Commentationes Mathematicae Universitatis Caroline

Svatopluk Fučík; Lien Hen Tran

Note on nonlinear spectral theory: Application to boundary value problems for ordinary integrodifferential equations

Commentationes Mathematicae Universitatis Carolinae, Vol. 14 (1973), No. 4, 583--608

Persistent URL: http://dml.cz/dmlcz/105512

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

$$
14,4 \text { (1973) }
$$

NOTE ON NONLINEAR SPECTRAL THEORY: APPLICATION TO BOUNDARY VALUE PROBLEMS FOR ORDINARY INTEGRODIFFERENTIAL EQUATIONS ${ }^{\text {x }}$)

Svatopluk FUČfk, tRAN DIEN HIEN, Praha

Abstract

In this paper we prove that under some assumptions it is possible to apply the whole nonlinear spectral theory to the boundary value problem for ordinary integrodifferential equations.

Key mords: Spectral analysis of nonlinear operators, Fredholm alternative for nonlinear operators, LjusternikSchnirelman theory, weak solution of the boundary value problem for nonlinear integrodifferential equation, regularity properties of the weak solutions.

AMS, Primary: 45JO5, 47H15
Ref. Ž. 7.948.346

Introduction. Three main parts of the nonlinear spectral theory, i.e., Fredholm alternative for nonlinear operators ([2] and [7, Chapt. II]), Ljusternik-Schnirelman theory ([4] and [7, Chapt. III]) and its converse ([5] and [7, Chapt. V J) were up to this time applied to the existence of the solution of nonlinear integral equations of the Lichtenstein type ([6] and [7, Appendix II]) and to the exia-
x) This paper is taken from a part of the thesis of the second named author which was written on Department of Mathematical Analysis, Charles University, under the supervision of the first author.
tence and multiplicity of the solutions of the boundary value problems for nonlinear ordinary or partial differential equations. Unfortunately, we do not know any example of boundary value problem for nonlinear differential equation which would satisfy at the same time all the assumptions of the nonlinear spectral theory. On the other hand, such examples can be given for integral equations.

In this paper we prove that under some assumptions it is possible to apply the whole nonlinear spectral theory to the boundary value problem for ordinary integrodifferential equations.

1. Definitions and Statement of the Main Requitse

Let $2 \leqslant \uparrow<\infty$ and let k be a positive integer. Denote by $W_{k}^{k}=W_{p}^{k}(\langle 0,1\rangle) x$) the Sobolev space of all absolutely continuous real functions μ on the interval $\langle 0,1\rangle$ whose derivatives up to the order \& -1 are also absolutely continuous and whose derivative of the order \& is an I_{p} function. Set $\dot{W}_{p}^{k}=\left\{\mu \in W_{k}^{k}: \mu(0)=\ldots=\mu^{(k-1)}(0)=\mu(1)=\ldots=\mu^{(k-1)}(1)=0\right\}$. It is easy to see that $\stackrel{\circ}{W}_{\uparrow}^{k}$ is a separable Banach space with the norm
x) If $X(\langle 0,1\rangle)$ is some function space of functions defined on the interval $\langle 0,1\rangle$, we shall write the symbol X only.

$$
\begin{equation*}
\|\mu\|_{k, \neq}=\left(\sum_{i=1}^{\infty} \int_{0}^{1}\left|\mu^{(i)}(t)\right|^{k} d t\right)^{1 / 12} . \tag{1.1}
\end{equation*}
$$

The Sobolev space ${\underset{W}{p}}_{\uparrow}^{\ell} \quad$ has a usual structure (see [9] and [7, Appendix III]), moreover, it has a Schauder basis (see [3]).

If $y \in W_{k}^{k}$, let us define $\xi(y) \in\left[L_{p}\right]^{k+1}$ by $\xi(y)=\left(y, y^{\prime}, \ldots, y^{(k)}\right), \eta(y) \in\left[I_{p}\right]^{k}$ by $\eta(y)=$ $=\left(y, y^{\prime}, \ldots, y^{(k-1)}\right), \omega(y) \in R_{x+1}$ by $\omega(y)=\left(\int_{0}^{1} y^{2}(t) d t, \ldots, \int_{0}^{1}\left(y^{(k)}(t)\right)^{2} d t\right)$ and $\tau(y) \in R_{\text {se }}$ by $\tau(y)=\left(\int_{0}^{1} y^{2}(t) d t, \ldots, \int_{0}^{1}\left(y^{(k-1)}(t)\right)^{2} d t\right)$.

We shall use the symbol $\mid 1$ to denote the absolute value and the norm in the h_{2}-space $R_{\& k}$. Sometimes we shall write instead of $\xi=\left(\xi_{0}, \ldots, \xi_{k \varepsilon}\right) \in R_{k+1}$ only $\xi=\left(\eta, \xi_{k}\right)$, where $\eta=\left(\xi_{0}, \ldots, \xi_{k-1}\right) \in R_{k}$. Set

$$
\begin{aligned}
& R_{k}^{+}=\left\{x=\left(x_{0}, \ldots, x_{k-1}\right) \in R_{k}: x_{i} \geq 0, i=0, \ldots, k-1\right\}, \\
& K_{k}(y)=\left\{x \in R_{k k}:|x| \leq y\right\}, \\
& K_{k}^{+}(y)=K_{k}(y) \cap R_{k}^{+} .
\end{aligned}
$$

Definition. Let $\nVdash \geq 2, \lambda \in R_{1}$ and let $a_{j}(x, \xi):\langle 0,1\rangle \times R_{k+1} \rightarrow R_{1}, j=0, \ldots, k$, $b_{j}(x, \omega):\langle 0,1\rangle \times R_{k+1}^{+} \rightarrow R_{1}, j=0, \ldots$, 距,
$c_{j}(x, \eta):\langle 0,1\rangle \times R_{k} \longrightarrow R_{1}, j=0, \ldots, k-1$, $d_{j}(x, \eta, \tau):\langle 0,1\rangle \times R_{k} \times R_{k}^{+} \rightarrow R_{1}, j=0, \ldots, 2 k-1$ and $e L_{q}\left(n^{-1}+q^{-1}=1\right)$.

The function $\mu \in \dot{W}_{\$ 2}^{\infty}$ is said to be a weak solution of the homogeneous Dirichlet boundary value problem for ordinary integrodifferential equation
$(1.2)_{w} \quad \lambda\left\{\sum_{j=0}^{k}(-1)^{j}\left[\frac{d^{j}}{d x^{j}}\left(a_{j}(x, \xi(\mu)(x))\right)+\right.\right.$ $\left.\left.+2 \mu^{(2 j)}(x) \int_{0}^{1} b_{j}(t, \omega(\mu)) d t\right]\right\}-\sum_{j=0}^{k-1}(-1)^{j}\left[\frac{d^{j}}{d x^{j}}\left(c_{j}(x, \eta(\mu)(x))+\right.\right.$ $\left.+d_{j}(x, \eta(\mu)(x), \tau(\mu))\right)+$ $\left.+2 \mu^{(2 j)}(x) \int_{0}^{1} d_{k+j}(t, \eta(\mu)(t), \tau(\mu)) d t\right]=\operatorname{w}(x)$
if for each $\& \in \dot{W}_{\$ 2}^{\&}$ the following integral identity holds:

$$
\begin{aligned}
& \text { (1.3) } \lambda\left\{\sum _ { j = 0 } \left[\int_{0}^{1} a_{j}(x, \xi(\mu)(x)) k^{(j)}(x) d x+\right.\right. \\
& \left.\left.+2\left(\int_{0}^{1} b_{j}(t, \omega(\mu)) d t\right)\left(\int_{0}^{1} \mu^{(j)}(x) h^{(j)}(x) d x\right)\right]\right\}- \\
& -\sum_{j=0}^{k-1}\left[\int_{0}^{1} c_{j}(x, \eta(\mu)(x)) k^{(j)}(x) d x+\right. \\
& +\int_{0}^{1} d_{j}(x, \eta(\mu)(x), \tau(\mu)) k^{(j)}(x) d x+ \\
& \left.+2\left(\int_{0}^{1} \mu^{(j)}(x) h^{(j)}(x) d x\right)\left(\int_{0}^{1} d \mu+j(t, \eta(\mu)(t), \tau(\mu)) d t\right)\right]= \\
& =\int_{0}^{1} v(x) \ln (x) d x
\end{aligned}
$$

(provided the functions $a_{j}, b_{j}, c_{j}, d_{j}$ satisfy such assumptions that all integrals in the relation (1.3)w have sense for arbitrary $\mu, h \in \dot{W}_{\Re}^{k}$.

Remark 1. By the same way it is possible to define a weak solution of the equation (1.2) $)_{w}$ provided the right hand side w is a bounded linear functional on the space $\stackrel{0}{W}_{\Re}^{n}$ 。

The type of results obtained in this paper may be illustrated best on the following theorem:

Theorem. Let $\{$, se be positive integers. Consider the homogeneous Dirichlet boundary value problem for the equation
$(1.4)_{\text {no }} \quad(-1)^{k} \lambda\left\{\frac{d^{b k}}{d x^{k}}\left(\left(\mu^{(k)}(x)\right)^{2 k-1}\right)+\right.$

$$
\left.+\mu^{(2 k)}(x)\left(\int_{0}^{1}\left(\mu^{(k)}(t)\right)^{2} d t\right)^{p-1}\right\}-
$$

$$
-\left\{\sum_{j=0}^{\ln -1}(-1)^{j} \frac{d^{j}}{d x^{j}}\left(\left(\mu^{(j)}(x)\right)^{2 k-1}\right)\right\}+
$$

$$
+(-1)^{k-1} \mu^{(2 k-2)}(x)\left(\int_{0}^{1}\left(\mu^{(k-1)}(t)\right)^{2} d t\right)^{p-1}=w(x)
$$

Then there exists a sequence Λ of positive numbers converging to zero such that
(i) the equation (1.4) has a weak solution $\mu \in$ $\varepsilon \stackrel{\circ}{W}_{2 \neq}^{\&}$ for any w $\in L_{q}\left((2 \Re)^{-1}+q^{-1}=1\right) \quad$ provided $\lambda \notin \Lambda \cup\{0\} ;$
(ii) for each $\lambda \in \Lambda$ the equation (1.4) has a
nontrivial weak solution $\mu \in \dot{W}_{2 \neq 2}^{R}$. Moreover, $\mu \in C^{\infty}$ and μ is a classical solution, i.e., it satisfies the equation (1.4) 0 in each point $x \in\langle 0,1\rangle$.

The assertions of the previous theorem follow from general Theorems l-3, Remark 2 and Lemma 1.

Theorem - (application of the Ljusternik-Schnirelman

 theory). Suppose$$
\begin{array}{ll}
a(x, \xi) & :\langle 0,1\rangle \times R_{k+1} \longrightarrow R_{1}, \\
f(x, \omega) & :\langle 0,1\rangle \times R_{k+1}^{+} \longrightarrow R_{1}, \\
c(x, \eta):\langle 0,1\rangle \times R_{k} \\
d(x, \eta, \tau):\langle 0,1\rangle \times R_{k} \times R_{k}^{+} \longrightarrow R_{1},
\end{array}
$$

Let the following conditions be fulfilled:
(a 1) the function $a(x, \xi)$ satisfies the Carathéodory conditions on the interval $\langle 0,1\rangle$ (for definition see e.g. [10]);
(a 2) there exist a nonnegative function $\mathcal{g a}_{a}(x, y)$ defined on $\langle 0,1\rangle \times R_{1}^{+}, g_{a}(\cdot, y) \in L_{1}$ for each ry $\in R_{1}^{+}$ and the constants $c_{1}, c_{2}>0$ such that

$$
c_{1}\left|\xi_{g}\right|^{12} \leqslant a\left(x, \eta, \xi_{m_{c}}\right) \leqslant g_{a}(x, y)+c_{2}\left|\xi_{m_{c}}\right|^{12}
$$

for each $\eta \in K_{k}(y), \xi_{k} \in R_{1} \quad$ and almost all $x \in$ $\varepsilon\langle 0,1\rangle$;
(a 3)

$$
a(x, \xi)=0 \Longleftrightarrow \xi=0, a(x,-\xi)=a(x, \xi) ;
$$

(a 4) the partial derivatives $a_{j}(x, \xi)=\frac{\partial a}{\partial \xi_{j}}(x, \xi)$
($j=0, \ldots$, ${ }_{\text {d }}$) exist on $\langle 0,1\rangle \times R_{k+1}$ and satisfy the Caratheodory conditions on $\langle 0,1\rangle$;
(a 5) there exist nonnegative functions $g_{a j}(x, y)$ defined on $\langle 0,1\rangle \times R_{1}^{+}$and a constant $c>0$ auch that
$\boldsymbol{q}_{a j}(0, y) \in I_{1}, j=0, \ldots, k-1, y \in \mathbb{R}_{1}^{+}$,
$q_{a k}(\cdot, y) \in L_{2},\left(p^{-1}+q^{-1}=1\right)$,
$\left|a_{j}\left(x, \eta, \xi_{k}\right)\right| \leq \gamma_{a_{j}}(x, y)+c\left|\xi_{k}\right|^{n}(j=0, \ldots, k-1)$,
$\left|a_{k}\left(x, \eta, \xi_{k}\right)\right| \leqslant q_{a k}(x, y)+c\left|\xi_{k}\right|^{k-1}$
for each $\eta \in K_{k}(y), \xi_{n} \in \mathbb{B}_{1}$ and almoast all $x \in$ є〈0,1〉;
(a 6) there exists a constant $M>0$ such that

$$
\sum_{j=0}^{k} a_{j}(x, \xi) \xi_{j} \geq M a(x, \xi)
$$

for each $\mathcal{\xi} \in R_{\text {me }+1}$ and almost all $x \in\langle 0,1\rangle$;
(a 7) there oxista a continuous nonnogative function $\gamma(t)$
defined on R_{1}^{+}such that
$\left|a_{j}\left(x, \eta, \xi_{\Re}\right)-a_{j}\left(x, \eta^{\prime}, \xi_{k}^{\prime}\right)\right| \leqslant \gamma\left(|\eta|+\left|\eta^{\prime}\right|\right)$.
$\cdot\left(1+\left|\xi_{\varepsilon}{ }^{10-2}+\left|\xi_{\infty}^{\prime}\right|^{n-\alpha}\right)\left|\xi_{q}-\xi_{k}^{\prime}\right|\right.$
for $j=0, \ldots, k$, each $\left(\eta, \xi_{k}\right),\left(\eta^{\prime}, \xi_{k}^{\prime}\right) \in R_{k+1}$ and almost
all $x \in\langle 0,1\rangle$;
(a 8) the inequality

$$
\left(a_{k}\left(x, \eta, \xi_{k}\right)-a_{k}\left(x, \eta, \xi_{k}^{\prime}\right)\right)\left(\xi_{k n}-\xi_{k}^{\prime}\right)>0
$$

holds for each $\eta \in \mathbb{R}_{k}$, all ξ_{k}, $\xi_{k}^{\prime} \in \mathbb{R}_{1}$ and almost all $\times \in\langle 0,1\rangle$;
(b 1) for each $\omega \in \mathbb{R}_{m+1}^{+}$let $b(\cdot, \omega) \in L_{1}$ and let

$$
b(x, \omega) \geq 0, b(x, 0)=0
$$

for each $\omega \in R_{m_{t+1}}$ and almost all $x \in\langle 0,1\rangle$;
(b 2) the partial derivatives $b_{j}(x, \omega)=\frac{\partial b}{\partial \omega_{j}}(x, \omega)$
exist on $\langle 0,1\rangle \times \mathbb{R}_{f+1}^{+}$and $b_{j}(\cdot, \omega) \in I_{1}$ for
$\omega \in R_{k+1}^{+}, j=0, \ldots, k ;$
(b 3) $\sum_{j=0}^{k} b_{j}(x, \omega) \omega_{j} \geq M b(x, \omega)$,
(b 4) $\quad b_{j}(x, \omega) \geq 0$;
(b 5) for each $y \in R_{1}^{+}$there exists $b_{y} \in L_{1}, b_{y}(x) \geq 0$
such that $\left|b_{j}(x, \omega)\right| \leqslant b_{y}(x) \quad$ for $j=0, \ldots, k$,
$\omega \in X_{\infty+1}^{+}(y) \quad$ and almost all $x \in\langle 0,1\rangle$;
(b 6) there exists a continuous nonnegative function $\varphi(x, y)$ defined on R_{2}^{+}such that
$\left|b_{j}(x, \omega)-b_{j}\left(x, \omega^{\prime}\right)\right| \leqslant \varphi\left(|\omega|+\left|\omega^{\prime}\right|, y\right)\left|\omega_{k}-\omega_{k}^{\prime}\right|$ for $j=0, \ldots, k, \varphi, \infty \in R_{k+1}^{+}$and almost all $x \in\langle 0,1\rangle$;
(c 1) the function $c(x, \eta)$ satisfies the Caratheodory
conditions on $\langle 0,1\rangle$;
(c 2) there exists a nonnegative function $g_{c}(x, y)$ defined on $\langle 0,1\rangle \times R_{1}^{+}, g_{c}(\cdot, y)=L_{1}$ such that $|c(x, \eta)| \leqslant g_{c}(x, y)$ for each $\eta \in K_{g}(y)$ and almost all $x \in\langle 0,1\rangle$;
(c 3) $c(x,-\eta)=c(x, \eta) \geq 0, c(x, \eta)=0 \Longleftrightarrow \eta=0$;
(c 4) the partial derivatives $c_{j}(x, \eta)=\frac{\partial c}{\partial \eta_{j}}(x, \eta)$
exist on $\langle 0,1\rangle \times R_{R}$, satisfy the Caratheodory conditions on $\langle 0,1\rangle$ and they are bounded on $\langle 0,1\rangle \times K_{\infty}(y)$ for any $y \in \mathbb{R}_{1}^{+}(j=0, \ldots, k-1)$;
(c 5) $\quad \sum_{j=0}^{k=1} c_{j}(x, \eta) \eta_{j}>0, c_{j}(x, 0)=0$
for each $\eta \in R_{g e}, \eta \neq 0$ and almost all $\times \in\langle 0,1\rangle$;
(d l) the function $d(x, \eta, \tau)$ satisfies the Caratheodory conditions on $\langle 0,1\rangle$;
(d 2) for each $\tau \in \mathbb{R}_{\substack{+}}$ there exists a nonnegative function $g_{d \tau}(x, y)$ defined on $\langle 0,1\rangle \times \beta_{1}^{+}$,
$g_{d \tau}(0, y) \in L_{1}$ for each $y \in R_{1}^{+}$such that
$|d(x, \eta, \tau)| \leq g_{d \tau}(x, y)$
for each $\eta \in K_{q_{2}}(y)$ and for almost all $x \in\langle 0,1\rangle$;
(d 3) $d(x,-\eta, \tau)=d(x, \eta, \tau) \geq 0, d(x, 0,0)=0$;
(d 4) the partial derivatives
$d_{j}(x, \eta, \tau)=\frac{\partial d}{\partial \eta_{j}}(x, \eta, \tau), \quad d_{k_{+j}}=\frac{\partial d}{\partial \tau_{j}}(x, \eta, \tau)$ $\left(j=0, \ldots\right.$, Re $^{(j)}$) exist on $\langle 0,1\rangle \times R_{q_{k}} \times R_{k_{k}}^{+}$, satisfy the Caratheodory conditions on $\langle 0,1\rangle$ and they are bounded on $\langle 0,1\rangle \times K_{k}(y) \times K_{k}^{+}(y)$ for each $y \in R_{1}^{+}$; (d 5) $\sum_{j=0}^{k-1}\left(d_{j}(x, \eta, \tau) \eta_{j}+2 d_{k+j}(x, \eta, \tau) \tau_{j}\right) \geq 0$ for each $\eta \in \mathbb{R}_{k}$, $\tau \in \mathbb{R}_{\mathfrak{g}}^{+}$and almost all $x \in\langle 0,1\rangle$;
(d6) $d_{j}(x, 0,0)=0, j=0, \ldots, k-1$.
Let $\mu>0$. Then there exists a sequence $\left\{\lambda_{n}\right\}$ such that for $\lambda=\lambda_{n}$ there exists a weak solution $\mu_{n} \in \dot{W}_{k}^{\circ}$ of the Dirichlet boundary value probleme for the equation $(1.2)_{0}$ such that:
(i) $u_{n} \rightarrow 0$ (converges weakly in $\stackrel{\circ}{W}_{t}^{h}$);
(ii) $\gamma_{n}=\int_{0}^{1}\left(c\left(x, \eta\left(\mu_{n}\right)(x)\right)+\right.$ $+d\left(x, \eta\left(\mu_{n}\right)(x), \tau\left(\mu_{n}\right)\right) d x \nless 0$;
(iii)

$$
\int_{0}^{1}\left(a\left(x, \xi\left(u_{m}\right)(x)\right)+b\left(x, \omega\left(\mu_{n}\right)\right)\right) d x=k ;
$$

$$
\text { (iv) }\left[\sum _ { j = 1 } ^ { k - 1 } \left(\int_{0}^{1} c_{j}\left(x, \eta\left(\mu_{n}\right)(x)\right) \mu_{n}^{(j)}(x) d x+\right.\right.
$$

$$
+\int_{0}^{1} d_{j}\left(x, \eta\left(\mu_{n}\right)(x), \tau\left(\mu_{n}\right)\right) \mu_{n}^{(j)}(x) d x+
$$

$$
\left.\left.+2\left(\int_{0}^{1} d_{n+j}\left(t, \eta\left(\mu_{m}\right)(t), \tau\left(\mu_{n}\right)\right) d t\right)\left(\int_{0}^{1}\left(\mu_{n}^{(j)}(x)\right)^{2} d x\right)\right)\right]:
$$

$$
:\left[\sum _ { j = 0 } ^ { n _ { j } } \left(\int_{0}^{1} a_{j}\left(x, \xi\left(\mu_{m}\right)(x)\right) \mu_{m}^{(j)}(x) d x+\right.\right.
$$

$$
\left.\left.\left.+2\left(\int_{0}^{1} b_{j}(t, \omega)\left(\mu_{m}\right)\right) d t\right)\left(\int_{0}^{1}\left(\mu_{n}^{(j)}(x)\right)^{2} d x\right)\right)\right]=\lambda_{n}
$$

Theorem 2 (application of the Fredholm alternative). Let the notation introduced in Theorem 1 be observed. Suppose (a 1) - (a 8), (bl), (b 2), (b 4) - (b 6), (c 1) (c 4), (d l) - (d 4). Moreover, let the following conditions be fulfilled:
(a 9) $\sum_{j=0}^{k-1}\left(a_{j}(x, \xi)-a_{j}\left(x, \xi^{\prime}\right)\right)\left(\xi_{j}-\xi_{j}^{\prime}\right) \geq 0$
for each $\xi, \xi^{\prime} \in R_{m_{1+1}}$ and almost all $x \in\langle 0,1\rangle$;
(a 10) $a_{j}(x, t \xi)=t^{p-1} a_{j}(x, \xi)$
for each $\xi \in \mathbb{R}_{k_{k+1}}$, $t \in \mathbb{R}_{1}^{+}, j=0, \ldots, k$;
(b 7) $\sum_{j=0}^{\operatorname{sen}_{j}\left(b_{j}(x, \omega)-b_{j}\left(x, \omega^{\prime}\right)\right)\left(\omega_{j}-\omega_{j}^{\prime}\right) \geq 0}$
for each $\omega, \omega^{\prime} \in \mathbb{R}_{n+1}^{+}$and almost all $x \in\langle 0,1\rangle$;
(b 8)

$$
b_{j}(x, t \omega)=t^{12 / 2-1} \quad b_{j}(x, \omega)
$$

for each $\omega \in R_{k+1}^{+}, t \in R_{1}^{+}$and almost all $\times \in\langle 0,1\rangle$;

$$
\begin{equation*}
c_{j}\left(x, t_{\eta}\right)=t^{n-1} c_{j}(x, \eta) \tag{c6}
\end{equation*}
$$

for each $\eta \in R_{k}, t \in R_{1}^{+}, j=0, \ldots, k-1$ and almost all \times e $\langle 0,1\rangle$;
(di)

$$
\begin{aligned}
& d_{j}\left(x, t \eta, t^{2} \tau\right)=t^{n-1} d_{j}(x, \eta, \tau), \\
& d_{m+j}\left(x, t \eta, t^{2} \tau\right)=t^{p-2} d_{k+j}(x, \eta, \tau)
\end{aligned}
$$

for each $\eta \in R_{k}, \tau \in R_{k}^{+}, t \in R_{1}^{+}, j=0, \ldots, k-1$ and almost
all $x \in\langle 0,1\rangle$
Let $\lambda \neq 0$. Then the equation (1.2) $)_{w}$ has a weak solution $\mu \in \dot{W}_{\neq 1}^{k}$ for any right hand side $w \in I_{q}$ provided the equation (1.2) has only a trivial weak solution.

Theorem 3. Suppose (a 1), (a 2), (a 4) - (a 7), (bl) (b 6), (c 1), (c 2), (c 4), (d 1) - (d 4). Moreover, suppose:
(aIl) $a(x, \xi) \in C^{k+2}\left(\langle 0,1\rangle \times R_{k+1}\right)$;
(a 12) $\frac{\partial^{2} a}{\partial \xi_{k}^{2}}(x, \xi) \geq 0$ for each $\xi \in R_{k_{k+1}}$ and all $x \in\langle 0,1\rangle ;$
(a 13) the function $a(x, \xi)$ is a restriction of a continuous complex valued function $\tilde{a}(x, \tilde{\xi})$ defined on $\langle 0,1\rangle \times 0^{k+1}$, where 0 is an open set in the complex plane \mathbb{C} such that $\mathcal{O} \supset R_{1}$;
(a 14) the function $\tilde{a}(x, \tilde{\xi})$ and its derivatives
$\frac{d^{j}}{d x^{j}}\left(\frac{\partial \tilde{a}}{\partial \tilde{\xi}_{j}^{2}}(x, \tilde{\xi})\right)$ are analytic on 0^{e+1} for each $\times \in\langle 0,1\rangle, j=0, \ldots$, k
(b 9) $\quad b(x, \omega) \in C^{1}\left(\langle 0,1\rangle \times R_{n+1}\right)$;
(b 10) $\left.b_{m}(x, \omega)\right\rangle 0$ for each $x \in\langle 0,1\rangle$ and $\omega \in R_{m+1}^{+}$, $\omega \neq 0$;
(b ll) the function $b(x, \omega)$ is a restriction of a con-
tinuous complex valued function $\widetilde{\mathscr{b}}(x, \tilde{\omega})$ defined on $\langle 0,1\rangle \times 0^{k+1} ;$
(b 12) the function $\tilde{b}(x, \tilde{\omega})$ and its derivatives $\frac{\partial \tilde{b}}{\partial \tilde{\omega}_{j}}(x, \widetilde{\omega})$ are analytic on 0^{k+1} for each $x \in$ $e\langle 0,1\rangle, j=0, \ldots$, h ;
(c 7) $c(x, \eta) \in C^{k+2}\left(\langle 0,1\rangle \times R_{k}\right)$;
(c 8) $c(x, 0)=c_{j}(x, 0)=0$;
(c 9) the function $c(x, \eta)$ is a restriction of a continuonus complex valued function $\tilde{\boldsymbol{c}}(x, \tilde{\eta})$ defined on $\langle 0,1\rangle \times 0^{\text {m }}$;
(c 10) the function $\tilde{\boldsymbol{c}}(x, \tilde{\boldsymbol{\eta}})$ and its derivatives $\frac{d^{j}}{d x^{j}}\left(\frac{\partial \tilde{c}}{\partial \tilde{\eta}_{j}}(x, \tilde{\eta})\right)$ are analytic on 0^{k} for each $x \in$ $\epsilon\langle 0,1\rangle$ and $j=0, \ldots, k-1 ;$
(d 8) $d(x, \eta, v) \in C^{1}\left(\langle 0,1\rangle \times R_{s e} \times R_{n}^{+}\right)$;
(d 9) $d_{j}(x, \eta, \tau) \in C^{m_{1}+1}\left(\langle 0,1\rangle \times R_{m}\right) \quad$ for each fixed $\tau \in R_{k}^{+},(j=0, \ldots, k-1) ;$
(d 10) $d(x, 0,0)=d_{j}(x, 0,0)=0(j=0, \ldots, k-1, x \in\langle 0,1\rangle) ;$
(d 11) the function $d(x, \eta, \tau)$ is a restriction of a continuous complex valued function $\tilde{d}(x, \tilde{\eta}, \tilde{\tau})$ defined
on $\langle 0,1\rangle \times 0^{2 m}$;
(d 12) the function $\tilde{d}(x, \tilde{\eta}, \tilde{z})$ and its derivatives
$\frac{d^{j}}{d x^{j}}\left(\frac{\partial \tilde{d}}{\partial \tilde{\eta}_{j}}(x, \tilde{\eta}, \tilde{\tau})\right), \frac{\partial \tilde{d}}{\partial \widetilde{\tau}_{j}}(x, \tilde{\eta}, \tilde{\approx}) \quad$ are analytic on $\mathcal{O}^{2 k}$
for each fixed $x \in\langle 0,1\rangle$ and $j=0, \ldots$, ke-1.
Let $x>0$. Denote by Γ the set of all

$$
\gamma=\int_{0}^{1}(c(x, \eta(\mu)(x))+d(x, \eta(\mu)(x), \tau(\mu))) d x,
$$

where μ is a solution of the boundary value problem for the equation (1.2) 0 for some $\lambda \in R_{1}$ and satisfying

$$
\begin{equation*}
\int_{0}^{1}(a(x, \xi(\mu)(x))+b(x, \omega(\mu))) d x=r . \tag{1.5}
\end{equation*}
$$

Then the set Γ is at most countable and the only possible accumulation point of this set is zero.

Remark 2. If the assumptions (a 10), (b 8), (c 6) and (d7) are fulfilled then the set Λ of all $\lambda \in R_{1}$ for wich there exists a solution of (1.2) satisfying (1.5) is up to the multiplicative constant equal to the set Γ introduced in Theorem 3.

In the next sections we shall prove Theorems 1-3. The proofs are based on [4, Theorem 2], [2, Theorem 3] and [5, Theorem 3.21. We do not write these theorems here and refer the readers to the cited papers.

2. Proof of Theorem 1.

$$
\text { Denote }\left(W_{k}^{\infty}\right)^{*}=W_{q}^{-k} \quad \text { (the dual space) and let }
$$

(μ^{*}, μ) be the value of the functional $u^{*} \in W_{q}^{-k}$ at the point $\mu \in \stackrel{\dot{W}}{k}_{k}^{k}$. For $\mu \in \stackrel{\circ}{W}_{\uparrow}^{k}$ set
(2.1) $f(\mu)=\int_{0}^{1}(a(x, \xi(\mu)(x))+b(x, \omega(\mu))) d x$,
(2.2) $g(u)=\int_{0}^{1}(c(x, \eta(u)(x))+d(x, \eta(u)(x), \tau(u))) d x$.

The functional $£$ and g are even on the space $\stackrel{\circ}{W}_{\uparrow}^{\&}$ and they have the Fréchet derivatives f^{\prime} and g^{\prime} defined by (2.3) $\left(f^{\prime}(\mu), k\right)=\sum_{j=0}^{k}\left(\int_{0}^{1} a_{j}(x, \xi(\mu)(x)) h^{(j)}(x) d x+\right.$

$$
\left.2\left(\int_{0}^{1} b_{j}(t, \omega(\mu)) d t\right)\left(\int_{0}^{1} \mu^{(j)}(x) h^{(j)}(x) d x\right)\right)
$$

(2.4) $\left(g^{\prime}(\mu), h\right)=\sum_{j=0}^{k-1}\left(\int_{0}^{1}\left(c_{j}(x, \eta(\mu)(x))+\right.\right.$
$\left.+\alpha_{j}\left(x, \eta(\mu)(x), \tau^{\prime}(\mu)\right)\right) h^{(j)}(x) d x$
$\left.+2\left(\int_{0}^{1} d_{k+j}(t, \eta(\mu)(t), \tau(\mu)) d t\right)\left(\int_{0}^{1} \mu^{(j)}(x) h^{(j)}(x) d x\right)\right)$ for each $\mu, h \in{\underset{W}{k}}_{k}^{k}$.

We obtain immediately:

(2.5) $f(\mu)=0 \Longleftrightarrow \mu=0$ (from (a 2), (a 3), (b 1));
(2.6) $\quad\left(\varepsilon^{\prime}(\mu), \mu\right) \geq M f(\mu) \geq M c_{1}\|\mu\|_{h, \uparrow}^{12} \quad$ (from (a 2), (a 6), (b 1), (b 3));

(2.8) $g(\mu) \geq 0, g(\mu)=0 \Longleftrightarrow \mu=0$ (from (с 3), (d 3));
(2.9) g^{\prime} is a atrongly continuous mapping (i.e., it maps weakly convergent sequences in ${\underset{W}{W}}_{\text {h }}^{\text {s }}$ onto strongly convergent sequences in $W_{2}^{-\&}$), (it follows from the complete continuity of the imbedding from the space \hat{W}_{n}^{∞} into c^{k-1}) - thus g^{\prime} is also uniformly continuous on each bounded subset of $\dot{W}_{\mathfrak{n}}$; ;
(2.10) f^{\prime} is uniformly continuous on each bounded subset of $\dot{W}_{\text {R }}^{\text {n (from (a 7), (b 6)); }}$
(2.11) $g^{\prime}(\mu)=0 \Longrightarrow \mu=0(\operatorname{Prom}(c 5),(\mathrm{d} 5),(\mathrm{d} 6))$;
(2.12) $\mu_{n} \rightarrow \mu, \varepsilon^{\prime}\left(\mu_{n}\right) \rightarrow x \rightarrow \mu_{n} \rightarrow \mu$ (from (a 2), (a 6), (b 5), (a 8), (b 4)).

Thus all assumptions of [4, Theorem 2] are verified and from the assertion of this theorem (see also [7; Chapt. III]) we obtain the assertion of Theorem 1 .

3. Proof of Theorem 2.

Denote $T=f^{\prime}, S=g^{\prime}$. Under assumptions of Theorem 2 the mappings T and S are odd and $(\beta-1)$-homoge-
neous (it followe from (a 10), (b 8), (c 6), (d7), (d 3), (c 3), (a 3)). Moreover,
(3.1) T is strictly monotone (i.e., $(T(\mu)-T(v), \mu-v)>0$ for each $\mu, v \in \dot{W}_{k}^{\infty}, \mu \neq \psi$) and from (2.6) with using the main theorem about monotone operators (see e.g. [7, Chapt. IIJ) we obtain that T is surjective. Analogously as (2.12) we can prove that T is a homeomorphism from ${\underset{\sim}{w}}_{\infty}^{\infty}$ oxto W_{2}^{-k}; (3.2) there exist two constants $K, I>0$ such that $L\|\mu\|_{k, \eta}^{n-1} \leq\|T(\mu)\|_{-m, q} \leq K\|\mu\|_{k, \eta}^{n-1} \quad$ for each $\mu \in W_{k}^{\infty}$.

Thus together with (2.9) we verified all assumptions of [2, Theorem 3] (see also [7, Chapt. II]). From this we obtain the assertion of Theorem 2.

4. Proof of Theorem 3.

To prove Theorem 3 we shall apply [5, Theorem 3.2] (see also [7, Chapt. V]). Denote $x_{1}=C^{2 k} \cap \dot{W}_{n}^{\sin }, X_{2}=C$, $X_{3}=$ Win $_{k}^{k}$. For $\mu \in X_{1}$, v $\in X_{2}$ we define $\langle\mu, v\rangle=\int_{0}^{1} \mu(x) v(x) d x$
the bilinear form on $X_{1} \times X_{2}$ with the following properties: (4.1) for each $\mu \in X_{1},\langle\mu, \cdot\rangle$ is bounded linear functional on X_{2};
(4.2) let $v \in X_{2}$ and $\langle\mu, v\rangle=0$ for each $\mu \in X_{1}$. Then $v=0$.

Lempa 1. Suppose (a 11), (a 12), (e 7), (d9), (bl0). Let $\lambda \neq 0$ and let $\mu \in \dot{W}_{\uparrow}^{\circ}$ be a weak solution of the equation (1.2) $)_{0}$. Then $\mu \in x_{1}$.

Proof. Suppose that μ is not identically zero on $\langle 0,1\rangle$. Put

$$
\begin{aligned}
K_{j} & =2 \int_{0}^{1} b_{j}(t, \omega(\mu)) d t \quad(j=0, \ldots, v), \\
K_{i+k+1} & =2 \int_{0}^{1} d_{n+i}(t, \eta(\mu)(t), \tau(\mu)) d t(i=0, \ldots, k-1)
\end{aligned}
$$

The identity (1.3) o can be written as follows:

$$
\begin{equation*}
\int_{0}^{1} P(x) h^{(k)}(x) d x=0 \tag{4.3}
\end{equation*}
$$

for each $\& \in \mathbb{W}_{\neq 2}^{\infty}$, where

$$
\begin{aligned}
& P(x)=\lambda a_{k 2}(x, \xi(\mu)(x))+\lambda K_{2} \mu^{(n)}(x)+ \\
+ & \sum_{j=0}^{2-1}(-1)^{k-j} \cdot \int_{0}^{x} \cdot \frac{(x-s)^{n-j-1}}{(2-j-1)!}\left[\lambda a_{j}(s, \xi(\mu)(s))+\right. \\
+ & \lambda K_{j} \mu^{(j)}(s)-c_{j}(s, \eta(\mu)(s)) \\
- & \left.d_{j}(s, \eta(\mu)(s), \tau(\mu))-K_{k+1+j} \mu^{(j)}(s)\right] d s \quad .
\end{aligned}
$$

The function P is of the class I_{q}. Let us show that the following assertion ($*$) holds: there exist constants \Re_{0}, \ldots, ren 1 such that

$$
\text { (4.4) } P(x)+\imath_{0}+\imath_{1} x+\ldots+\imath_{k-1} x^{k_{k}-1}=0
$$

almost everywhere on $\langle 0,1\rangle$ ．
For the proof of the assertion（ $*$ ）denote by p_{0}, \ldots ．．．，亿侯－1 such constants that

$$
\int_{0}^{1}\left(P(x)+p_{0}+\imath_{1} x+\ldots+\eta_{k-1} x^{k-1}\right) x^{j} d x=0
$$

for each $j=0,1, \ldots$, b－1．
The relation (4.3) implies

$$
\int_{0}^{1}\left(P(x)+p_{0}+p_{1} x+\ldots+p_{k-1} x^{k-1}\right) h^{(k)}(x) d x=0
$$

for each $h \in{\underset{W}{1}}_{\Re}^{h}$ ．Suppose $\varphi \in L_{\neq}$and set

$$
h(x)=\int_{0}^{x} \frac{(x-t)^{k-1}}{(k-1)!}\left(\varphi(t)+b_{0}+b_{1} t+\ldots+b_{k-1} t^{k-1}\right) d t,
$$

where $b_{j}(j=0, \ldots, k-1)$ are chosen so that $h \in \mathcal{W}_{k}^{\infty}$ ． Substituting the function h into（4．3），we obtain

$$
\begin{aligned}
0 & =\int_{0}^{1}\left(P(x)+p_{0}+\ldots+k_{m-1} x^{k-1}\right)\left(\varphi(x)+b_{0}+\ldots\right. \\
& \left.\ldots+b_{m-1} x^{k-1}\right) d x= \\
& =\int_{0}^{1}\left(P(x)+n_{0}+\ldots+p_{k-1} x^{k-1}\right) \varphi(x) d x \ldots
\end{aligned}
$$

Thus we proved（ $*$ ），since the function $\varphi \in L_{\text {ィ }}$ was arbitrary．Defining
$\Phi\left(x, \xi_{k}\right)=\lambda a_{k}\left(x, \eta(\mu)(x), \xi_{k}\right)+\lambda K_{k} \xi_{k}+$ $+\sum_{j=0}^{m-1}(-1)^{k-j} \int_{0}^{x} \frac{(x-n)^{k-j-1}}{(k-j-1)!}\left[\lambda a_{j}(s, \xi(\mu)(s))+\lambda K_{j} \mu^{(j)}(b)-\right.$
$-c_{j}(s, \eta(\mu)(s))-d_{j}(s, \eta(\mu)(s), \tau(\mu))-$
$\left.-K_{k+1+j} \mu^{(j)}(s)\right] d s+p_{0}+p_{1} x+\cdots+p_{m-1} x^{k-1}$
for $x e\langle 0,1\rangle$ and $\xi_{\nwarrow} \in \mathbb{R}_{1}$, we have (for $\lambda>0$)
(4.5)

$$
\frac{\partial \Phi}{\partial \xi_{\Re}}\left(x, \xi_{k}\right)=
$$

$=\lambda \frac{\partial^{2} a}{\partial \xi_{k}^{2}}\left(x, \eta(\mu)(x), \xi_{k}\right)+\lambda K_{k_{0}} \geq \lambda K_{k}>0$.
Hence for all $x \in\langle 0,1\rangle$ the equation

$$
\begin{equation*}
\Phi\left(x, \xi_{k}\right)=0 \tag{4.6}
\end{equation*}
$$

has at most one solution $\xi_{k}=\xi_{k}(x)$.
Since
(4.7)

$$
\Phi\left(x, \mu^{(k)}(x)\right)=0
$$

(with respect to (4.4)) almost everywhere on $\langle 0,1\rangle$ we choose x_{0} e $(0,1)$ such that (4.7) holds with $x=x_{0}$. Thus on some neighborhood u of the point x_{0} there exlists a function $\xi_{k}(x)$ satisfying on u the equation (4.6), $\xi_{m}\left(x_{0}\right)=\mu^{(m)}\left(x_{0}\right)$ and in virtue of Implicit Fundion theorem (and thus also $\mu^{(m)}$) is continuous on u. So $\mu^{(m)} \in C$. As a consequence of (a 11), (c 7) and $\mu \in C^{m}$ we have $\Phi \in C^{1}\left(\langle 0,1\rangle \times \boldsymbol{R}_{1}\right)$ and again from Implicit Function Theorem yields $\xi_{n}(x) \in C^{1}$, hence $\mu \in C^{k+1}$. In the same way step by step we obtain $\mu \in c^{m+2}, \ldots$ $\ldots, \mu \in C^{2 m}$.

Lemma _2. Suppose (a 11), (a 13), (a 14), (b 9), (bill), (b 12). Then the functional $£$ defined by (2.1) is real analytic on the space x_{1} (in the sense of [8]). Moreover, there exists a unique mapping $F: X_{1} \rightarrow X_{2}$ with the following properties:
(4.8) $\left(f^{\prime}(\mu), h\right)=\langle h, F(\mu)\rangle$ for each $\mu, h \in X_{1}$;
(4.9) F is real analytic from X_{1} into X_{2}.

The mapping F is defined by

$$
\begin{aligned}
F(\mu)(x) & =\sum_{j=0}^{m}(-1)^{j}\left[\frac{d^{j}}{d x^{j}} a_{j}(x, \xi(\mu)(x))+\right. \\
& \left.+2 \mu^{(2 j)}(x) \int_{0}^{1} b_{j}(t, \omega(\mu)) d t\right]
\end{aligned}
$$

for each $\mu \in X_{1}$.
Proof. Denote by $\tilde{X}_{1}, \tilde{\boldsymbol{x}}_{2}$ the complectifications of the spaces X_{1} and X_{2}. For $\mu \in \tilde{X}_{1}$ define

$$
\tilde{f}(\mu)=\int_{0}^{1}(\tilde{a}(x, \tilde{\xi}(\mu)(x))+\tilde{b}(x, \tilde{\omega}(\mu))) d x,
$$

$$
\tilde{F}(\mu)(x)=\sum_{j=0}^{\sum_{j}^{0}}(-1)^{j}\left[\frac{d^{j}}{d x^{j}}\left(\frac{\partial \tilde{a}}{\partial \tilde{\xi}_{j}^{j}}(x, \widetilde{\xi}(\mu)(x))\right)+\right.
$$

$$
\left.+2 \mu^{(2 j)}(x) \int_{0}^{1} \frac{\partial \widetilde{\sigma}}{\partial \widetilde{\omega}_{j}}(t, \tilde{\omega}(\mu)) d t\right]
$$

The functional $\tilde{\mathbf{f}}$ and the operator \tilde{F} are analytic on the space \tilde{X}_{1}. From this, from [1, Theorem 5.7] an using the inter ration by parts we obtain our assertion.
Analogously we can prove
Lemma 3. Suppose (c 7), (с 9), (c 10), (d 8), (d 9), (d 11). Then the functional of defined by (2.2) is real ana-
lytic on the space X_{1} and the mapping $G: X_{1} \rightarrow X_{2}$ defined for $\mu \in X_{1}$ by

$$
\begin{aligned}
G(\mu)(x) & =\sum_{j=0}^{m-1}(-1)^{j}\left[\frac { d ^ { j } } { d x ^ { j } } \left(c_{j}(x, \eta(\mu)(x))+\right.\right. \\
& \left.+d_{j}(x, \eta(\mu)(x), \tau(\mu))\right)+ \\
& \left.+2 \mu^{(2 j)}(x) \int_{0}^{1} d_{k+j}(t, \eta(\mu)(t), \tau(\mu)) d t\right]
\end{aligned}
$$

is a unique mapping with the following properties:
(4.10) $\left(g^{\prime}(\mu), h\right)=\langle h, G(\mu)\rangle$ for each $\mu, h \in X_{1}$;
(4.11) G is real analytic on X_{1}.

Moreover, the map.ing G is completely continuous on X_{1}.
Lemma 4. Let the assumptions of Lemma 1 be satisfied. Set

$$
\begin{aligned}
& \quad J(h)(x)=(-1)^{k}\left[\frac{\partial}{\partial \xi_{k g}}\left(a_{k c}\left(x, \xi\left(\mu_{0}\right)(x)\right)\right)+\right. \\
& \left.+\int_{0}^{1} b_{k}\left(t, \omega\left(\mu_{0}\right)\right) d t\right] h^{(2 k)}(x), X(k)=d F\left(\mu_{0}, k\right)-J(k) \\
& \text { for each } \mu_{0}, h \in X_{1} .
\end{aligned}
$$

Then the mapping J is an isomorphism from $X_{\mathcal{1}}$ onto X_{2} and the operator K is completely continuous.
(The proof is obvious.)
Let $x>0,0<\delta<\Delta$. Set
$Q(\delta, \Delta)=\left\{\mu \in \dot{W}_{n}^{\ell}:: £(\mu)=\mu\right.$ and there exists $\lambda, \delta \leqslant$
$\leqslant|\lambda| \leqslant \Delta$ such that μ is a weak solution of (1.2) $\}$. Under the assumptions of Lemma 1 we have not only

$$
\begin{aligned}
& Q\left(\sigma^{\sigma}, \Delta\right) \subset X_{1} \quad \text { but, moreover, } Q\left(\sigma^{\sigma}, \Delta\right) \subset \\
& \subset C^{2 k+1} \cap{\stackrel{\circ}{W_{k}} k .}^{l} \quad l
\end{aligned}
$$

Lemma 5. Under the assumptions of Theorem 3 the set $Q\left(\sigma^{\sigma}, \Delta\right)$ is a compact subset of the space X_{1}.

Proof. The set $Q\left(\sigma^{\prime}, \Delta\right)$ is bounded in X_{3}. So the coefficients $\Re_{0}, \ldots, \Re_{k-1}$ from the relation (4.4) afe bounded independently of $\mu \in Q\left(\sigma^{\sigma}, \Delta\right)$. Analogously as in the proof of Lemma 1 consider the equation

$$
\begin{aligned}
& \text { (4.12) } \Psi\left(x, \xi_{k}\right)=\sum_{j=0}^{k-1}(-1)^{k-j-1} \int_{0}^{x} \frac{(x-s)^{k-j-1}}{(k-j-1)!}\left[a_{j}(s, \xi(\mu)(s))+\right. \\
&+K_{j} \mu^{(j)}(s)-\frac{1}{\lambda} c_{j}(s, \eta(\mu)(s))- \\
&-\frac{1}{\lambda} d_{j}(s, \eta(\mu)(s), \tau(\mu))- \\
&\left.-\frac{1}{\lambda} K_{k+j+1} \mu^{(j)}(s)\right] d s-p_{0}-p_{1} x-\ldots-p_{k-1} x^{k-1},
\end{aligned}
$$

where $\Psi\left(x, \xi_{k}\right)=a_{k}\left(x, \eta(\mu)(x), \xi_{k}\right)+K_{k} \xi_{s k} \cdot$
In virtue of the compact imbedding from W_{k}° into C^{k-1} the right hand side in (4.12) is compact (we consider $\mu \in$ $\in Q(\delta, \Delta)$ and $\delta \leqslant|\lambda| \leqslant \Delta)$. From Implicit Function Theorem there exists a unique solution $\xi_{\text {gese }}(x)$ on the interval $\langle 0,1\rangle$ for each $\mu \in Q(\sigma, \Delta)$. There exists $M_{0}>0$ such that for each $|\lambda| \in\langle\delta, \Delta\rangle, \mu \in Q(\delta, \Delta)$ and $x \in\langle 0,1\rangle$ it is $\left|\xi_{q \mu \mu}(x)\right| \leqslant M_{0}$. From the unicity of the implicit function we have $\|\mu\|_{C l} \leq M_{0}$
for each $\mu \in Q(\delta, \Delta)$.
Differentiating the equation (4.4) we obtain the equation
(4.13) $\mu^{(n+1)}(x)=\frac{1}{\frac{\partial^{2} q}{\partial \xi_{m}^{2}}(x, \xi(u)(x))+K_{m}}$
$\left\{\frac{d}{d x}\left(\sum_{j=1}^{k-1}(-1)^{k-j} \int_{0}^{x} \frac{(x-s)^{k-j-1}}{(k-j-1)!}\left[a_{j}(s, \xi(u)(s))+\right.\right.\right.$
$+K_{j} \mu^{(j)}(s)-\frac{1}{\lambda} c_{j}(s, \eta(\mu)(s))-$
$\left.-\frac{1}{\lambda} d_{j}(s, \eta(\mu)(s), \tau(\mu))-\frac{1}{\lambda} X_{\mu+j+1} \mu^{(j)}(s)\right] d s+$
$\left.+p_{1}+2 p_{2}+\ldots+(k-1) p_{k-1} x^{k-1}\right\}$.
The right hand side in (4.13) contains only the derivatives of the order $\leq k$. Thus there exists a constant $M_{1}>0$ such that $\|\mu\|_{C k+1} \leq M_{1}$ for each $\mu \in Q\left(\sigma^{r}, \Delta\right)$. Repeating this consideration k-times we obtain $\|\mu\|_{c}^{2 k+1} \leq$ $\leq M_{2}\left(M_{2}>0\right)$ for each $\mu \in Q\left(0^{r}, \Delta\right)$. Thus from the lask eatimation and the Arzela theorem we obtain that the set $Q\left(\sigma^{\sigma}, \Delta\right)$ is a compact subset of $c^{2 m}$.

In this section we verified all assumptions of the general result [5, Theorem 3.2]. From this follows the assertion of our Theorem 3.

> References
[1] A. ALEXIEWICZ and W. ORLICZ: Analytic operations in real Banach apaces, Studia Math.XIV(1954),47-78.
[2] S. FUČfK: Note on the Fredholm alternative for nonlinear operators, Comment.Math.Univ.Carolinae 12(1971),213-226.
[3] S. FUČfk, O. JOHN and J. NECXAS: Schauder bases in Sobolev spaces, Comment.Math.Univ.Carolinae 13 (1972),163-175.
[4] S. FUCfik and J. NECZAS: Ljusternik-Schnirelman theorem and nonlinear eigenvalue problems, Math.Nachr. 53(1972), 277-289.
[5] S. FUČK, J. NECAS, J. SOUČEK and V. SOUČEK: Upper bound for the number of critical levels for nonlinear operators in Banach spaces of the type of second order nonlinear partial differential operators, Journ.Funct.Anal.11(1972), 314-333.
[6] S. FUČfK, J. NEČAS, J. SOUČEK and V. SOUČEK: Note to nonlinear spectral theory: Application to the nonlinear integral equations of the Lichtenstein type (to appear).
[7] S. FUČfk, J. NEČAS, J. SOUČEK and V. SOUČEK: Spectral analysis of nonlinear operators, Lecture notes in mathematics No 346 , Springer 1973.
[8] E. HILLE and R. PHILLIPS: Functional analysis and semigroups, Providence 1957.
[9] J. NECAS: Fredholm theory of boundary value problems for nonlinear ordinary differential operators, Theory of Nonlinear Operators, Proceedings of a Summer School held in September 1971 at Babylon,Czechoslovakia, pp.85-120,Academia, Prague 1973.
[10] M.M. VAJNBERG: Variational methods for the study of nonlinear operators, Holden-Day,1964.

Matematicko-fyzikalnf fakulta
Karlova universita
Sokolovaká 83, Praha 8
Ceskoslovensko
(Oblatum 30.7.1973)

