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Abstract: In this note we deal with a heat potential 
and its boundary behaviour in connection with the Fourier 
problem for the heat equation in X%

 . For this purpose we 
define the so-called parabolic variation. 
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Let T be the well-known kernel in JL%
 defined by 

•4 * 
(зrt)

т ejąь C~-~~> , t :> 0 , 

v
0 , t *& 0 , 

and denote by &f P its partial derivative with res

pect to the variable # . Fix a, «c Ar in X4
 and let 

Co (<a, Jlr>) stand for the space of all continuous 

real-valued functions on < ou^ Jb- > vanishing at a, -

Let g> be a fixed continuous function of bounded va

riation on < a,, Jlr > and put 

X * <CyCt),t3; a, * t .6 Sir } , 
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D£«fLx,t3>ci,<et<J&', .*»-g>Ct)$, $-miU,~bl;a,«zt<Jl>',x*z$>(t)3< 

With each £ e C0C<a,,Xr>) we shall associate the function 

Tf on Jla - X defined by 

Tf (*,t)« - f^C^)^rC*-9Cv),t~<tf)<itr -

• f*f CtOrCoc-^C^-t-tOd^ft,) 

for t > a,, T£ Cx , t) « 0 for t ^ a . 

Investigation of Tf Cx , t) (which is a combination 

of a double-layer and a single-layer heat potential) as 

I x j t 3 approaches X is of importance in connection 

with the boundary value problems for the heat equation 

(compare C73, § 4 in chap. VI; see also I1],C2],£61 for re

ferences concerning heat potentials). Our purpose in this 

note is to present a simple necessary and sufficient condi

tion on X guaranteeing the existence of the finite li

mits 

(1) lim, T£fx,t)-T,£Ctft), Mm, T€(x>t)~T£(tA 
r.*,t3-*K,tt3 ' 4 o > c^^tl-^Ds^V * * 
C*,t3c3>J Cx,t3-.v3T 

at C x 0 , t 0 3 c X tor any £ c C0 C<a,,.*->) . 

Given t* 0 , t 0 3 m X* and oc -> 0 consider the 

parabola 

**K,V -<-*>*!«*% VM i l*f^L/'' 
and denote by m^ (t*,; x 0 , t 0 ) the number of points in 

CX-{Coc0>t0li) A? f tCx^,t0) (we put m^Cvcyx0,t0) =. + CO 
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i f the last set i s inf ini te) . Then /tv , («,$ x07t0) ia a 

Lebesgue measurable extended-real-.a?aed function of the 

variable cc € (0,-*- oo) and we may form the quantity 

o 

to be termed the parabolic variation of X at tx0,t0l . 

In connection with Tf the parabolic variation plays 

a role comparable with that of the so-called cyclic varia

tion ir* as introduced in C31 in connection with the in

vestigation of double-layer logarithmic potentials. The 

following theorem holds. 

Theorem. If at least one of the limits (1) exists for 

every f e 0,o (<a/5J2r>) then there i s a cT> 0 such 

that 

(2) A***, Y» C<pCt). t) <co . 
I t - t 0 !<-.-** * f 

t e <<v%Jtr> 

Conversely, if (2) holds, then the finite limits (1) exist 

for every bounded Baire function £ on <a,,Jlr>> that is 

continuous at t0 (and vanishes at a, in case t0 m a* )• 

Proof of this theorem is based on the Banach theorem 

on variation of a continuous function and on ideas employed 

in C43 in connection with double-layer logarithmic poten

tials. The key part of the proof rests on the following 

lemma whose role is similar to that of Theorem 1.11 in £43* 

Lemma. If (2) holds then there is a neighborhood VL 

of t<pCt0),t03 in Jt* such that 

S$i 



<,t7eti K ' + oo 

If 

(3) ****> VH(<p (t),t)«= + oo 

then V^ (* , » ) is bounded on the whole of 1 

Corollary* Tf is uniformly continuous on each of 

the domains J)+ , J)£ for any f € C 0 C< <->,-&->) if and 

only if (3) holds* 

A modification of Y R permits to evaluate) in geo

metric terms, the Fredholm radius of the operators T~i + 

+ (~ 4 )*** I (where I is the identity operator on 

C<, (<<*,,&>) ana T-£ are defined by (1)) and establish 

a general theorem on representability of the solution of 

the Fourier problem by means of Tf . The applied methods 

have been worked up in [•>]• The following assertion holds* 

Theorem* Let the Fredholm radius of T-, - I (which 

we can express in geometric terms) be greater than 4 . Put 

B -» X U { Z#, <**1 • x >r <f (a,)? and let P be a continu

ous bounded function on B with Y(y Co-),<h) » 0 • Then 

there is a unique function f e CQ«c^%ir» such that 

the function 

is a solution of the Fourier problem on J)j£ for the 

boundary condition P • 
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Analogical results may be obtained for the domain .D^ 

and for domains of the form *(C*x,t3;teCct.,iK),<|5rCi)-«:.x<^Ci)f 

where <p^ , <p2 are some continuous functions of bounded 

variation on <o>,kr> such that fyCt) «: a?2(t) for 

each t e < a ^ > • 

Complete proofs of these results together with furt

her details and bibliography will be included in a paper 

which will be published in the Czechoslovak Mathematical 

Journal. 

The following two assertions will be proved in a pa

per which will be published in Casopis pro p$stov6nf mate-

mat iky. 

Theorem* Let te (a/>^> and suppose that 

\<D(t)~<&(%)\ 
jwrru JvuLfis *c co • 

*-*>t- \it~z 
Then there i s a f inite limit 

J&m> TfCx, t ) 

(or a finite limit 

JUm, TfC»,t)) 
x-+<y(t)-

for any function f e C C < a , Sr> ) i f and only i f 

VKCq?Ct),t) < co . 

Proposition* There i s a continuous function <p of 

bounded variation on < at>, Jlr > such that 

Y K C9Ct) , t ) m co 

for almost every t e <cu^Ar> (where X m {Ly(t),tl $ 

t * <a , ,4 ->S ) . 
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