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COHUENXATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

15,3 (1974) 

ON THE RANGE OF NONLINEAR OPERATORS WITH LINEAR ASYMPTOTES 

WHICH ARE NOT INVERTIBLE 

Djairo Guedes de PIGUEIREDO, Brasilia 

Abstract; Let A s H->H be a hounded linear self-ad
joint operator in a real Hilbert space H , with a closed ran
ge and a finite dimensional null-space. Assume that there ex
ists a sequence (A^) of positive real numbers in the resol
vent set of A ; such that Ayn,-* 0 • Let N :%—*• H be a compact 
mapping which is not necessarily bounded, but it could have 
some sublinear growth for 8^11-* a? , see inequality (5) • Al
so assume some asymptotic condition on Jf with respect to 
the null-space of A , see condition (C). Under these hypothe
ses it is shown that the equation A # + flu- a Jh> has a solu
tion; this theorem is applied sto prove some results on the 
existence of solution for the nonlinear Dirichlet problem. 

Key words: Dirichlet Problem for nonlinear elliptic equa
tions. Compact operators, completely continuous operators. 
Mappings of type Oil), coerciveness, perturbations of bounded 
linear self-adjoint operators. 

AMS: 35J60, 47P05, 47H15 Ref. 2. 7.978.5 

§ 1. Introduction. Recently NeSas tl] published a paper 

with a title like the one above, where he proved the follow

ing result. 

3-heorem. "Let. H. be a real Hilbert space, AsB—** H a 

linear bounded self-adjoint operator, with a closed range and 

a finite dimensional nullspace JfCA) . Let Ms H — > H be a 

compact (on general nonlinear) mapping such that 

(1) flJTifrl £ JC 
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for a l l JUL 6 H , and a fixed constant X ** 0 . Assume 

tha t , for each w e H (A) , B/MTJ! • 4 , the l i m i t 

(2) X(tur) ss J&rvu (wr. N (AL+t<ur)) 

exists uniformly with respect to bounded sets of M, . Fin

ally suppose that, for each tur € JSl(A), II eur II & 4 9 we have 

(3) (4ir,^) < ACur) , 

where Jh^eH is given* Ihen the ©option. 

(41 Xu, + Jto, - J* 

has a solution.. >u- e K *" 

An extension of this resuxt was obtained by FuSfk, Kuce-

ra and Hecas [2Jt when they relaxed (1) and (2)# In this note 

we propose to extend these results and also present a simpler 

technique to proving this type of results. The main idea of 

the proof is a sort tf perturbation argument used in similar 

situations by the author C33* Hess C4] t and surely others • 

like 2 we shall handle nonlinear mappings "that are not boun

ded. And we present three different results according to the 

tape of "continuity" imposed on H : compactness, weak con

tinuity or type M • As for the linear mapping A we essen

tially take the same hypotheses as 1 • In Section 5 we apply 

our results to the type of boundary value problem for semi-

linear elliptic equations discussed in [23. 

We would like to thank Prof. L. Nirenberg for supply

ing us with the preprint of paper [ 2]. 

§ 2. Equation with § compact nonlinear part. A mapping 

M: X—*y between two noraed spaces X and y is said to 
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compact if (i) it is continuous in the* norm topologies, 

and (ii) it takes bounded sets of X into relatively com

pact sets of y , In this section we shall study the solva

bility of the equation 

(4) Aw +• Hu, » to, » 

where to/ is a given element in a real Hilbert space H , 

and Ji j H — > H is a compact mapping. The main result is 

as follows. 

Theorem 1. Let A i H—*> H be a bounded linear self-

ad.joint operator in a real Hilbert space H , with a closed 

range % (A) and a finite dimensional null-space HCA) * 

Assume that there exists a sequence ( ^ ) of positive 

real numbers in the resolvent set of A , such thaft X^ -± 

—* 0 . M l J*: H-»H be a compact mapping ouch that 

(5) IJU II ^ e l U I ^ + X , 

for a l l .^ e }i , where c > * O , X > ' 0 ; 0 ^ < x - - - - 4 , are f i 

xed constants* Assume that the following condition ho Ida: 

tC) fiizejl /Ĵ  € XCA), lyA~ 4 ^ and sequences t^->-+•.*> , 

V ^ " ^ ^ ^ e UCA), a^eXCA) , lltfjl * X i , UJSTJl .X< IS-a 
constant, we have 

(6) ( % ) > . f e -vrvf CJCCV^+^^t^ • 
/n. •• —• eo 

Srem equation (4) has a solution M, e H . . 

fiSRaCtt* "1-̂  ** hai > *• a information that there exists a 

sequence of negative real numbers- A ^ in the resolvent 

set of A , then the inequality (6) is replaced by 
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Proof: Consider first the approximant equations 

(7) - 4 ^ - A»^v* + **,», - <•* > 

which we prove now that it is solvable for each rtt, t Indeed, 

(7) is equivalent to 

(8) xt^ s (A - A ^ r C*v - Jiu^ / . 

The mapping T ; .M—> H defined by Tu, == (A-A^) (Ji, - JJUc,; 

i s compact and 

IT.aI.^cd(«jlvi + II.N.44,ll)-c2ll.^«OC+ c $ , 

in view of (5). Ehus for I JU, II =- X , with R sufficiently 

large, we have ITctl -6 31 • So, by a version of the Schauder 

fixed point theorem, T has a fixed point M,^ , which is a 

solution of (7)« 

Hext we claim that the sequence (xt^) is bounded. 

Suppose for the moment that this has been proved and let us 

complete the proof. In virtue of the hypotheses on A , we 

see that H » K ( A ) ® 11(A). So let us write M,^* <ir̂-*- nv^ , 

where nr^e KCA) and atfo e ECA) . Passing to subsequences 

we may assume that ^ -*• nr and w^ —-»- /uy , where " — > M 

denotes convergence in the norm and n —-*- n denotes weak 

convergence. We may also assume that Jta^—> fr * So we get 

from (7) that Anty^—^Jh, - fy . Since the mapping A restric

ted to JL (A) is a linear homeomorphism, we obtain that 
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wfo --> mr . Let us denote JLL » /iy + mr . So /O.^-^ M, , and from 

(7) we obtain 

A..O/ 4- Jiii' » .^ , 

that is, /Ô  is a solution of (4)» 

In order to complete the proof, let us assume, by con

tradiction, that H/U^fl-^rD „ Let us write AJL.^ « <tfm, + Wm, * 

where /ir̂  e)I(A) and iir̂  e 31(A) . Denoting by ? the 

orthogonal projection of H onto 31CA) 1 we obtain from 

(7) 

(9) A ^ - ̂ 4 c ^ + P K ^ » PA, . 

Since A restricted to X(A) is a linear homeomorphism we 

have from (9): 

ll/u l̂i £ Cjf C U J ^ II + c 5 IU^ li° + X + IU II3 

or 

CIO) i"^* * Os1"*-1** C6 > 

for In, sufficiently large. Now, let us denote XL^ssu^/iU^I , 

V^^/i^/IU^II and ¥^=4%/IU^fl ,so that U^^ r̂  + 1^ . 

Going to subsequences, if necessary, we may assume in view of 

the finite dimensionality of JVC A) that "V̂ -*/̂  3and, in view 

of (10), that W^~-> 0 , So U^->/^ and ||/g,ll =* 4 . Next, we 

obtain from (7) that 

ill) ^ U f f l ^ ) . \ ( U f l U ^ ) + - O k * , * , ) - - ~6^>. 
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Since A- i s self-ad jo in t , (Al l^ ,^ ) .* (U^, A ^ ) » 0 , becau

se ffeM(A) .Thus from (11) i t follows tha t 

ao for m, sufficiently large we have 

(12) Ciltt^ - *t,/^> :-> 0 -

lew observe that 

where 2% i s bounded in view of (10). Thus, i t follows from 

(12) that 

Msm, AW? (Mu^tM,) 2; (M,^nf) , 

which contradicts condition (C). 

§ 3. Souatioh with a weakly continuous nonlinear part. 

A mapping if: H—> H in a Hilbert space _K is said to be 

weakly continuous if X^—** X then implies that H^^—* Hx . 

Theorem 2. Same statement as in Theorem 1. except that 

the compactness of. M is replaced by the ssumption that H 

is weakly continuous. 

Proof follows the same steps. The only differences are 

(i) The fixed point of T is guaranteed by the following 

well known result. "Let T; H— > H be a weakly continuous 

mapping such that the boundary of a ball of radius 31 cen

tered at the origin is mapped into the ball. Then T has a 

fixed point". This is a result that can be easily proved by 

Galerkin approximations, i.e., projection onto finite dimen-
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sional subspaces* (ii) Once the sequence. (4,4,)... has been 

proved to be bounded, we complete the proof in a simpler 

way. Namely, going to a subsequence, we may assume that 

.i*^ —-*-. A4, . Since A-o^—**AJU, and now XAJL-W,—*• XAJL , we 

pass to the limit in (7), and obtain that this AJU is a so

lution of (4)• 

§ 4* Equation with a nonlinear part of type (M)» A map

ping X % H -—> H in a H^lbert space H ip said to be of 

type (M) if the following conditions holds 

(M^) If a sequence (JUL^) in H converges weakly to an 

elements , the sequence .Jiii^—*->tir and M^/bJU^C$^^M^^: 

£ Cvx^AiA , then Met-'» <ur-'• 

(M^) .K is continuous from finite dimensional subspaces of 

H to H endowed with its weak topology, the concept of map

pings of type (M) was introduced by Bre2is £51 on a more gene

ral set up. This class includes all the hemicontinuous mono

tone mappings and the class of pseudomonotone mappings int

roduced in £5]« We recall the following results, and refer to 

[6] for proofs. 

• Proposition 1. L§t M be a mapping of type (M) in the 

Hilbert space H . M i As H — » H be a bounded linear mono

tone operator # Then A -1- M is of type (M)« 

Proposition 2« Let T:H—*-H be a bounded mapping of 

type (M) tii Suppof^ piq^ T is coercive, that 

9. (TJUU. AJL) 
Kinrn, - -=- 00 
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Then the range JUT) £f T i s a l l of H -

How we state and prove the main r e su l t of t h i s sec t ion . 

fheorem 3. Let A; JE—> H be a bounded l inear monotone 

operator in a Hilbert space Jf ; with a closed range H(A) f 

and a f in i te dimensional nullspace W ( A ) . Let K ; H —*- H 

be a mapping of type (M) such tha t 

(13) I 1 M ^ c l U H ^ + K , 

for a l l M, € K , where c > 0, X >• 0, 0 £ cc <. A are fixed 

constants. Assume that the following condition holds: 

(% ) Crivsa ^ e MCA); II ty li » 4 , and sequences t ^ —y 4- a? , 

• to , -*"*! ^ e K C A ) , ^ e ] i C A ) , l U ^ H ^ X ^ , wjjejre X>, M 

a constant, we have 

(14) <h>t^ -* i ^ ^ f cM(tn<r*, + t**m,)>/y') • 

fhen eQuation (4) i s solvable in H • 

Proof: We use the approximant equations 

(15) A ^ + — > u ^ + .tf^ ~ ^ , 

\«hich we claim i s solvable for each /TL , Indeed, by Proposi
ti 

tion 1, the mapping T-= A +• — I +• JJ* i s of type (M). I t 

follows from the boundedness of A and from (13) t ha t T 

i s bounded. Also from the monotonicity of A and from (13) 

i t follows that T i s coercive. So Proposition 2 m«v be ap

plied, and there i s a solution M,m, of(15)» 

As in the previous theorems one has to prove tha t the 
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[uence (AA,^) is bounded. Let us assume that this is the 

;e and let us complete the proof. Going to a subsequence 

may assume that AL^ — ^ A A , . So Aa^—*• AAU , and Jtu^,--^^-

kw , On the other hand, 

(HUS^AA,^) -. (sb-A-w^— Alto,^) £ 

^C^AA,^) ll^H +(hu>iAA,)- (AAV^^AA,)- (An, AJL,^) , 

sre we have used the monotonicity of A • So 

Zurrv A>uji> C HAA,^ 7 AA,^ ) 4z (M, - AAA, , AA* ) 

together it allows us to use the fact that H is of type 

) to get NtA, ** Ai - AAI ,That is AA, is a solution of (4). 

Finally, the boundedness of (AA,^) is proved just like 

. Theorem 1 -

§ 5* Application to boundary value problems. We shall 

idicate now the application of our Theorem 1 to proving the 

cistence of weak solutions of the Dirichlet problem for the 

^uation 

17) % t-A)Wl>*<a, tx)jfiA.)+ t ( ^ ^ ' / c ^ c / ^ J - . f , 
Icc l - l /SUm ^ l o t l ^ 

here £ is a given function of L,a (XI) , SI a bounded open 

omain in TR* * This is exactly the problem discussed by Ne-

as, Fu6ik and Ku5era. Our aim in including this problem hero 

s to illustrate the use of Theorem 1, which we believe pro-

'ides a quicker proof for the existence of solutions. In a 

>aper under preparation we are able to discuss (17) with more 

general nonlinear part. 
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Let us denote by ( ? ) the inner product in t 2 , 

and by C , 1 ^ the inner product i n M™ . For def in i t ion 

of H ^ and result® on the l inear Dir ich le t problem see, for 

example, Friedman [73 or Ne5a® [83 •• 

A weak solution of the generalised Dir ichlet problem for (17) 

i s a function M, e H ^ such t h a t 

(18) S Co r- l )%2) /V)+ 2 CfcCD**),}*?)** C £ , y ) 

hcl,!0l.*.m, ** \*\**, VoC 

for »11 y e 1 . 

Th« following assumptions are made on the linear part: 

(A4) The cpefficien.ts a^/y i £ o x I ocl , I (3 I <6 mt , are 

bounded measurable real functions defined in il . The coeffi

cients a^,- , I oc I s I (h \ » nrrv , are uniformly continuous. 

(A^) The linear operator is uniformly strongly ellip

tic, i.e.., there is a constant c >» 0 such that 

(19) S a^Cx)fV**l?|2mi' 

for oc ̂  XL (a«eJ and f c E ^ • . 

Under these assumptions, we use the Biesz-Fischer repre

sentation theorem to define the operator A : "H™—> H T* by 

(20, '^^^J^^*^ 
for a l l <p e H ^ , which i s l inear , bounded, se l f -adjo in t and 

has a discrete spectrum. Let us assume tha t 0 i s an eigen

value. I t is known that the nullspace of A , H (A) i s f i n i t e 



dimensional* We sha l l also assume a hypothesis on the unique 

continuation of elements in the nol i space of A : 

(A3) The only / r e If (A) such that D <w , for some 

I oc I £ q, 9 vanishes on a set of posi t ive measure i s w - 0 « 

Fox the non l inear par t we assume: 

(Ify) The functions 9^? IB.—>• "E are continuous^- an^ 

there exist constants O ^ J J K ^ X ^ s 0 , X 2 > fl such that 

(21) I g^ ' f * )* * X4 U ) ^ + K a 

for a l l A> e R and a l l I oc i £ 41 . 

(N^) iC/yyt - Jrv + >f) > m, « 

Under these assumptions, we use the Riesz-Fischer theo-
yfffi, _ j fff\ 

•0 """*" no rem to define the mapping N : H —>• H 0 by 

(22) Cfcu,,.y) .« S C ^ ( J ) ^ ) 5 D ^ ) , 

which is compact* and there are constants c >* 0 and X •> 0 

such that 

(23) >Jto'lW £ c I ^ j J + K 

for all M, €KC • The compactness of Jd" follows from the 

compact embedding of Hmi' into "Am"m
 1 and estimate (23) can 

be proved using Cauchy-Schwarz*s and Holder's inequalities. 

Now observe that (18) is equivalent to 

(24) (AjA,,<f)m+(a^t9^m (*>,<?)m, for all ? « » 7 
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where Jk € H^1 i s such t h a t (to,, cp)^ =- (f ^<f) fo r a l l 

9 e H ^ * $he ex i s t ence of such an fa, i s gua ran t eed by the 

Ri ess -F i scher theorem. So the g e n e r a l i z e d D i r i c h l e t problem 

i s equivalent to the func t iona l equa t ion 

AJUL + NAA, ** Jh> 

i n JV . o 

Finally, we make the following assumption on the nonli

near part. 

(IT*) The two limits below exist as extended real num

bers, that is, in l U «(- co } U -C+ co } : 

Mm, *<*•>« <£ ^A *»*>**<*) = <f*c > 

with the following p r o v i s a l s ( i ) i f some ^ i s + co (resp« 

— OD ) then the corresponding <x^ i s - oo ( r e s p . .+• oo ) , 

( i i ) i f some ^ i s 4-oo ( r e s p . -*£>o ) then any o the r <^ i s 

e i t h e r f i n i t e or +00 ( r e s p . — oo) • 

Under assumption (N*) we see t h a t 

(253 Z U - ) . 2 ^ / D V + 9 ^ J !>' 
DĆ 

i s defined as an extended r e a l number, for each AT €. M (A) * 

Now s t a t e t he main theorem of t h i s s e c t i o n 

Theorem 4 . Asssume (A^), (Aj-J, (A^), (N^), (N^), (Ng). 

Suppose t h a t for each /T e ) l ( A ) , I t r II ̂  = 4 

,26) ( £ , / i r ) -s liny) . 

Then the generalized Dirichlet problem (18) has a solution ̂ e H g .• 
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Proof: It is enough to use Theorem 1* By the remarks ma

de previously in this section, all the conditions of that 

theorem, except (C), have been checked. Observe that since 0 

is an isolated eigenvalue of A - thj&n we can obtain sequen

ces (&n,) in the resolvent set of A made up of either po

sitive real numbers or negative ones. Now we check condition 

(C). Let <re)t(A), H/irlU»4, /ifo-* ^ , %? -hrc^>?'V KfA),llî ll * 

(27) OKVvt^J^U- % J^S^tf^tfv 

!oCl£̂  lfV>0 D̂t̂ cO 

The integx«xias in the last term of (27) converge point-

wisely a.e. to <^\ D°Sr in 3°V -> 0 and ^^-JD^V i** 

J) nr *c 0 . Here we have used (N^) to guarantee that j) w ^ 

is bounded in the supremum norm in view of the Sobolev imbedd

ing theorem. Now using the dominated convergence theorem, in 

the case of t̂ t finite, or -Fa.tou*s lemma, in the case of a 

a* infinite» we obtain 

tu 

(71,—y oo 

So (26) implies condition (O. And the proof of Theorem 4 is 

complete* 

Remarks* i) (26) can be replaced by 

(f ,AT) :> £(*r) 

for all AT c H (A) , II /ir 1^ =* A . 

ii) Theorem 4 has, as corollaries, Theorems 3.1 and 
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3.2 of [23 under less str ingent hypotheses. 
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