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SOME PROPERTIES OF A GENERALIZED HEAT POTENTIAL 

(Preliminary communication) 
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Abstract: A generalized heat potential and its conti­
nuous extension from an open set with non-smooth boundary 
to its closure is studied. 

Key words: generalized heat potential, boundary beha­
viour 

AMS: 31B10 Ref.2.: 7.972.26 

For % m Lzj,".) to^+t -- € X j tm, £ 3 we s h a l l 

w r i t e * . » I »,*m+4l* lx,tl.. where «x e .Jfnv
| t e 3L4 . Simi­

l a r l y fo r t h e d i f f e r e n t i a l ope ra to r Vs £&<j ><••*> d^^l we put 
A 

.E.s.13^.^0, d^l \ Let G be the function defined on 

X""-*4 by 

&C*)-*m*4'0Hl'C-l*l/*-*m*i) fox V ^ ° i 

G(*)» 0 for zm+j £ 0 . 

Suppose D is an open set in X^*4 with the boundary 

B for which 3 t = B o 4 [ ^ , t ] e 3t'
m"M, t £ *> } is compact 

for any t e ft* . 

<T£ will denote the collection of all bounded continuous 

functions on 3 and «0 will be the space of all infinitely 
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di f fe ren t iab le functions g? with compact support 

*flt. 9m&T+4 . 

For any x e Xm+* and 97 e S>(x) • < 9 e <0; # £ ^ i g? J 

we define 

Tgp(.*)« -~J(fyfrG(x~<ur). Vg>(ar)+ G(zrtr)d^y(<ur))d*'.. 
T> 

The in t eg ra l on the right-hand side i s f i n i t e for any 

cp e 3>(x) . Aa. Tg>(x) depends on values of 9? in a 

neighborhood of boundary B only we can define T c p t e ) 

even for any y e 3i by means of 

where <p c tb (x) and. 96*5)..=. $(z) in_a. neighborhood 

of B . Tq (x) may be considered as a d i s t r ibu t ion over 

3) and i t i s closely connected with c l a s s i ca l heat poten­

t i a l s of single and double layer . 

Three following questions are solved: 

(1) When there is a measure ^x s&ch tha t 

for every 9 e &(z) ? 

Replacing y by £ we can define T£(x) -» <£fT>Zt> 

for any £ e *£ provided V^ fm>m Cl) e x i s t s . 

(2) When T£ (xH i s a well-defined function of the va­

r i a b l e % on D for any £ e t ? 

(3) When th i s function T £ defined on D can be con t i ­

nuously extended from 3) to D u B for any £ e <€ ? 

. 3^8 -



fhe- eaea. «m.„-c 4 was investigated for special D 

by K» Dont in 1.13 and similar questions were solved by J. 

Kr^l in [23, D 3 and by the author in £43. 

Recall that for a measurable set M c £"***"* its pe-

rimetr .7 CM) is defined by 

PCJO « <U4As f cLUr co (<w) ďur 
*> M 

^ < ? , Г , ô ) = C Ž + P , ^ + / ł - ^ i - J 

where ^ W - I ^ ^ M ^ ^ ^ 3 ranges over system of a l i functions 

with components cy^e*D ; <u m 4, 1,*.., <m + 4 satisfying 

Bit P - c - t ^ c l ^ ; Ix l .« 41 , Zss(0yOo)xV . l e define 

for any % = C*,t 3 • and Cf, #-, $•) « -*0*«>) ' * C0,a>)-x P 

Given C#>0> e Z l e t S C ^ 0> be the parabola described 

by SA(.. ? y f 6) on CO, a>) . A point XreS*, S i^Q) i s 

termed a hit of the parabola S on 2D provided each neigh­

borhood of Jb> meets both £ n 3) and £ ~D in a set 

of posit ive H*j -measure where H ^ i s the Jfe. -dimensio­

nal Hausdorff measure. The number of a l l h i ts of &(&* & ) 

on 3 wi l l be denoted by nu(z} -y, 9) • We put for any 

or̂ > - J e V ? " ^ <*,r,*>««*,* «r ,*» • 
2 

The function tr which i s called the parabolic variation 

of 3) i s a lower semiiyantinuous function, on H 
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The answers to questions (1) - (3) can be formulated 

now in k form of necessary and sufficient conditions corres­

ponding to (1) - (3) as follows: 

(1) AXCX,) < co , 

(2) f(\)< oo for a l l v c J*/1 where 

3 ) t « D o - ( C o < , t ] € l / m + 4 . , t < e } , 

(3) Autfu inr ($) \ f e B^ } < a> for a l l t f e ^ . 

Complete proofs of the formulated results and some further 

details are contained in a paper submitted for the publica­

tion in Czechoslovak Mathematical Journal. 
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