom (M, X) .

6. The current set-theoretic notation, e.g. (<, U, n,
X, v,0) will be used for functors, too. So, if two func-

tora F‘,, F,_ are given, then P" v Fz denotes the func-
tor F (provided that it exists) such that F(X) = E (X) v

v F,(X) for every set X and F,, F, are the sub-
functors of F ., The functors P,1 x Fz, P1 v I; always ex-
ist.

7. We shall write F(X) =[F(i)JF(X) where F is a

functor, X c¢Y and 4 : X-—> Y is the inclusion.

8. Recall that a functor F  preserves union if, whenever
Y is a setand {Y, ,« € Ji a collection of its sub-

sets, then F (“%'J Yo )Y = G‘L‘)a P(Y“-)Y .

9. A functor T preserves unions if and only if

Pa(IxC Vv Cpo (see [51).

10. An equalizer for two morphisms is defined as usual ([7]).
The definition of a category having equalizers is evident.

The definition of an equalizers-preserving functor and a
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non-void equalizers-preserving functor is obvious, too.

1. Equalizers in the category A(F, G, 1) euch that
ihe natural forgetful functor X pregerves them

We denote X the forgetful functor from the cate-
gory A(F,G,a) inte the category S of all aseta
and their mappings, i.e. if £ (Y,{wzh —_— (.X,{w:!)
is a morphism of A (F,G,A) , then

y
z(Y,{wa!) =Y,

Lemma 1.1. Let the functor G preserve equalizers.
Then for every functor F the category A(F,6,4) has

equalizers and X  preaerves them.

Leuma 1.2. If F(P)= § and G preserves non-void
equalizers, then A (F, G,4) has equalizers and %

preserves them.

Lemma 1.3. If G does not preserve non-void equali-
gers, then A(F, G, 1) has not equalizers such that X

preserves them.

Lemma 1.4. If G does not preserve equalizera and
F(P)# #, then A(F,G,1) has not equalizers such

that Z preserves them.

Proofs c;f these lemmas are easy.

Theorem 1,1. Let F(f) = f# . Then the category
A (F,G,1) has equalizers such that X preserves them

if and only if G preserves non-void equalizers.
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Theorem 1.2. Let F(gZ) # g . Then the category
A(F G,1) haa 2qualizers such that ¥ preserves them
if and only if ¢ preserves equalizers.

Proofe are evident.

2. Equalizers in the category A(F, G, a)

Lemma 2.1. If G does not preserve equalizers and
F(g)+ #, then A(F,G,41) haa not equalizers.

Proof is evident.

Lemmg 2.2. If F(P) = @ and F preserves unions,
then A(P,G,1) has equalizers.

Proof. Let £, ¢ : (X, @) —> (X, @*) be morphisms,
i: 2 — X an equalizer of mappings £,¢ . Let § be
the system of all Yc Z  such that
(Y e P(Y)z) (3y e G()’)z)[wa‘(i)(x) = G(i)(gy)d,
put S=u S, One can see that S € S and it is easy to
define o:F(8)—> G(S) such that (S,o) is a do-
main of an equalizer of £, g in A(F, G,1)

Statement 2.1. Let F, G be two functors, I' do not

preserve unions, @ do not preserve non-void equalizers.
Then there exist £,9.:Y —> Y’ such that G (i) #
*eq (G(£) , G(g)) |, where 41: T—> Y is an equa-
lizer of £,9  and F(T) -t%f‘(ﬂr w g .

Proof. Take a set M  such that P(M’-mauui Fimj, + @
and §,3:1X—> X’ euch that G(7) 4 g (6(F),G(E)),

where 2’-0«1(?’,;), 7 Z—X, Z$ g
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Put Y= XVvM,Y=X'vM, f,g:Y—> Y’ such that
£V =F(x), g(x) = F(x) forxeX,f(m)l=gml=m
for m « M . It ia easy to. see that £, ¢ have the requi-
red properties.

Lemma 2,3. If F does not preserve unions and @

does not preserve non-void equalizers, then the category

ACFP,G,4) has not equalizers.
Proof. Let £,gq have the properties from Statement
2.1 with respect to F,G . We can choose g e G(Y) -G(T),,

where i:T— Y, i=eq (£,g), G(£)(F) = G(g)(E) .
Put gy, = G(A,) (%), where A,:Y ~—> Y= 44,2} is the map-
ping A, (4)=(y,4), i =4,2 . Choase Z e F(T), - UF{t] .
Put 2=F(A)(E), Y e ¥Yx11,23 . Detine §,5:Y"— ¥’
as follows:

Ty, 1) = £0g)=2(y,2), 3(y, )= g(y), 5 (4,2) = £(y) .

Now, if we define «” <’ as follows: o’(y) = for all
’ k4 %2

4 +*z2, g eF(Y), 0"@)=y, , 0 (x) = G(F)(gy,)
for all x€ F(Y") , a0 £,5: (Y, ") — (Y,w") are

morphisms of the category A(F,G,1) and one can see
that they have no equalizer.

Theorem 2.1. Let P(P) =g . Then the category
A(F,;G, 1) haa equalizers if and only if either G pre-

serves non-void equalizers or F = (I x c",mM) v C,I,K .

Theorem 2,2. Let F(@) % § . Then the category
A(F,G,1) haa equalizers if and only if G preserves
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equalizers.

Proofs are evident.

Statement 2.2. The categories A(F, G, A ) and

A(‘%‘\‘/A 0”‘.;,’ P,G,4) are isomorphic.

Proof is evident.

In this way we can "translate" our results into the

general case A (F,G6,a) .

(1

[2]

(4]

(5]

(6]

A.

o.
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