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Abstract: A generalized heat potential and its conti-

‘nuous extension from an open set with non-smooth boundary
to its closure is studied.
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m A
For x = [zq,..., meJsR. ;,m =3 we shall

write » = L%, %meql= [x,t] . where x € R™, tex! . simi-

larly for the differential operator V=1L[4,,...,3,, ,] we put

A f
Y =I[08,y.0.,3,1. Let G be the function defined on
RM+4 by

G(z)w;f4 cepn (120 /b2y () for Zmeq =0,

Gz)=10

for Zp,, £ 0.
Suppose D is an open set in R™*!  ywith the boundary
B for which By=Bn{lx,tleR™ t .22}

for any = e R' .

is compact

¢ will denote the collection of all bounded continuous

functions on B and & will be the space of all infinitely
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differentiable functions ¢ with compact support

Mtqek”” .
For any z_eR.'m"’" and ge D(z)={ped;z¢rpto}
we define

To(z)= -_-f(ﬁ”, Glx-w). 699(mr)+ G(x-w)d,  puw)dw .
b

m+1

The integral on the right-hand side is finite for any
g eD(z). Aa. Tg(z) depends on values of $ ina

neighborhood of boundary B only we can define T (z)

even for any ¢ € 2 by means of
T (2) % 7§ ()

where P € D(x) and @(x).= F(z)  in a neighborhood

of B. Ty (=) may be considered as a distribution over

D and it is closely connected with classical heat poten-

tials of single and double layer.
Three following questions are solved:
(1) When there is a measure ¥,  such that
Tg(z) = [pdy, =<9,
for every @ € d(z)? |
Repiacing g by £ we can define Tf(z) =<£,9,>

for any £€ ¢ provided », from (1) exista.

(2) When Tf(z) is a well-defined function of the va-
riable # on) for any f e € ?

(3) When this function T£ defined an D can be conti-
nuously extended fromD to DuB for any £e € ? .
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The case. m.= 1 was investigated for special D
by M. Dont in [1) and similar questions were solved by J.
‘Kr&l in [2),[3) and by the author in [4].

Recall that for a measurable set M ¢ R™*! its pe-

* rimetr P (M) is defined by

(M) = i &d&vw(w)dv

where @ =L@y Wy, ] rangea over system of all functions

with components w; ed, 4 =1,2,..,m+1 satiafying
mz+4 2, ot
-'a"
320 %% w)é& 1, welk

Put P=4{x €R™; Ixl = 1%, Z=(0,00)xT . We define
for any z =[x,t] and (p,y,8) e(0,@)x(0,@)=xT

2
A

S, (@, 7,8)=L[Z+¢b,2,, p

Given (y,8)e Z let S(y,6) hbe the parabola described .
by S,¢+,9,6) on (0,0). A point reS=S(7,8) is
termed a hit of the parabola § on D provided each neigh-
borhood of & meets both S A D ‘and $-D ' in a set
of positive H, -measure where H 4 is the % -dimensio-
nal Hausdorff measure. The number of all hita of §(¥, 6)

on D will be denoted by m.(z, o, 6) . We put for any

x e Rm+4

: -1
ar(z) = fe.:"ta"’:rp m(z,y,0)dH,, (7,8)) .
Z

The function 4 which is called the parabolic variation

of D is a lower semicontinuous function on ™+,
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~ The answers to questions (1) - (3) can be formulated
now in ¢ form of necessary and sufficient conditions corres-

"ponding to (1) - (3) as follows:

GO v(z) < o

(2) P(D,u)< o for all ¥ € R?  where

D,=Dn{lx,tlek™ "t <23 ,

(3) s far (§) 5 feB, <o for.all zsR'f .

Complete proofs of the formulated resﬁlts and some funther
details are contained in a paper submitted for the publica-~

tion in Czechoslovak Mathematical Journal.
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