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Commentationes Mathematicae Universitatis Carolinae 

14,2 (1973) 

A REMARK ON n-TORSION-FREE MODULES 

Ladislav BICAN, Praha 

Abstract: 

D.R# Stone [7] has studied the m, -parities and rela­
ted notions. Among other results he showed the existence 
of a ring having a torsion-free but not 2-torsion-free 
(left) module. In this note we shall extend this result to 
arbitrary m, • So, the purpose of this paper is to prove 
the following theorem: 
For any natural integer m, there exists a ring JR. and a 
(left) JL -module M * which is m,-torsion-free but not 
Ctu + 4) -torsion-free. 

Key-words: 

purity, torsion-free module, V -flat, m, -fir. 

AMS, Primary: 16A50 Ref. Z. 2.723.4 

!• Introduction. The essential step of the proof uses 

an example of S. Jondrup [5]. 

R will always denote a ring with identity; all modu­

les will be unitary and left modules. Jt^ stands for the 

full matrix ring of degree m over R and for a module 

A j K* means the flw-th power of A,A*WA © A<$ *•• ® A . 

It will be convenient to consider the elements of A as the 

(/ft, 4) -matrices (i.e. the column vectors). 
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2« Purities. Let F be a class of couples C F, II) 

where U is a submodule of a free module F , We say that 

a monomorphism A -^~> B is T -pure if for any commu­

tative diagram 

F 

C*) 

with ( P, U ) 6 F , % the canonical embedding, there ex­

ists a homomorphism if I F — > A with ijrj£ * <p (see 

[61). Let T^ be the class of all couples C F , U ) whe­

re U is a submodule of a free module F and both F and 

XL can be generated by m, elements. D.R. Stone [7] has 

called a monomorphism A • B m, -pure if the in­

duced monomorphism A'*v > B"* is T^ -pure over TL^ 

(see also (1.52) in t61). 

-*з 2.1. Proposition. A monomorphism A-

pure iff it is T/n, -pure. 

Proof. We shall consider the diagrams (* ) and 

ІS 01/ -

H..A 

(**) 9* 

• -.« 

Ъ* 

W 

where A €. R ^ , ^' 

<L>* is induced by -v * 

is the canonical embedding and 

First suppose -t/ is m, -pure and le<t ( * ) be a commu-
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tative diagram with ( P , U ) e IV - --et x^, x2, ,.., x ^ 

be the free generators of P and ^c^, ̂ t/2,..., >u/^ the 

generators of U (it is easy to see that in the following 

there is no loss of generality in the assumption F has 

exactly m, free generators; some of /U^'s can be zeros, in 

general). Writing JJL^ = .S, o c ^ x^ , <b » 4, 1, ...9 ftv , 

we put A = (oc^), y'(A) «? ( 3 ^ ^ ),<g?(̂ 2),.,.,<pf̂ )) an<* 

W(I) -= ( ^ ( ^ J , ^ ^ ) , . . . , ^ ^ ) ) where 1 i s the identity 

of X^ . 9* and &.' induce the homomorphisms <p* : Jt^ A — • 

—> A^ , Jhf 1 R*,—>B4fl' since for £ * ( c ^ > , CA ~ 0 we 

have 

C9'(A) -J^c^i^),-..^ 

Further 

VOl) * A - . V C I ) - A • f i t r ^ ) , , . . , ^ ^ ) ) -

ar (.2^ aG^ A- Cx^), ..., X4 CC^£ M,(*^)) m ( Jl, Cli^ ) , ... 

.-.,*>("„,)) » CgpC^),..., »<*„-,)) - 9>'(A) 

and (**) commutes. By hypothesis there exists if*- &m,—**A'n' 

with tff̂ 'sr 9?' , If (a,̂  , a,lt ..«, a^) is the image of 1 

under tp * then we define ip ; P *- A by y (x^) * cuj, , 

i * i,2'r,,, m, . It la easy to see that op % « g> and 

1) Here and in the following <p9(A) is assumed to be 

a (4, m,) -matrix. 
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hence *i> is T<n, -pure. 

Conversely suppose ^ is Hn, -pure and let (# * ) be 

a commutative diagram with A - ^-i.* ̂  > 9*^ A) =• Ca^, aua, «•• 

....> o ^ ) , ^'C I) « ( je^t ,6^,,.,, jfĉ  ) .It follows from the 

commutativity of (* * ) that ct^=.2 oĈ » irj. , 4> = 4, 2,...,/n- . 

Let F be a free module with x^f x^y ••• ? ̂ ^v as free &e~ 

nerators and let IL be a submodule of F generated by 
T V #Tt. 

JUL-- , S ocj • x - , i s 4 , 2 , . . . , /n, . f r o m . £ A • AJL • ** 0 

tr\y <rv at, 

it follow* S A . ^ = S ( S ^ . c c . . ) x ; « 0 hence 
is-f * *- ^ = 4 -Ls'f + +& ir 

Therefore the map <p (JUL±) = cu^ , ^ = ^,2,..., m, , induces 

the homomorphism 9 : U — > A . Defining fa ; F — > A 

by fa(x±)= #4 , 4/ =r 4, 2, ... , m. , one can easily verify 

the commutativity of (* )• By hypothesis there exists tp ; 

. p—.> ^ with f 7{, ** <p . It is easy to see that for 

y ' . - J W — > A ^ defined by y'C I ) « Cy f^ ),..., yf*^;) 

there is y'^'=r g>* and therefore the proof is finished. 

3* Flatneeg# Following [61 we shall say that a module 

E is 1^ -flat if for any short exact sequence 0—*> A > 

— > 3 — > £ — • 0. the monomorphism i> is Fm. -pure. 

Owing to C7J, Prop. 3.2 we can say that a module E 

is torsion-free if it is P^ -flat and it is trv -torsion-free 

if E*1' is torsion-free over H ^ . By Proposition 2.1 and 

[7], Prop. 3*3 9 we have: 

3.1. Proposition. A module E is <n- -torsion-free iff 
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it is IV -flat. 

For completeness we shall introduce the following! 

3*2. Lemma. A module E la IV -flat iff there exists 

a short exaet sequence 0 — * A - ^ F — * E — * 0 with E 

free and *i* TV -para. 

Proof. See (1.12) in U H . 

Recall that a ring X is called (left) <n -fir ( m, -

free ideal ring) if any left ideal of K generated by av 

elements is a free module of uniquely determined rank (see 

3»3. Lemma. Any left ideal of an m, -fir is ?«, -flat. 

Prooj. Consider the commutatiTe diagram 

U-

'1 
-»11'-

F 

JЬ 

•+0 

with exact rows, ( P , 11) e T ^ , F free and I a left 

ideal of X , This diagram induces the commutatiTe diagram 

U.- * w ғ 

9 

-*-lľ ->ÍЗяn.Лv, Лm.t,ł- • Г ».0 

with exaot rows where I* £ I i s a left ideal of K 

haTing m- generators* Henoe the second row splits by some 

XiMmtit^mtu}—• 14/ (sinoe X, l oan m. - f i r ) , for 

tjr « rtto.: F —> It' we haTe Y 3, » *T ft;(, - otu y <* g> 
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and it suffices to use Lemma 3*2. 

4* The proof of Theorem. Let /n, be a natural integer 

and let ft be the K -algebra ( X is a commutative field) 

on the 2 (*Tt + 4) generators X ^ , Y^ , <i * 4, 2 ,..., /n, + 4 , 

and defining relation ,2 Xi Y± =- 0 . There is 

shown in £53 that R is an /a -fir and the left ideal I 

of R generated by Xj, Yl9 ..., Y^^^ is not flat. It 

remains only to show that I is not Tn+A -flat einoe it is 

I\v -flat by Lemma 3.3» 

Let 0 — * K-^-* F - ^ 1 > 0 be a short exact se­

quence where F is free with Z^ , Z±> ..., 2,^+4 as free 

generators, € is defined by 6" C Z^ ) » Ŷ , , * -* 4, 2 , ,,. 

... ? m. -# 4 , and <, is the canonical embedding of K * 

m K&t & into F . It is not too hard to derive from the 

definition of K that K is generated by.S X | Z; . 

Therefore £ is not TM.+ J\ -pore since the converse would 

lead to the prejectivity and hence to the flatness of I . 

••!• Corollary* for any natural integer m, there ex­

ist a ring R and an R -module monomorphism which is m. -

pure but not Cm,* 4)-pure» 

Pro of. The monomorphism I from the above proof has 

the desired property. 
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