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Commentationes Mathematicae Universitatis Carolinae 

13,4 (1972) 

ON INFORMATION IN CATEGORIES 

Miroslav KATETOV, Praha 

In this note we consider real-valued functions defi

ned on morphisms of a given category and satisfying cer

tain natural conditions. It is shown that if the category 

in question is that of all finite non-void sets, then eve

ry such a function is of the form well-known from the in

formation theory. 

Terminology and notation. For basic concepts concer

ning categories we refer to [3]• The classes of objects 

and morphisms of a category *6 will be denoted by (XQ't 

and MathJh *t , respectively. Letters £, 9*, to* , possibly 

with subscripts, will designate morphisms of *t . The do

main of a morphism (in particular, of a mapping) f will 

be denoted by 3>f , A sum (product) of f^ f k m 49..., /nv , 

will be denoted by £4 + ... + f ̂  (by f̂ x ... x f^ ). 

Sometimes we will write 2 f< i , instead of £^ + ### + f^ 

and m,£ instead of f +... + f (ov times). If £ is 

isomorphic to a. (in the sense that there are isomorphisms 
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The cardinality of a set X will be denoted by 1X1. 

If X, y are non-void sets, fyi » 4 , then the (unique) 

mapping f: X — * Y will be denoted by i(X9Y) or by 

MX) . 

The set of all real numbers will be denoted by X , 

that of non-negative ones by X4" , For an •* > 0, JUx^x 

is the dyadic logarithm of .X } we put 0 l&fy C • 0 * 

Definition. Let *£ be a category. A function <p : 

: JlayiSv <£-+ J£+ will be called an ID-function (ID stands 

for "information decrement") for <£ if the following 

conditions hold: 

(1) f ** fy implies eg (£) = <&(&) $ 

(2) yCfg.) m\ Gp(fr) provided iq, is defined; 

(3) if f « If + ... + f.n, and all Ml are mutual

ly isomorphic, then CpCf) * rr S <J> Cf\, ) j 

(4) if K is a product of f and a- , then 

<p(Jh) m <f(£) + yf^) . 

Conventions. I f S? i s the category of f i n i t e non-void 

s e t s and <p \ JUrtfvfo <t—¥• 3L+ s a t i s f i e s ( 1 ) , we wi l l p u t : 

( i ) for any X € (Xtoj. *€ , y CX) » g> U (X )) j ( i i ) for any 

KI m if2f ,,, , g(m) m ap(X) , where 1X1 « in . 

Theorem* Let *6 be the ca tegory of a l l f i n i t e non-

void s e t s (with mappings as morphisms). A funct ion cp I 

tJUHfrtv't—• X* i s an ID-function i f and only i f the re i s 

a number C S 0 such t h a t , for every morphism f ;A—»B 

v/e have 
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Proof. I t i s easy to see t h a t every g> of the form 

descr ibed above i s an ID-funct ion . To show the converse , 

we need some lemmas. In what fo l l ows , *£ i s the category 

of f i n i t e non-void s e t s . 

Lemma 1 . Assume t h a t 9 ; JiLcyupM, <£—+ JL4" s a t i s f i e s 

cond i t ions ( 1 ) , ( 3 ) from the d e f i n i t i o n of an ID- fu ic t ion . 

I f £{ A—»B i s s u r j e c t i v e , then 

Proof. I f Sir c B , put mt^ ** l£~4 frl . Put /m -* -Su^m ,̂, 

A> mlt/m.fy, hfr a htrrCfr . For every Jlr e 3 , put g ^ s ^ ^ f / m ^ ) . 

Clea r ly , for every Jlr s B , 9 ( 9 ^ ) * <p(i (ctrij^,)) m <p(i~*Jtr) , 

- 5 9 ^ 1 " ^ • P u t £' • cJ%A 9^0- 9 &" ***>*• x t i s easy to 

see t h a t £ ' <& £ " . Since <p(£') * -j- £ <™fr &(<?&) , 

9 r f / / ) - r 9C£) ; we obta in 

This proves the assertion. 

Lemma 2. Assume tha t 9 j JLcnjih, <& —*> JL4" s a t i s f i e s 

cond i t ions ( 1 ) , ( 2 ) , ( 3 ) and t h a t cpM)mO . Then, for 

m, m A , 2 } . . , , we have 

#m 9 6m-) €. (<rt% + 4 ) 9 f/m- + h ) # 

Proof* let A, B , C be sets, lAI-»rfn.+ 'f,lBI-»2, 

\t\m\ .Choose £.*A~->B, fy»i(<rr%)+'l(4), f/B-->C . Clear

ly, ©Cfo,) » 9On,+ 4) , and, by condition (2), we have 

9(ftj.) « 9 (9,) * By Lemma 1, 9 (g,) =r • _ - . 9 (W) . 

This proves the assertion. 
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Lemma 3. Let Y be a non-negative real-valued func

tion on the set of positive integers. Assume that 

m.f (tm.) 4k (tm, * 4)f(tm, + 4 ) for m m \flf... &nd that 

f (ft?1) m m..y(4i>) for ^i%m m i f l t . . . . Then, for every 

tm m 4,2,... we have 

<y(W) * f(l) . Zoy> m . 

The proof i s s tandard and may be omi t ted . 

We a re now going to prove the theorem. Let g? ; 

: Jricnfitu*€ —* X+ s a t i s f y (1) - ( 4 ) . By Lemma 2 , we have 

m<$(m>) &-(<m. + 4)<p(m + 4) for m. m 4, lf... . Since (4) 

i s f u l f i l l e d , we have ^j(^m') m tttq(^) for Jfifm, m 

m4flf,t. . Hence, by Lemma 3 , <p (mi) m c 4ctj, m f where 

C • y C 2 ) . Lemma 1 now impl ies t h a t , for any s u r j e c t i v e 

f i A—• B . we have 

I f f i A — • B i s an a r b i t r a r y morphism of *t , l e t 

^ j f ( A ) — • B be the embedding and l e t K * B—> £CA) be 

such t h a t ,*,(* ) * # for a l l x e f ( A ) . Then fy m H,£ 

i s s u r j e c t i v e , f •» £9 . . By condi t ion ( 2 ) , we have qp(£)m 

a. yCj.) r which proves the theorem. 

Remarks. 1) C lea r ly , t he re ex i s t c a t e g o r i e s for which 

there i s no ID-function (except 0 ) . An example: the ca 

tegory X of f i n i t e - d i m e n s i n a l l i n e a r spaces (over some 

f ixed f i e l d ) . However, for t h i s ca tegory t he re e x i s t func

t i o n s JLo%ph> it—• R+ s a t i s f y i n g ( 1 ) , ( 2 ) and ( 4 ) . -

2) I t may be of some i n t e r e s t t o inves t igate those ca tego-
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ries for which there exist non-trivial ID-functions. -

3) Since the cartesian product in the category of sets 

plays two distinct roles, that of categorical product and 

that of tensor product (see e.g. L2],Ll])» it might be in

teresting to investigate, in closed categories (see e.g. 

t2],Cll)» another concept of an ID-function with (4) re

placed by an analogous condition on tensor product. 
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