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COMMENTATIONES MATHEMATICAE UlíIVEBSITATIS CABOLINAE 

FBEE ALGEBBAS AND AUTOMATA BEALI2.ATIONS IN THE LANGUAGE 

OP CATEGOBIES 

Jiří APÍMEK, Praha 

Abstract: Given a functor Ft 2C—*> JC the category 
of P -algebras is formed as a generalization of universal 
algebras* The paper exhibits a construction of free F-al­
gebras and a discussion of its convergence. These results 
are applied to realizations of behaviours by automata in ca­
tegories, as defined by Arbib and Manes. We solve their pro­
blem: when do minimal realizations exist. A necessary and 
sufficient condition (under additional assumptions) is that 
F preserves co-meets of quotient objects (=- pushouts of 
epimorphisms). A stronger result is.obtained for normal 
functors. 

Key words: Functor-algebra, free algebra, automata in 
a category, minimal realizations, co-meet of quotient objects. 

AUS: 18B20, 18A30, 18E10, 08A25 

Bef. 2.: 2.666, 2.726 

Prior to this paper, V. Trnkbvd characterized functors 

from sets to sets with minimal realizations (private commu­

nication); the present results are independent of hers. I am 

very much indebted to 7. Koubek, J. Beiterman and ?. frnkova* 

for valuable discussions on this subject. 

I. Free functor-al/^braa 

Given an endofumctor P J 5 C — > % denote by CfCCT) 

the category of F -algebras (i.e. pairs (T, o>) where T 

is an object of 3C and co i P T —3* T ) and homomorphisms 
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£t(Tyo)—>-CT'1c>'Y which are 30-morphisms £: T-

for which the following diagram commutes: 

FT—--—^т 

P£ £ 

Notice that 1) the category of universal algebras of type 

A » iM.^ J-^e j (where .M^, are card ina ls , possibly i n ­

f i n i t e , considered as se ts) i s jus t S-atCF) where F 

i s the sum of horn-functor s , F s - V H&nu CM- • - ) • 2) If 

F i s a monad then the category of monad-algebras i s a 

fu l l subcategory of 3CCF) • 3) Generalized algebraic 

categories ACF,ff) ^ where F and G are set functors, 

represent another generalization of the categories of uni­

versal algebras (see [1 - 3, 5, 6]) but in case G i s the 

identical functor we have ACF., G ) • S^t CF) • 

The notion of free algebras can be transferred to 

functor-algebras as follows: l e t A be an object of X 

and l e t (A*,opA) be an algebra. C A* f <pA ) i s free over 

A if there exists a morphism A> % A—> A* such that for 

each F -algebra C S\ c*> ) and each morphism £ i A—** T 

there exists a unique homomorphism ££ : CA* <$A)—»• CT,a>) 

for which ^ ^ . » £ . ( T h u s free algebras are just universal 

arrows of the natural forgetful functor from Ô CCF) to 3if#) 

Free algebras may be obtained by the following algorithm 

or, more generally, by the following t r ans f in i t e construc­

t ion. In what follows, we assume that a cocomplete catego­

ry % and a functor F : 3C—* X are given. 
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Free algebra algorithm* Given an object A e CK* put 

V D c A 5 f l S A v P A 5 f 2 » A v F a v P A ) , ^ ^ - ^ v l % . 

Denote 9V* ̂ ^~**'^i-M a n d & * A—*'W^ the canonical 

maps. 

The algorithm i s said to converge if for the colimit 

A* : t~ : "WL > A* of the diagram 

*, 4 vFAt „ 1 v P r t v F ^ ) t j r ^ —^yf 53* ty &* W^ ... there exis t s 

y j PA*—* A* with 9Tt^ « t „ ^ 9 ^ , *i~ 0,4,2, ... . 

In that case CA*? 9?) is a free algebra over A with res­

pect to tQ% A — * A*^ as will be seen later. 

Definition. A functor F is said to preserve unions 

of sequences if it preserves the colimit of any diagram 

IX —=^ ft—^ II—-*~ .„ of subobjects. 
0 1 2 

Proposition. If P preserves unions of sequences and 

Aorn> CPA, A ) 4= 0 then the free algebra algorithm con­

verges for A . If moreover P preserves countable sums 

then A * « A v v P^A . 
/Tift 4 

Proof. It is easy, notice that M&rrv CPA ?A) 4- 0 im­

plies that /C is a coretraction and so &, .vF/n,.». are 

subobjects. 

Note. Since each finite hom-functor from sets to sets 

clearly preserves unions of sequences, the above algorithm 

directly generalizes the construction of free finitary uni­

versal algebras. 
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.gree algebra construction. Given an object A define 

by transfinite induction objects Kj^ and morphisms A>'J : 

. u/% .—>%^ (3.^-1. are arbitrary ordinals) such that for 

any ordinal y * diagram J>y « U \ i U r , ^ ^ A - U ^ 

i s constituted (i#e.,A>.,-rllw and A . . ^ » . =• A>A') . 
t.ф ana * Ą І

^ = л ^ 

T̂
0
 * A ; "M̂  a A v FA ; 4>^0 is canonical. 

4, non-limit: %
 w
 » A v FltC * >fe. . . -=* <

A
 v Fa. . A . 

-i limit: a) H/4, and ^ . : W^—>¥^ , £<: -i, , is the 

colimit of 3) • 
*u 

b) ¥ ; H - A v P T ; 5 A^.-l is defi­

ned by: *. +^ ̂ 0 ia canonical, * m * ^ - 4A v F S ^ . 

The construction is said to stop after oc steps if 

A>^... . ̂  is an isomorphism. Then put A* «* "HC , «p » 

is- canonical; put MA * 4^ 0 # Denote by m,^: A—**4,+ ..f 

and /m^ : FW^ •—*• ¥4^.4 the canonical maps* 

.Proposition: If the free algebra construction stops 

then (A*,g?A) is a free F-algebra over A with res­

pect to &A . 

Td prove the proposition we exhibit a construction of 

•the extension of a moronism £ : A —** ft 4 where C & , #) 
/••• i 7 * 

is an algebra, to a homomorphism £j£: (A*,9^)-—*> (Q, <T) . 

Set £ ^ • £** wh«re £*: Ki—> ft i* defined by indue-
' w •• •* tioa* £* « £ 5 £ 4 4 V j « £ and £*** *m., « <fT£* ; *>r 

i l imit £ ^ ^ m £ * for a l l I > i defines £* . £j? 

i s a homomorphism since £ * « ^^^Wvf * a n d 



£*+</«,<. = <TF£* and so cTFf/ = ̂ r ^ / V = * V • 

The uniqueness follows since given 9.: (A* 9 * ) — > (.S,cP) 

put <$*%&#, i > then <$ -» £° implies c£ -= £ * for all •£ . 

Note* Koubek and K&rkovaVPohlova* presented a construc­

tion of free algebras in case % m sets and mappings. 

Their construction is easily seen to be essentially the sa­

me as the one above, in particular as far as the stop is 

concerned. They prove that the construction stops for A 

iff there exists a set B D A with co^otFB» caJtd3 . More­

over, if the construction does not stop then free algebras 

do not exist* We generalize the last result. 

Definition. A category JC is said to fulfil the core­

treat chain condition if it is coretract-locally small and 

for each well-ordered diagram D of coretractions ( D con­

sists of coretractions ^ - i . * 2 ^ — > ^i > # m ^ are ordinals-

less than -y ) the following holds: if U and £4, * IKj, —* H 

is the colimit of D then for each co-bound of coretrac­

tions U', c£. ; V* —> U ' the unique morphisa £ ; 1£—* U* i 

with q^q^ji m qf^ is also a coretraction* 

Examples. The following categories clearly fulfil the 

coretract chain condition: 1) sets and mappings, 2) vector 

spaces (over any field) and linear mappings, 3) sets and 

relations• 

Theorem. If Of fulfils the coretract chain condition 

and M&m, (VA 7 A) =# 0 then there exists a free P -algebra 

over A iff the free algebra construction stops for A * 
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Proof* If to&m,(?A,A) + 0 then k*^0 is a core-

traction and it follows from the coretract chain condition 

that all *>\%x are coretractions. Denote t^^tW^—.» W^ 

such morphisms that tj>, >*>. * ~ iu/ - Assume that (B,tf) 

is a free algebra over A with respect to dQ : A—*>3 -

To prove that the free algebra construction stops we shall 

find coretractions d± : W^—> 3 with d^A>^*x:d± . Since 

JC is coretract-locally small there exist 3. <. -i, such 

that *>. . is an isomorphism: then so is /b. 

Set -ij,^ /n.4 «. ot0 and d^^m^ m ifFdj, and for •£ 

limit define d± by ̂ / fe^ ** d^ for ̂ <:-v . Clearly 

<i^^i»d^ ,let us prove that d^ are coretractions. Choo­

se e 5 P A — > A then (JA )*d0 -» ^ and so oL0 is a co-

retraction. Put dT= 0>HF*4+4£ then we have the extension 

of m,̂  to a homomorphism £: (B,^r)—> CHf.Ti><?) and a 

straightforward proof by induction shows £di » / & - . - for 

all <i&l, + 4 . in particular £<£<.«* 4 UA -It follows now 

from the coretract chain condition that also d.4, for <£. li­

mit are coretractions. 

-££• B-inimal realizations by automata in categories 

Following Arbib and Manes we call P an input process 

if free algebras exist over any generator. Then for fixed 

objects IfY of X we define the category of automata: 

objects are automata J& ** C & , <f f t , P>) where (fi^ cf) 

is an F -algebra, 
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Pft- ft-ІУ 

I 

AUTOMATON 

X л 
SIMULATION 

FQ—І-Q--W 

BEHAVIOUS 

and t; : I—> ft , 3̂ : ft—»y are morphisms in 3f 5 morphisms 

are simulations 6": M — . * . M ' which means a homomorphism 

<T: CQ,cT)—> ( 9 % cf") for which <z/~ &v f fi'V » /3 . 

(This generalizes e.g. sequential machines: 2f« sets and 

mappings, F(-) = - x 2 where Si is the input alpha­

bet, Q» are states, (h is the output map, cT is the next-

state function and tr maps a singleton set I onto the ini­

tial state of M .) If the extension t* ; I*—** ft is epi 
cr 

then M i s said to be reachable. 

The extexmal behaviour of M is the morphism £w =*• 

- (^^dT -Conversely, a rea l iza t ion of a morphism £ t I * —* 

—•* y i s an automaton M whose behaviour i s £ . The rea­

l i za t ion M i s minimal i f 1) M i s reachable, 2) for any 

other reachable rea l iza t ion M' there exists a simulation 

er: M'~* M . 

Arbib and Manes asked under which condition minimal 

rea l iza t ions ex i s t . For constructive input processes, i . e . 

functors P for which the free algebra construction always 

s tops , we give an answer in terms of co-meets of quotients. 

Let ^ ' J te '4.}^€ T be a collection of quotients of an 

object A , i . e . epis Jk, : A—>A . Recall that a co-meet« 
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or a multiple puahout, of the col lect ion i s a quotient 

& i A - * B such that 1) there ex is t *fH : A i — > 3 with 

M, ** *>tJk,t , 2) for each V : A - * . B ' and ^ s A i ~ * 3 ' 

with J t ' » 4144tt there ex is t s £* B — * 3 ' such that 4^ » f-fH 

for a l l t e T . I n other words, co-meet J* - / ^ Jk -v is the 
t C T v 

biggest quotient less than all Jfe,̂  in the quasiorder K £ A> 

iff K, =r /b'/& for some *>' , 

A functor F is said to preserve co-meets if for each 

non-initial object A and each collection of quotients of 

A their co-meet is preserved by F in the sense of pre­

servation of colimits (shortly: if F ( r\*h£ » r".*F,fe,t ). 

Recall that an object A is initial iff for each object X 

there leads exactly one morphism from A to X . The catego­

ry X is called connected if to&m>(X}Y)3* 0 for arbitrary 

objects X ? y with one possible exception that Y is ini­

tial • 

P is said to admit minimal realizations if for each 

objects I,y and each £ : I*—>Y there exists, a mini­

mal realization of £ . 

Theorem* Let % be a cocomplete, connected, co-locally 

small category. Then a constructive input process F admits 

minimal realizations if and only if F preserves co-meets. 

Proof. I. Sufficiency. Given £ J I*—>Y , let 

* ̂  ̂ t> <*t » x± 1 Pt ̂  5 ̂  € T I be the collection of all 

reachable realizations of £ 5 denote K^** (vj^ • I*—>$^ # 

Since all K^ are quotients of I* and % is co-locally 

small there is no harm in assuming that T is a set (and 
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not a proper c l a s s ) . Let x ** A * * t with x r l * — * f t 
t € I 

and 4 ^ : a t—>Q ,*=. ^ * t . Since & * t * £ there exists 

a unique p> i A—*7 with /% *• fi-4>t for a l l t . Since 

Fjt« n * P A t and ( ^ d^ ) F x t * x ^ 1 there exists a unique 

<f: F6t — > ft with -p,t ef; - <TFfH ( i . e . , ^ : < Q t, <*;) - * 

—> C a , cT) ) . I t i s easy to verify that C Q , cT, x * .** ,£ ) i s 

a minimal realization of f . 

II* necessity. 

A) F preserves epimorphisms with non-initial domain. 

Let Jk, t A—»-3 be epi, l e t ^ f c * FS—->C be morphisms 

with ji,FJk,s<iTJk, . We shall prove that >p, *- <£ , 1) C ** 3 * 

Recall the construction of extensions - i t i s clear that i f 

jfuTJk, ~qTte then Jk£ - Jk% x (A*,<?A)—* (3, + ) . Let 

ML .m ( 0,, cf, t , ft> ) be a minimal realization of Jlz*, . Sin­

ce clearly ;fc* i s epi, we have two reachable realizations 

of * £ s Jf* =. (3, 41,, A,, ^ ) and .K*« C3, ^ , A , 1B ) . 

Kiere ex i s t s a simulation 6^; M ̂ —^ it 5 then /3$L m 4m 

and 6 ^ i s epi (&Jk£ « t?* ) and so 6^ i s an isomorph­

ism; clearly &Z i s a simulation Jl—* Jf** # Pursier-

more, there exists a simulation tt j K**—-#> Jd $ we get a s i ­

mulation er * 6 £ 4 6 ^ i $*—*> Ji+ s Then 4%* - ^ , 

thas 6* » 4JJ , and # : C3>o^)—> (3)*P>) .Therefore .#,«£. 

2 ) C i s arbitrary. Set A ' » A v C with -lA : A~#>A' 

and a-A : C—*• At canonical, analogously 3 ' , £ e and 

-£B . Put J*/ s J b v 4C ; A'—v 3 ' * Since A i s non-

i n i t i a l , we may choose £s C—*>A • an<! put £ ' * A'—* A 

with £'-tA » 4A and £'£ A *> £ } $,'* B'—> 3 with 

qf4>3 m 4-g and ^ ^ -* Jt,£ # To prove that 4*. * % i t suf­

f i c e s to show £m4t-F$.' -» i m ^ F ^ : °ince Jfeom(A5 C)-fs 0 
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and Jkcyms C.B, A) + 0 we have Mom,(3>C)^0 which im­

p l ies that there exis ts h. with ^ # g -» i* , then sp, -= 

=r ^ ^ B ^ P < ^ y P i B « J*£ B $ .Fg/F-* g • £ , Since jfc/ i s 

epi and clearly c^Jk, » jfe£' we have £ B .fz, F^f FA/ » 
= ^ B ^ ^ / ^ / which, according to case 1) , implies 

B) F preserves co-meets. 

Let M/ «• r\* Jk,. where J&. s A—^.X* SBe epis, fo % 
t e T * * x 

;A—*X with Jh « 41, Jk,. . Let 0 = , 0 * FJk,. where 4 ; 

: FA—* y with ^ s «£̂  Fjfe, . ( A i s a non- in i t ia l ob jec t . ) 

Since F.*k/ and a l l TJk^ are epis , to prove that £ pre­

serves the co-meet i t clearly suffices to find a (necessa­

r i l y unique) x 1 FX —-»• y with x TJk> == £ . 

Denote a : X—> X v Y and J8r * y — > XvY the 

canonical maps. Define £* : T A — * (X v y ) * : £ 4 » 

- *XvlV*, v4> ; f A * V t » **"* and f*+V*- yXv)V.F£*) 5 

for <, limit £*Jb4,t± * £ * , £ <: £ . Put £ » £ * : 

• A*—>- (X v y ) * and consider a minimal real izat ion 

M « ( a , cT; cp, t3 ) of £ . For each t e T put /S^ = / 3 * : X+ <*>. v * ^ 

> (X v y ) * where /S, -= /» (41^, v ^ ) 5 / ^ m^ss ^ O/ 41^ 

and fil^m^ ** 9*vV?fil * Further, put i ^ : A * - - > 

— * X ^ , J K ^ * < * * jfe^)* x and reca l l JK » jfe,* whe­

re Jb£«**.A+; /fc^/n^ « *** Jfĉ  and &*mv^** cp *FJ&I . 

Since Jkt are epis and P preserves epis ( recal l that 

A i s non- in i t ia l ; clearly jfe,. are epis , too; moreover, 
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P-b&'t ** £ f o r ®ach t e T * Therefore we have reachable 

rea l i za t ions of £ - j ^ m (X$ , <p± , A> * , Jfet , ft* ) and 

there exis t 

i-^(XvУ)* ?A*-£-A*-£—avY)* 

simulations 6^ i JHt —*> i t • Then <j„ =- (6Tt .* * ) 4 t t for 

each t c T and so there exists a unique x^ - X—> A 

with $- ss jtofJfe' * To prove that there exists ./£• with £ « 

-a A- P/fc we find xz : FA — * y with ^ » ^2 ^9" ^and 

put x = X±FXj ) • 

Since £ 9 , * » f we have fi^A^m^f/^m^^^q^ 

and so /SF9, -» > 6 X v ^ £ . Assume hjcrm, (X,Y) + 0 

( i f contrary, then Y i s i n i t i a l and as Jkvm, C PA, Y) =£ # 

also FA i s i n i t i a l and so, since Jh&m, (X,A)-# 0 implies 

J&uwCFX , FA) 4= # , also TX i s i n i t i a l and the case 

i s c l ea r ) , analogously Mxrm ( P ( X v Y ) > X v Y) + H . *t 

follows tha t then Jlr i s a coretraction; choose c : X v y~> 

—> y with cjgr -**• 4y • Further >&Xvy i s a coretrac-

t ion for M X v y ) * ^> X v V « ^ y y where 

C J : F C X v y ) — > ( I v I ) i s arbitrary. Then 
# 

g, .s c ^* v K * v ir<j,-= c 4*vy fiTq, and we may put 

* Л.v 0 This concludes the proof. 
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Recall that an object 0 is a zero if for each object 

A there leads just one morphism from 0 to A and just 

one from A to 0 j then for arbitrary objects A , . B the­

re leads just one zero morphism (i.e. morphism factorizable 

through zero) from A to B . Given f : A — > 3 , the ker­

nel (cokernel) of f is the equalizer*. (coequalizer) of f 

and the parallel zero morphism* 

A category .X with zero is normal if it has kernels and 

each monomorphism is a kernel of some morphism, dually: co-

normal. A category both normal and conormal is called exact. 

A functor F : %—> 3C is normal if it preserves ker­

nels, i.e. T(h*jv£) » Jkzn, Ff . Analogously for exact 

functor. The above result on minimal realizations can be 

strengthened for normal functors: the preservation of co-

meets implies that F is an input process. 

theorem* Let % be an exact, cocomplete, co-locally 

small category. Then for a normal functor F: 3C—*» % the 

following is equivalent: 

1) F is .a constructive input process which admits 

minimal realizations, 

2) F preserves co-meets, 

3) F is exact and preserves unions of subo.bjects. 

Proof* We proved 1 — » 2 already* 

2 > 3* It suffices to show that F is conormal 

since then F is exact and it prer ? ves unions, as, given 

a collection { 4t.^ -. of subobjects of an object, clear­

ly Uto,^ m tovo(r\* cob**, to,^ ) . Let fs A — * B be 

arbitrary, there exists an epi-mono factorization f « rnie 
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( i t follows from the fact that *K i s cocomplete and c©~ 

loca l ly small, see e .g. Herrlich, Strecker 34*1)• Then 

co#u* £ m odkafc nrru . Since F i s normal, Frm* i s a 

monomorphism, thus Fou m Mvo oobjOoYsm, f moreover a s 

a Awe <xrkvo rrrv and so tesoo (vokax, F/m,) & M^CTooka^m). 

Now, F preserves epis (the exactness of % allows us 

to stop worrying about the i n i t i a l object) and so 

F cdkuxs my and &&faax> Trrru are epis with the same 

kerne l . Therefore P c d ^ f f l t * cafavtrT/m> and, as Fe 

i s epi , we get c©4U** F£ « F e o f a t t f . 

3—s*l. Since F preserves unions i t i s clear that in 

the free algebra construction S^ t<*+4 i s epi and so 

*>o<>094, i s epi for a l l - i ; i f ^ i s l i , i t i t follows from 

the preservation of onions and we have S*>,.£-n ** 4 v F S ^ ^ 

which i s epi i f £$? i s . Since a l l Ŝ > ^ are quotients 

of Wo , i t follows from the co -local smallness that the 

free algebra construction stops. The preservation of co-

meets follows. 

Added in proof: Too la te I found a paper of M. Barr, 

whose resu l t s are closely related to the current paper. I 

mean: Coequalizers and Free Triples, Math.Z.166(1970),307-

322. 
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