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Commentstiones Mathematicae Universitatis Carolinae 

15,2 (1974) 

DUAL PROPERTIES FOR UNCONDITIONALLY CONVERGING OPERATORS 

Joe HOWARD, Stillwater 

Abstract: An operator T: X—*y iX9y are Banach 
spaces) is unconditionally converging (uc) if it maps 
weakly unconditionally converging series into unconditio
nally converging series. It is known that T' (the dual of 
T ) is a uc operator if and only if T is i-f-cosingu-
lar. The X^ -cosingular' operator is classified and then 
used to characterize Banach spaces with property V (stu
died by Pelczynski). 

Key words: Unconditionally converging operator,-weak
ly compact operator, dual space. 

AMS, Primary: 46B10 Ref. 2. 7.972.22 

Secondary: 47B99 

It is shown in t9] that an operator T: X~>Y whe

re X and y are Banach spaces is an i^ -cosingular 

operator if and only if its conjugate T' is an uncondi

tionally converging (uc) operator. This paper is a study 

of Z<i -cosingular operators and other dual properties for 

uc operators. 

We intend to preserve the notation and terminology 

of [23. All operators are to be continuous and all spaces 

are to be Banach spaces. A series S x ^ of elements of 
<TV 

a Banach space X is weakly unconditionally converging 

Cwuc) [respectively unconditionally converging (uc)3 if 

for every real sequence i t ^ \ with ivm-t^ • 0 [ respect-
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ively for every bounded real sequence i t^} ] the series 

5S % x<n, is convergent. 

Definition 0.1. Let X and y be Banach spaces. 

A linear operator T: JC—+Y is unconditionally converg

ing (uc operator) if it sends every wuc series in X into 

uc series in 7 . 

Definition 0.2. A linear operator TJ X — * 7 is -£4-

cosingular provided that for no Banach space E isomorph

ic to X-| does there exist epimorphisms ^ $ X — • £ and 

h*^ x y—* E such that the diagram 

T 
x *> y 

\ ч 

is commutative. 

From C31 we know that T is a uc operator if and on

ly if T has no bounded inverse on a subspace E of X 

isomorphic to c
Q
 . 

1. X ^ -cosingular operators 

From definition 0.2 it is clear that if T : X—>7 and 

if in either X or 7 a subspace" isomorphic to JL^ cannot 

be complemented, then T is an JL^ -cosingular operator 

(see also £9], p.38). Some Banach spaces which satisfy 

this condition are Z } CCS) f cQ } c f and reflexive spaces. 

It is shown in [4] that every weakly compact operator 

is Z^ -cosingular. The following proposition gives a 
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weaker condition for an operator to be <£«j -cosingular . 

Proposition 1.1. If TiX—*Y takes bounded se t s 

of X into sets of ¥ such that every sequence contains a 

weak Cauchy subsequence, then T i s an Z^ -cosingular ope

ra to r . 

Proof; Assume that T i s not an Z^-cosingular ope

r a t o r , i . e . that there exis t epimorphisms M*^ t X—• Z^ 

and h,% \ Y—* Z^ such that the diagram 

T 
-з»У 

4 Д /K 

is commutative. Since T maps bounded sets into set© such 

that every sequence contains a weak Cauchy subsequence, then 

fa,^ m Mf^ T i X — * Z*i must do the same. Let X. deno

te the unit sphere of X . Then since Z^ is weakly comple

te, every sequence of ^ ( K ) contains a weakly convergent 

subsequence. Hence M,^ is weakly compact> and since fo><\ 

is an epimorphism, Z^ must be reflexive. This contradic

tion completes the proof. 

Prom [41 we know that if T'* Y*—*• X' is an £1-co-

singular operator, then T s X — * Y is a uc operator. The 

following example shows that the converse is not true. This 

example was communicated to me by A. Pelczynski. 

Example 1.2. If T; X— * Y is a uc operator, then 

T is not necessarily an X 1 -cosingular operator. 

Proof: Let X be a Banach space with a boundedly com-

- 275 -



plete basis. Then by theorem 1 of C53 there exists a se

parable space E such that E"* CUE + F where JE is the 

natural image of 32 in £" and where F is isomorphic 

to X . 

Now put X « JL^ and V *» E' « Since E" is sepa

rable, T » £' is separable. Hence y does not contain a 

subspace isomorphic to c0 because if a conjugate Banach 

space contains a subspace isomorphic to c0 , it contains a 

subspace isomorphic to JL& by theorem 4 of £1] and hence 

7 could not be separable. 

Ttm& the identity operator 1 s Y~*Y is a uc ope

rator but its conjugate I' is clearly not an Z^ -cosin-

gular operator., 

2* Property V 

We now consider property V defined by A. Pelczyn-

ski in £73. 

Definition 2.1» A Banach space X is said to have 

the property V if every set X in X satisfying the 

condition C + +) JUm, s#v(y #i # » 0 for every wuc se-

ries S x^ in X/ is weakly sequentially compact. 
i\t 

The following proposition gives a connection between 

property V and JL^ -cosingular operators. 

Proposition 2+2* The following conditions are equi

valent* 

(a) y has property Y* 

(b) For every Banach space X , every X 1 -cosingular 
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operator Tt X —*y i s weakly compact. 

Proof: (a) implies (b) : Let X be an arb i t ra ry Ba~ 

nach space and l e t T i X—>y be such that T i s X^ -

cos ingular . Then T' i s uc. We show T i s a weakly compact 

ope ra to r . Let 4*^ 3 be an a rb i t r a ry bounded sequence in 

X and l e t 2 fifa be an a rb i t r a ry wuc ser ies in Y' -

S ince T' i s a uc operator , 2 *£' ty'm, ^a a u c series in 

X* . Therefore by condition (H) of 161 

where 0 i s the canonical map of X into X" . Prom defi

n i t i o n 2*1 ̂ T ^ l contains a weakly convergent subsequence. 

Therefore T i s a weakly compact operator, (b) implies (a): 

Le t X S y be such that &try *wfi>w>'(ni,)mQ for a l l wuc se-

r i e s 2 * ^ in y / , Then X i s bounded by the Uniform 

Boundedness Pr inc ip le . Denote by £(X) the space of a l l 

bounded rea l valued functions on X with the norm \l£ I » 

« hvjn, £(%>) and consider the l inear transformation 3:7'-+ 

—*> BCK) where %'(,<$-)« J ^ C^') for a l l . y?. mY* and 

/£. c X . By (+ +) of definit ion 2 . 1 , S i s a uc operator. 

We show S * T' where T : ^CJC) —*>y i s defined by 

T£ =r £ *>£CJfe,) . We have 
VeK 

< T y , n = <<&', T£ > 

IV 

« 2 <*!,Jk,£CJk)> 
K ' 

» 2£C.%)<iih/,A> 
and 
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< S ^ ' , £ > = ££CJk,)&Q.'(to,) 
K 

K 
Therefore 1%f -« .%* for every y? e Y'. So 5 = T ' i s a uc 

operator, i«.e.*, T i s X^-cosingular . By assumption, T is 

weakly compact and hence T#/ i s weakly compact. 

Let { ^ 2 be an a rb i t r a ry sequence in Y , Set T^£ = £(t^) 

f o r £ e B C K ) and for nv * 4,1 Then II F^. II » 4 for 

every m, , and iT^ } i s a bounded sequence in 13(K)3\ 

Now T" ]£<#'> = P ; ( T V > - * V < f n > - ^m, <V> for a l l 

ttf e 3T' . Therefore T " F X » 3 ^ for a l l /n- .Since T" i s 

weakly compact, one may choose from the sequence {Dtyfa, ? a 

weakly convergent subsequence* Hence f ^^1 has a subsequen

ce which weakly converges. Therefore X i s a weakly se

quentially compact set in J , 

3* Applications 

A space X is said to have the property D.P*. (Dunford-

Ptttis) if for every Banach space y every weakly compact 

operator T:X—& Y maps weak Cauchy sequence in JC into 

Cauchy sequences in the norm topology of J . W© now consider 

a Banach space with both properties D.P. and Y' « 

Theorem 3.1. Let y have properties DP and V and let 

Ts X—a»y . Then the following are equivalent: 

(a) T is strictly cosingular LB] 

(b) T is Zn -cosingular 

(c) T is weakly compact 

(d) T takes bounded sets of .X into sets of Y such 
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that every sequence contains a weak Cauchy subsequence. 

Proof: (a) implies (b): This is clear from the de

finition of strictly cosingular given in [8J. (b) implies 

(c): y has property V" • (c) implies, (a): T has property 

DP, hence if T is weakly compact,, then T is strictly co-

lar by proposition 4(b) of [83. 

Hence (a), (b), and (c) are all equivalent. The proof 

will be complete if (d) implies (b) and (c) implies (d). 

(d) implies (b): This follows from proposition 1.1. (c) im

plies (d): This is clear from the definition of a weakly 

compact operator. 

Remark: Examples of spaces that have properties DB 

and V are L^ , 4^ and every abstract L -space. 

Suppose y has property V . What additional proper

ties on y would imply y reflexive? Two such conditions 

are given in [73* We give a different proof to one of the

se and also prove Y reflexive for the following condi

tion. 

Definition 3.2. A Banach space 1 is almost refle

xive if every bounded sequence in X contains a weak Cau

chy subsequence* 

Proposition 3.3. Let y have property V « Then if 

either 

(1) no subspace isomorphic to X^ is complemented in Y 

or % 

(2) y is almost reflexive 

then y is reflexive. 
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Proof: Consider the i d e n t i t y operator I ; T—* 7 . 

If (1) i s t rue , then c lear ly I i s JL^ -cos ingular . If 

(2) i s t rue , I i s X^ -cosingular by proposi t ion 1 .1 . So 

in e i ther case I i s JL^ -cosingular and hence weakly com

pact by proposition 2.2. So 7 i s r e f l ex ive . 
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