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AFFINE H-STRUCTURES

Kvétoslav BURIAN, Havitov

1, Introduction., In [1] Luneburg defines affine Hjelm-

slev planes as incidence siructures (without the claim of
uniqueness of join and intersection) with parallelism and
relation of neighbouring points, respectively, neighbour-
ing lines. He has found many deep results about such pla-
nes,

Our aim is a suitable generalization of some conside-
rations in [1]. A notion of an affine Hjelmslev structure

is being defined and its first properties are studied here,

2. Definitions and some properties of affine H-struc-

tures.

Definition 1., Let T ©be a (multiplicative) group and

N some system of its non-trivial subgroups. Ve define a

geometric structure (T, B) with the following properties:
(1) points of (T, M) eare defined as elements in T ,
(ii) lines of (T, B) ore defined as right cosets

with respect to the subgroups in 8 ,
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(1ii) a point s is called incidental with a line
Pqg , vhen p € Pq .

(iv) lines Pq , B  will be called parallel, vwhen
P=0 (see[11, [2]).

Remerk, Ve see insbtantly, that (T, B) is an inci-
dence slructure with parallelism (in the sense of [1])
such that (% ): Given a point 4 and a line G  not
through o  there exizts a unique line through g paral-
lel to Bn .

Definition 2. By a partition of a group T it is
1)

meant a system 13 of non-trivial subgroups of T such
that

1) B covers T ,

2) P,8c B, P4 0= IPNGI=4 2),(see [2]).
Definition 3. A geometric structure (T, B) is cal-
led an zffine Hjelmglev structure ( H-gtructure), if it

satigfies:
Hl. 3 is a covering of T .
H 2. There exists an epimorphism @ of T on a suit-

able group T such that
e) B =4P¥|Pe B} is a partition of T ,

b) IPNG) =4=>P?+ Q%, YP,Ra B ;

)
iP,018 D

1) trivial = of order 4 , non-trivial = of order > 4 .

2) |y

= the cardinality.
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Theorem. A geometric structure (T, B ) is an affi-
ne H-structure if and only if
«) M is a covering of T ,

) N= U (PNQ) , for P+ G , is a nor-
4P, R1EN

)
mal subgroup of T ,

) )PNGl=4=N =PNNEN ,  vhere P,
Qe d |,
d&) IPNGI+1=>PN =GN , where P, B &8 B .

Proof. Let (T, f) be a geometric structure satisfy-

ing « )~ d ). H1 is satisfied trivially. In order to

prove the validity of H 2, let ¢: T— T = T/N  be the
canonical epimorphism. 9 = {P?|Pe B ? consists of
subgroups of T and covers T , Dbecause of oc ). Now sup-
pose IPPNQRY 4. Then PN NGAGN = N  ed

IPN@Y 41 according to ¢ )« By virtue of J°) PN =
= QN . Hence PY= Q9 =and IPYN QY1 % 4 , Finally

3 ) implies H 3.

Conversely, suppose that (T, ®) 1s an affine H-
structure, Then H 1 implies o ), H 3 implies [5 ), H2b ‘
implies 9 ) and finally H 2 a)b) implies o )e

Corollary 1., If in an affine H-structure (T, $)
every two distinct subgroups of 93 have at least two
elements in common, then || = 4 .

The proof follows at once from Definition 3 and the
preceding theorem. _

Corollary 2. Let (T, B) be an affine H-structu-
re. Let R be a normal subgroup of T and REN (N
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is defined in Theorem). Then the geometric structure
("I', B) =(T/R ,44Rp 'neP3IPe B} 1s an affine
H-gtructure,

To the proof: It is only a routine to verify the va-
1idity of the corresponding conditions o ) to o ).

3e Example, Let there be an additive group of the
6-dimensional vector space over the two-element field.
Consider the vectors as 6-tuple rows and subgroups in T
as matrices with six columns, then the following system

of subgroups of T is investigated.

ol 000000\ 000000\ 000000
p _ (000111 _ [oo0111 000111
=14 = {i111)° T2 11110)* 3= | 111101) °

011011
011000

011111 011110

H)

011100 011101>
000000

000011

011001 ’

011010

000000
000100
100010
100110

000100
100100
100000

000100
100111
100011

000000
000100
100001
100101

000000
000010
010000
010010

6

)
)

P1 =

111000 111001 111010
p 000000 000000 000000
P « [ 000111 000110 000110 | ,
4 111011 110000 110111
111100 110110 110001
9 000000 9 000000 3 000000
P.= [ 000110 P. = | 000110 P, = { 000101
3 ) 4 1=
110101 110100 101000
110011 110010 101101
3 000000 3 000000 4 000000
B,= [ 000101 Py= (000101 ) °B = | 000101],
101111 101100 101110
101010 101001 101011
4 000000
P, = | ooco1l 000011

( (
(58 »
(8552), .- (55
( (
( (

),
)
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000000 6 000000 ¢ 000000
st= (oooom), P, = (oooom), P, = | 000010

010111 010110 010011
010101 010100 010001
000000 000000 000000
*p = (000001 ¥p, - (000001 ) ¥, = [oo0001),
1 001000 /? 2 001111 /* 001100
001001 001110 001101
000000
¥p, = ( 000001 |( .
% 001010
001011

Evidently $ is a covering of T, For N, by its defini-
tion in Theorem, we obtain '

000000

000100

000010

000001

000110

000101

000011

000111
for every distinct "’P’- , ‘Y“ s
ip=4,2,3,4,5,6,%; j, bk =1,2,3,4 ; we verify
I‘Pé n‘P,‘I =2 so that Py + N = *Pp + N . Further
for every distinect "?; , k?,m , vhere 4,40 =1,2,3,4,5,6%
4.m = 4,23, 4 , veobtain [*B N*P,l =4 from
which (4?3', + NN (“Pm +N)Y=N . 1In this way we
are able to verify the properties « ) to o), so that by
Theorem (T, B ) becomes an affine H-structure. Vie shall
8t111 note what is the meaning of T and ¢ from Defini-
tion 3 in our example: T is the 3-dimensional wvector spa=-

ce over the two-element field and the epimorphism @ T~
— T isgiven by (a, a, a,a,a;ag)9 =(aya,a,),

a;, =0,1 .
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Furthermore, it must hold Xer g = N and

3 OOO) 000 000 000) OOO) 000 000 }
={(111 ’ (110) ’(101)’ (011 ' (100 ' (010)’ (001)
must be o partition of f . As the final remark we descri-
be the geometric interpretation of our example, The map-
ping @ is nothing else as the orthogonal projection of
v® onto V®. The constructed partition of V3 1s the
set of 21l one-dimensional subspaces in V3 and Ker @

is a vector gpace w3 , which results to be the complement
of V’, The system of subgroups of 3 , forming the desi-
red covering of V‘ , 1s such that 1) the preimage of eve-
ry l-dimensional member of M is decomposed onto 2-dimen-
gional subspaces having a l-dimensional subspace of w?
eg their common intersection and 2) every tvo 2-dimensio-
nal members of #3 belonging to distinct preimages are

disjoint,
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