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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

FREE ALGEBRAS AND AUTOMATA REALIZATIONS IN THE LANGUAGE
OF CATEGORIES
Ji¥{ ADAMEK, Praha

Abstragct: Given a functor F: X—> X  the category
of F -algebras is formed as a generalization of universal
algebras. The paper exhibits a construction of free F -al-
gebras and a discussion of its convergence. These results
are applied to realizations of behaviours by automata in ca-
tegories, as defined by Arbib and Manes. We solve their pro-
blem: when do minimal realizations exist. A necessary and
sufficient condition (under additional assumptions) is that
F preserves co-meets of quotient objects (= pushouts of
gpimorphisme). A stronger result is.obtained for normal

unctors. .

words: Functor-algebra, free algebra, automata in
a category, minimal realizations, co-meet of quotient objects.

AMS: 18B20, 18A30, 18E10, 08A25
Ref. Z.: 2.666, 2.726

Prior to this paper, V. Trnkovéd characterized functors
from sets to sets with minimal realizations (private commu-
nication); the present results are independent of hers. I am
very much indebted to V. Koubek, J. Reiterman and V. Trnkovd

for valuable discussions on this subject.

I. Free functor-glgebrss

Given an endofunctor P: X —> X  denote by X (F)
the category of F -algebras (i.e. pairs (T,w) where T
is an object of ¥ and w :FT—>» T ) and homomorphisms
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£:(T,0)—>(T/,w’) which are X -morphisms f: T—>» T’

for which the following diagram commutes:

FT—< o T

||

T/ w’ T

Notice that 1) the category of universal algebras of type
A=4M; 3, 1 (where M; are cardinals, possibly in-
finite, considered as sets) is just Set (F) where F
is the sum of hom-functors, P=‘“\!/‘t Hom (M;.;-) . 2) If
F is a monad then the category of monad-algebras is a
full subcategory of ¥ (F)., 3) Generalized algebraic
categories A(F,G) , where F and G are set functors,
represent another generalization of the categoxjies of uni-
versal algebras (see [1 - 3, 5, 6]) but in case ¢ is the

identical functor we have A(F,G) = Set(F) .

The notion of free algebras can be transferred to
functor-algebras as follows: let A be an object of ¥
and let (A* @4) be an algebra. (A* g*) is free over
A if there exists a morphism 4 3:A — A* such that for
each F -algebra (T,w ) and each morphism £3 A—» T
there exists a unique homomorphism £ : (A%, ¢#) — (T,w)
for which 'f:;/aa £ .(Thus free algebras are just universal
arrows of the natural forgetful functor from ¥ (F) to *.)
Free algebras may be obtained by the following algorithm
or, more generally, by the following transfinite construc-
tion. In what follows, we assume that a cocomplete catego-

ry ¥ and a functor F: ¥ —> K are given.
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Free algebra algorithm. Given an object A € X put
W,=A; W,=AvFA, ¥,=AvF(Av PAY ooy Wp = AvEW, .

Denote ¢, : FW,—W, , and A:A—W, the canonical
maps.

The algorithm is said to converge if for the colimit
A* . ot s W, —> A¥* of the diagram

& 4 vFk 1v FP(1vFR) .
W,—= W, — ¥, > Wa ... there exists

@: FA¥— A* with 9Pt = t, ,@p, m=0,1,2,... .
In that case (A*, @) is a free algebra over A with res-

pect to to:.A—-> A*_ as will be seen later.

b

Definition. A functor F is said to preserve unions
of sequences if it preserves the colimit of any diagram

u,— U,4—> 'LI2 —= .,, of subobjects.

Proposition. If F preserves unions of sequences and
Aom (FA, A) % ¢ then the free algebra algorithm con-
verges for A .If moreover F preserves countable sums

then A* = Av 9 F™A .
: mz=4

Broof. It is easy, notice that Jwom (FA,A)+{ im-
plies that A is a coretraction and so &, AV I-"ni,... are

subob jects.

Note. Since each finite hom-functor from sets to sets
clearly preserves unions of sequences, the above algorithm
directly generalizes the constructior of free finitary uni-

versal algebras.
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Free algebra construction. Given an object A define

by transfinite induction objects W,,; and morphisms P
:Wy—> VW, (344 are arbitrary ordinals) such that for

{h::%. )

any ordinal ¥ & diagram Dy = (AW 3, ., €4, 3.5,

is constituted (1.0.,/»1.'1,; 4%_ and &, . 4 g = /ah?-) .

W,=A; W=AvVvFA; », is canonical.

4 non-limit: W,  =AvEW; 4, 4.-'1 vFo, -

.

4 limit: a) W and r i Wy—>W; , G<i,is the
colimit of D,
) Woug = AV FEW, ; n5,.44. is defi-

ned by: Biuai ®i0 is canoniecal, Bt i, 4A v }"34-}3-

The construction is said to stop after < steps if
Agys,o 18 an isomorphism. Then put A=W, , ¢*=
= (/:.‘:4'4’“_)’4,"“ FA*—> A* | where m:FW,—> W, 4
is canonical; put A* = 4,0 o Denote by m;: A—W;

and .m; : FW;—> W, 4 the canonical maps.

_ Proposition: If the free algebra construction stops
then (A*, 9‘) is a free F -algebra over A with res-
pect to .bA .

.P6 prove the proposition we exhibit a construction of
;:»the extension of a morphism £: A —> @, where (0, J)
iaan algebra, to a homomorphism £ : (A* 94) — (B, ).

9

Set. f" = £% .where f* t Wy —> 6 is defined by induc-
tion. £° < £} £ =¢ ena £, = SPEY for
1I§n £6,, = f“ for all 4 > g, defines £ . £F

= f‘*"

is a homomorphism since £% and
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o A
£°‘+4/m,‘= JFe* and so- d’Pf}‘ =£°‘(Axm,&) 1nnx= £%9" .
The uniqueness follows since given @ : (A% ¢")— (@,d")

put g?'zg}b‘,% , then 99 = £% implies g,‘: = £"" for all 4 .

Note. Koubek and Kirkové-Pohlové presented a construc-
tion of free algebras in case X = sets and mappings.
Their construction is easily seen to be essentially the sa-
me as the one above, in particular as far as the stop is
concerned. They prove that the construction stops for A
iff there exists a set BoA with card FB= cawdB . More-
ever, if the construction does not stop then free algebras

do not exist. We generalize the last result.

Définition. A category ¥ is said to fulfil the core-

trezt chain condition if it is coretract-locally small and
for each well-ordered diagrem D of coretractions (D con-
sists of coretractions ;. :W;—W;, 4 4 1 are ordinals-
less than 9 ) the following holds: if U and ¢ ;:W;—>1U
is the colimit of J then for each co-bound of coretrac-
tions U’, 9"&:?(;——»11' the unique morphism ¢ : U—» U’

with g g : = 9"4.‘ is also a coretraction.

Examples. The following categories clearly fulfil the
coretract chain conditién: 1) sets and mappings, 2) vector
spaces (over any field) and linear mappings, 3) sets and

relations.

Theorem. If ¥ <fulfils the coretract chain condition
and fSwom (FA,A)# f then there exists a free F-algebra
over A iff the free algebra construction stops for A .
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Proof. If hom (FA,A) + @ then 4%, is a core

traction and it follows from the coretract chain condition

A ; 1 . .
that all 44 are coretractions. Denote t-i,j : W'_;—-) Wa

%
such morphisms that t":, 3 A g

is a free algebra over A  with respect to d.oz A—B .

= 4W_,«’ . Assume that (B, )

To prove that the free algebra construction stops we shall
£ind coretractions dj: W;—> B  with d--;"’q:,é’-‘dg .Since
K is coretract-locally small there exist j < -4 such

that ». . i n is rphism; i .
/.,1"? is a omorphism; then so is b9+1:é

Set d; ,m;=d, and d;  m;=yFd; and for <
limit define d; by d;h; = d; for j<4i .Clearly
dq'/ai,éa d; ,let us prove that d; are coretractions. Choo-
se e:PA—>A then (1,)¥d,= , and so d, is a co-
retraction. Put d'= m, PJ‘{M,; then we have the extension
of m; to a homomorphism £: (B,3)—s (W, &) and a

1412

straightforward proof by induction shows £dé_ =N

141, 3 for

all 4 £ i +4 , in particular £d.4-'+1= 4W£*4‘It follows now
from the coretract chain condition that also d; for 4 1li-~

mit are coretractions.

ITI. Minimgl reglizations by automats in categories

Following Arbib and Manes we call F an input process
if free algebras exist over any generator. Then for fixed
objects I,Y of ¥ we define the category of automata:
objects are automata M = (6, d, =, ) where (@, d")

is an P -algebra,
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d i Q PI*_EP_E’ *

FQ—= G —= 7
718
z I & Y Fo* T*
BNV Ry

I o’ FQ——Q—Y

AUTOMATON SIMULATION BEHAVIOUR

and ©:I— 0, B:8—>Y are morphisms in ¥ ;morphisms
are simulations &: M—> M’ which means a homomorphism
6:(R,8)—> (Q’,0) for which 2'=67z, 36 =3 .
(This generalizes e.g. sequential machines: X = sets and
mappings, F(-) = = x % where | is the input alpha-
bet, @ are states, (3 is the output map, J° is the next-
state function and © maps a singleton set I onto the ini=-
tial state of M .) If the extension 1:;",: I*~ @ 1is epi

then M is said to be reachable.

The extemnal behaviour of M is the morphism £y =
= (31::, .Conversely, a realization of a morphism £ : I* —»
—> Y is an automaton M  whose behaviour is £ , The rea-
lization M  is minimal if 1) M is reachable, 2) for any
other reachable realization M’ there exists a simulation
F: M—M .

Arbib and Manes asked under which condition minimal
realizations exist. For constructive input processes, i.e.
functors F for which the free algebra construction always
stops, we give an answer in terms of co-meets of quotients.

Let { R ¥ e be a collection of quotients of an

object A , i.e. epis kt : A—-—-»ﬁt‘e . Recall that a co-meet,
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or a multiple pushout, of the collection is a quotient

& : A—>3B such that 1) there exist g, : A,—>B with
o= py Ry 2) for each &’: A— B’ and ap.;:.A*_—-b3'
with &’= p,k, there exists £: B—» B’ such that py = £
for all t € T . In other words, co-meet b—t/"\:bt is the

biggest quotient less than all &, .in the quasiorder xX £ A

iff & =4's for some A’ .

A functor F is said to preserve co-meets if for each
non-initial object A and each collection of quotients of
A their co-meef is preserved by I in the sense of pre-
servation of colimits (shortly: if F(M*k,) = "*Fk, ).
Recall that an object A is initial iff for each object X
there leads exactly one morphism from A to X . The catego-
ry ¥ is called connected if hom (X,Y)# g for arbitrary
objects X,Y with one possible exception that Y is ini-
tial.

F is said to admit minimal realizations if for each
objects I,Y and each £: I¥—»Y there exists a mini-

mal realization of £ .

Theorem. Let ¥ be a cocomplete, connected, co-locally
small category. Then a constructive input process I' admits

minimal realizations if and only if F preserves co-meets.

Proof. I. Sufficiency. Given £ :I*—Y , let
(8, oy , Ty, By); t €T} be the collection of all
reachable realizations of £ ; denote x = (ct)*d;’ I*~4, .
Since all x, are quotients of I* and X is co-locally

small there is no harm in assuming that T is a set (and
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not a proper class). Let x =tQT*”~t, with x: I*—Q

and p,: 8, —8 ,x=n n, . since @, n, =f there exists
a unique B: §—>Y  with 3, = 34, for all t . Since
Fx= M*Fa, and (n, dy)Fx, =ng* there exists a unique
d:FO—> @ with p,d, = IFpy (i.e.,p_e-:(ﬁt?d;)«»
— (Q@,d") ). It is easy to verify that (Q,d, xe»’, ) is

a minimal realization of € .

II. Necessity.

A) F preserves epimorphisms with non-initial domain.
Let & : A—B be epi, let p,2:FB—C be morphisas
with 2 P&k =g Ff . We shall prove that p =9 . 1) C =3 .
Receall the construction of extensions - it is clear that if
£ Fh =qFhk then A2 = 4% : (A*,@*)—> (B, p) . Let
M=(8,d, 2, B) beaminimel realization of %} . Sin-
ce clearly ""; is epi, we have two reachable realizations
of wX 1 N* = (B, n,k, 1y) end N¥=(B,q9,%,15).
There exists a simulation 6, : N¥—> M ; then B€, =1y
and 6, is epi (G’Ju,‘";- 'r:: ) and s0 €, is an isomorph-
ism; clearly 6‘;4 is a simulation M—> N*® , Further-
more, there exists a simulation 6”' N~ N ;5 we get a si-
mulation € = 6:;46'%: N*— NPT, Then 4g6 = -
thus 6 = {p , and €': (B, q)—> (Byf) .Therefore p =g .
2) C is arbitrary. Set A’= Av C with i, :A—A’
and 3, :>C-—>‘-Af canonical, analogously B‘, i, and
43 - Put M= Mevi,: A’—> B’ . Since A is nonr-
initial, we may choose £: C—> A and put £/; A"— A
with £4, =4, end £4, =£; g': B’—> B with
Q'ig = 15 and @ 3p= RE . To prove that p = g it suf-
fices to show 3 4 Fg' = 3‘.‘9';-@' . 8ince M(A,O)* g
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and Jwom (B, AV+ J we have hom (B,C)4 ¢ which im-
plies that there exists A with Jh,g'a = 45 , then f =
=hipnFy Pipg= hjpqFg’Fig = q . Since &’ is
epi and clearly g & = &£’ we have 3'.541.?9,’ Fh' =
=35 QFg'Fi’ which, according to case 1), implies

drTe = 439F9 -
B) F preserves co-meets.

.

Let & =¢Q‘r*"°¢ where ,9&*:.44.—»1,‘ ape epis, & :
tA—X with k= ke, . Let g:tf;\_:‘?,k,t where @ :

:FPA—Y with g = Q¢ F#, . (A is a non-initial object.)
Since F& and all Pje,t are epis, to prove that £ pre-
serves the co-meet it clearly suffices to find a (necessa-
rily unique) n : FX — Y with xFh = q -

Denote a: X—3> XvY &and &L :Y—> X+v Y the
canonical maps. Define £+ ; Wf-—b (X vY)*;: £1 =
_ XvY 141 XvY 141 XvY :
=% (kvq); £ my=s""" and £ my =g (F£");

. ss 4 3 . . o«
for 4 limit f/o_;"5_=£3',.9,<4,.Put £ =£%:
s A¥ > (X v Y)* and consider a minimal realization

M=(Q8,d,9,3) of £ . For each t €T put ﬂ’t=(5?3x¢-*—>
—> (XvY)¥  where /5:= ’"xvy('ﬂe"‘?.e);/31+4”‘¢=/bx”a~m

and {3:'*401% = gvayF/B: . Further, put %é:A"’—»
* Xy * > o
—_— — = -
Xf , Ry ) k-(-.) ks and recall %, = %’ whe
o X% 144 Xy il Xy o i
re Sey=h kR my = st R, and ko m,=q *Fl .
Since R, are epis and F preserves epis (recall that

A is non-initial) clearly %t are epis, too; moreover,
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~
Bihy,=£ foreach teT. Therefore we have reachable

reallzatzons of £: ‘M't (xt’ Py s A r’kt’/"‘e) and
there exist
FA*———- A £ _(x,Y)* FA-Z AL (X Y)*
Fk, o B, . Fg* 9" f
X
i —{->Q

* 9 *
Fxt—-—-a-xt Fé

simulations 6,: M —> M . Then g = (6, /ax*)ht for
each t € T and so there exists a unique xy: X— @
with g = n % . To prove that there exists x with ¢ =
=nFhk wefind x,: FG —> Y with g = x,Fg (and
put & = x,Fr ).

Since RgX = £ we have ﬁg,d./a m, =£/s m =/ax":(’r9‘
and so (3Fqg = /ax"yzyg . Assume hom (X,Y)% ¢
(if contrary, then ¥ is initial and as hom (FA,Y) % /
also FA is initial and so, since hom (X,A)% # implies
Jom (FX ,FA) + f§ , also FX is initiel and the case
is clear), analogously hom (F(XvY),XvY) + g . It
follows that then & 1is a coretraction; choose c: X v Yo

—Y with c¢& = {, . Further »

tion for f4xvy)£ »XVY o Txyy

XvY  is a coretrac-

where

w:P(XvY) —> (XvY) is arbitrary. Then
%? .
g=c 4’;v ""’xr‘;ﬁ c 4xvyf.4F9, and we may put

Ko= ¢ 4“xyy R . This concludes the proof.
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Recall that an object 0 is a zero if for each object
A there leads just one morphism from 0 to A and just
one from A to 0 ; then for arbitrary objects A,B  the-
ré leads just one zero morphism (i.e. morphism factorizable
through zero) from A to B . Given f: A—B , the ker-
nel (cokernel) of £ 1is the equalizer . (coequalizer) of £
and the parallel zero morphisme.
A category X with zero is normal if it has kernels and
each monomorphism is a kernel of some morphism, dually: co-
normal. A category both normal and conormal is called exact.
A functor T : X— %K is normal if it preserves ker-
nels, i.e. F(kerf) = kew F£ . Analogously for exact
functor. The above result on minimal realizations can be
strengthened for normal functors: the preservation of co=~

meets implies that F is an input process.

Theorem. Let X bg an exact, cocomplete, co-locally
'small category. Then for a normal functor F: X —> 3 the
following is equivalent: v

1) T is.a constructive input process which admits
minimal realizations,

2) F preserves co-meets,

3) P 1is exact and preserves unions of subobjects.

Proof. We proved 1—> 2 already.

P 2 — 3. It suffiées to show that F is conormal
since then '} is exact and it pree ® ves unions, as, given
a collection { ""‘i.}—'»cx of subobjects of an object, cle;r-

ly Uk, = e (M* cokaen ) . Let £: A—B  be

arbitrary, there exists an epi-mono factorization £ = me
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(it follows from the fact. that ¥ is cocompleie and co-
locally small, see e.g. Herrlich, Strecker 34.1). Then
coken £ = coker m . Since T is normal, Fm is s
monomorphism, thus Fm = %er coker Fm , moreaver m =
= Jaw cokor m  and so Skew (coker Frm)= hor (Feokerm).
Now, I preserves epis (the exactness of ¥ allows us

to stop worrying about the initial object) and so

F colkar m and coker Fom  are epis with the same
kernel. Therefore F cofker m = cofeer Fm  and, as Fe
is epi, we get cofker F'f = Feoker £ .

3—>1. Since T preserves unions it is clear that in -
the free algebra construction Swwo, +4 18 epi and so
heo,,4 is epi for all i: if 4 is 1i,it it follows from
the preservation of unions and we have S, i4q = 7V FSu,i
which is epi if Sa,o is. Since all S“,m;, are quotianfs
of We, , it follows from the co -local smallness that the
free algebra construction stops. The preservation of co=-

meets follows.

Added in proof: Too late I found a paper of M. Barr,
whose results are closely related to the current paper. I
mean: Coequalizers and Free Triples., Math.Z.166(1970),307-
322.
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