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COlfl^MTIONES MA!^BlAfICAE TOIVERSITATIS CAROLINAE 

15,4 (1974) 

ON CATEGORIES DETERMINED BY POSET- AND SET-VALUED FUNCTORS 

Jan MENU, Antwerpen, and Ales" PULTR, Praha 

Abstract: The present note is closely connected with 
the Monies characterization of lattice fiberings in T3J. 
On the one hand, in § 1 we give a characterization of a 
slightly more general case, namely that where the values of 
the inducing functor do not necessarily possess suprema of 
all subsets. On the other hand, § 2 deals with characteriz
ing of two important particular cases of lattice fiberings, 
the categories £(F) (see below). The argument in § 1 is 
very close to that of Manes. What we show is that one can 
dispense of the assumption that the forgetful functor is 
(also) colimit preserving. In § 2, roughly speaking, the ob
vious necessary conditions are shown to be also sufficient. 

Key words: Concrete category, lattice fiberings and 
their generalization, categories SCP) . 

AMS: 18B99 Ref. 2. 

§ 0. Preliminaries 

6.1. The category of all sets and mappings is denoted 

by Set , the category of partially ordered sets and or

der-preserving mappings is denoted by Tteb&t . We use the 

symbol 

for the category of partially ordered sets such that every 

non-void subset has an infimum, and of the suprema preserv

ing mappings. 
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0.2. A concrete category (It r U ) is a category 

together with a faithful functor U ; & — > &*£ (called 

the forgetful functor). Concrete categories ( A , "H ) and 

(<CfY) are said to be equally carried if there is an iso-

f unctor £ s & *• & such that V« $ » U . 

A concrete category C & , U) is said to have the pro

perty of transfer (shortly,(T) ) if for every a 6 cfy. $0 and 

every invertible mapping £tUCa)—-> X there is an iso

morphism y ; a—it- $y with 1Licp)**£ (cf. Cl3 and 

[4J>-

0.3» Given a concrete category ( H , U ) and a set X , 

we denote by 

ftux 
the class of all a e otg, A with UCa/) » X , preordered 

by the relation 

Ou&Jtr iff there is a y.'a —*>2r such thatU(<gp)---̂ . 

Obviously, the transfer property implies that & U X and 

& U y with equally large X and y are equivalent • 

0»4. Let H be a functor from Set into Bcnet 

or into S> . In accordance with the notation of [2] (where 

the symbol is used for the functors terminating in CS-v , 

the full subcategory of <2> generated by the complete latti

ces) we denote by 

OL H 

tJje concrete category the objects of which are couples 

(X > a ) with a € H CX ) 9 the morphisms ( X % eu) into 

(T f to) are t r i p l e s C a , £% Jlr ) with £ % X — * Y such that 
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HCf)(a) -£ ir 9 the forgetful functor sending («*/.,£,-^j 

to 

0.5. Let F be a covariant (contravariant, resp.) 

functor from .S-efc into itself. The concrete category 

8CF) 

is defined as follows: The objects are couples (X,a,) with 

Of cF(X) f the morphisms from (X,o,) into (^ Jtr) are 

triples (ou,£%Ar) with £ ; X — > 7 such that FC£) (a,) c 

c Jfr ( ?(£)(&) c 0/ , resp.); the forgetful functor sends 

Ca^f,^) to £ * 

The categories £(F) play a role in questions concer

ning description of morphisms. It was, e.g., proved in Cl] 

that every reasonable concrete category is a full concrete 

subcategory of a suitable S(F) . 

The categories S<F) may be considered as a particu

lar case of (Xu defining H(X) ** (exftT (X), c ) and 

HC£)(cu) *?(£)(*) in the covariant, H(X) * Ce^FCX), a ) 

and H(£)(«3U) **T (£)(&) in the contravariant case. 

0.6. The following trivial lemma will be of use in the 

both following paragraphs: 

Lemma. Let & be complete (cocomplete, reap.), let 

C &,ll) have (T) and let U preserve limits (colimits, 

reap.). Let DtX—*• & be a diagram, let 

(£^iZ >u$(1k,))£€()teK be a limit ((%;UD(fe)—>Z.)fe6(^K 

a colimit, reap.) of XI »D . Then there is a limit (colimit, 

resp.) (f^Jkm.^K ot * such that U(f^) ** £M -

Proof: Take a limit (<f^ t x^~-*>l)(k,))j^ of J) . Hence, 
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(UCgp^))^ i s a l i m i t of UJ> , so tha t there i s an 

invert ib le 9* with UCg^)*^-* £ ^ . By <T) we have an 

isomorphism tfi z—• as' such t h a t XL(^) m fy- * 

Put <?^m <J4* r , 

§ 1* The categor ies Ct^ with H terminating in 2) 

OJP Fo*e£ . 

1 . 1 . We introduce two further condi t ions on concrete 

categories: 

( $ ) : Every A U X i s i n <A}3) . 

( inf) : Let there be JN ; *#*—•* a,j , ^ e 3 4. jgf ? such that 

U(op^) m£ and l e t irrufo,^ e x i s t . Then there i s a 

<gt Jbr—*> AMAQ,^ with UCg>> m £ . 

1*2* Remark. These condit ions are not a r t i f i c i a l . Ob

v ious ly , they are s a t i s f i e d i n every complete concrete 

£&9U) such that II i s a both-s ided adjoint and every 

fbUX i e e s e t ( i n that case . &UX are complete l a t 

t i c e s ) . Moreover, i t i s easy to show t h a t they hold i n r e 

f l e c t i v e subcategories of such (. fr9U) i f e . g . the r e f l e c - . 

t ion morphisms are extremal epimorphj.sms. 

1*3* Theorem. Let C^/,11) be a complete cocomplete 

concrete category with a l i m i t preserving U # Let the 

condition {£) ) be s a t i s f i e d . Then the fo l lowing three s t a 

tements are equivalent: 

( i ) C&. ,U ) has CT ) f and ( inf ) and for every £ 1 

tllCcu) i* Y there i s a cpicu—* & with UC9O m £ , 
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(ii) (A, II) is equally carried with an CtH with 

(iii) ( & , U ) is equally carried with an CfcH with 

H: $**—* R»e* . 

1.4• Remark• For example of a category satisfying all 

the properties and such that & U X have no non-trivial 

supreme consider the following one: The objects are couples 

CX,A) withAcX and ewuLA £ 4 , the morphisms 

(X»A>—• (y,B) are the £t X — * T with £CA) c B . 

1.5. Proof of 1.3: 

( i ) a a ^ U i ) : For a set X put HCX) m HVX , for a 

mapping fiX—*Y and an a • foUX put H(£)Ca) • 

« i ^ f ^ | 3 9 i a - - > ^ t UC^>m£} (which exists by ( 0 ) 

and the las t condition in ( i ) ) . By ( inf) , we have a 

cp i e» — * HCf)Ca) such that UC^)m£ . Obviously, 

o, * *r implies HCf)Ca) * HCfXJfr) . 

Let £ x X —* / , 9,1 Y —* Z be mappings. For an 

a > « I £ ( X ) we have a <$\ a*—* HCfXa) and a 

f : HC£)Ca> * HCor)HC£)Ca) such that U C9) * f and 

HCtp) as % » Thus, UCifrqp) « «̂ f and hence 

HC%^)Ca) ^ HC< )̂HC£)C«,) -

^ k e the u t HC^-fXa) —* HC<|,>HC£>Ca) with T2CU-**4Z 

ami the ^* a —*»HC%,£)Ca) with UC^> * ^ f . Since U i s 

.fai*thful, we have 

i> • K ~ V 9 • 
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By 0.6 tћere ie a pallback 

Y 
ÌLlfHл) 

Y ' 
Htф£)(ъ) 

such that UCi/) = Ay . Hence, we have a X with 

if X » gp and f ' A » r̂ . 

By the definit ion of H (£)(&) , *̂  - ĤC«F>(a,) • ®*us, 

i>*if/jc V > Qrw* aence, by the def in i t ion of HCg^HCfKo*), 

U m \ . Thus, 

HC<fr£) m HCo^HCf) . 

Now, we are going to show tha t H C£) preserves supreme. 

Let a be the supremum of ^ 4 ^ c j in foUX • Put 

<& • H(£KcuV)<, i r»HC£)Ca , ) . 

Thus, we have morphisms 

i>> : ouj~+>a,, (b^% h^—^J& with U (i>4) m ^, UCflt^) = 4y , 

<$^i <*>£-*>$r^ , 9 * a,----•*-ir* w i t h UCcp^) .a U C 9 > s - £ . 

By («&), any set with an upper bound has a supremum. Thus, 

there i s a supremum c of •£ J&% $ and we have 

%S % — * e witfa U Cr4 ) * ly * 

^6* o—**ir with UCft) - 4y . 

Hence, ^ « ^ o -y4 
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Consider the colimit (t>± : cuj^-^^ of) ^ 6 j of the diagram 

consisting of a l l the cu± and a l l the iden t i ty carried 

morphism between them. If UC | ) » 4% for a ft a,*,—* ay, , 

we have UCi>^f)«4 » U C ^ ) so tha t o>£ f .» ^ . Simi

l a r l y , ^ 9 ^ f = ^ < ? ^ » Thus, there are morphisms 

oc • < * /—> a with otf *>/ 0 5>̂  , 

y 1 Q, • c with t / r ^ « ^ 9 L . 

Consider the diagram 

We have 

(fcty ar <f GC 

( r e a l l y , ( t o y ^ s ptfifi,* f*i9i « 9 * 4 » 9«*>>i > > 

and 

H(TL.*)>Ca/> » a, 

( r e a l l y , l e t us have a /S; of * Z with UC/&) * UCoc) • 

we have U C p i / ) * U C o t ) U C » ^ ) » UCtf*) - 4 so tha t 

£ 2? yfetLfi' cu^ -c a ) # 

Consequently, 

jmCi | r>CaO«HCUCp)UC^ 

so t h a t , since ijr: a'—**-e - # <£ c ., and hence # » e • 

Thus, H i s a functor from &.*£ into cj • 
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Now, define functors 

putting 

fCa,) •rClICa))a) and $C9>* Ca,,UCcp)#-«r) for 9: a—> > , 

. ¥ ( X , a ) *» a, and"ar(a.,ftJ^)»9:a,-#A' such tha tUC9)s£ . 

(Ihe last definition i s correct: there i s at most one such 

9 by the faithfulness of II , and there exists one s in

ce there i s a f :<x—> H <£)(«*) with TlCif) m £ and 

we have MC£)<oO .& Sir . ) 

Obviously, V • $ » IX for the natural forgetful functor 

V of a N -

Immediately by the definitions we see that ¥$ Ĉ p) • 9 

and $ ¥ ( * , £ ,JbO s Ca,£, J&O , so that $ , Y are iso-

functors. 2husf ( i i ) i s proved. 

( i i ) = - > ( i i i ) : t r i v i a l l y . 

(iii)-s==a^(i): fhe property CT> i s obvious. If Ca>,£,4>) 

are morphiams, we have H C£) Co.) .& Str^ for a l l -v -

and hence HC£VCa) A </n/f 4r^ , so that Ca,£, -uivfJtr )̂ 

i s a moronism. Finally, Ceuf £,H C£)Ca)) i s always a mor-

phism. 

8 2. !l?he categories SCF> . 

2 .1 . Let ua recall some well-known definitions and 

facta. If £ i s a l a t t i ce and o* i t s least ( e i t s lar

gest, reap.) element, an element a, e £6 i s said to be an 

atom (a coatom, resp .) of & i f 
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eu + <r and (Vx^, £ a «*•> 3-1, x^ S a,) 

(a. 4. e and ( Ao(, -& a, ==» E^.x^^eu, rasp.) • 
«? 

The set of all atoms (coatoms, resp.) of it will be deno

ted by 

aUC) (*(*>, resp.) . 

In a Boolean algebra, the atoms coincide with the minimal 

elements, i . e . with the cu such that 

c> 4. cr and (x 6* a & x 4- o* =*==£ x m a ) . 

A l a t t i c e 56 i s said to be atomic (coatomic, resp.) if 

Voce 16 x m V 4 * l * ^ x U t a C K ) ' } 

(Vx s & x = A-Ca> I a, & x 4 a, c £ ( # ) ? , resp. ) . 

I f i t i s a Boolean algebra, then cu i s an atom i f f **a, 

i s a coatom. 

A Boolean algebra i s atomic i f f i t i s coatomic. 

For an-atomic Boolean algebra &C , the formula 

t , (x) =r 4o/ la/.&x & o>€ aCiC)? 

defines an isomorphism of &£ onto (efcfi-tt($£), c ) # 

2 . 2 . Theorem. A concrete category ( & , 1 l ) i s equal

l y carried with an SCP) with a co variant P i f f the 

.following conditions are satisf ied: 

( i ) % i s co complete and II preserves co l imits . 

( i i ) C &fU) has (T) . 

( i i i ) Every &UX i s a set and an atomic Boolean 

algebra. 
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(iv) Denote by <rx the zero of SlUX • For every 

£ : X- there i s a 9 : 05. with UCq>) m t . 

(v) If there i s a tr; cu—> o^ then cu « <r % . • 
A liC«tj 

(vi) For every £ t X — * T and for every 

cu e & (&UX ) there is a 9 . a,—*>Xr with U(9)»,f 

and tr c CL< AUy> . 

Remark* Obviously, by (iv), U is a right adjoint, 

(Moreover, it has a left adjoint L such that U © L « 4$^ .) 

Proof: For an SCF) 9 the conditions (i) - (vi) are 

obviously satisfied. Now, let the conditions hold. First, 

we will prove the following statement: 

If a e a c f t t t X ) , Jfc-eCtC&uy) and if <pt <*,-*>Hx 

is a morphism then 

c*) °x 

Oß 

-*- crv 

9 

\ < 

• Sr 

with IKrЭ-UCg.) , T l ( ь ) - Иx anđ TI( Ľ ) = 4 i s a 

pushoato 
Really, 

UЦf>-»UCgO 

4y«,tfCi/> 

is a pushout and hence by (i), (ii) and 0.6 there is a push-

out 
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V 
°x *: °v 

V „ I'" 
with UCt")- 4y and UCy')» UC9) . Thus, there i s a 

ae: c —>ir such that ?e 1/* s 1/ . Hence, UC«e)«>J and 

therefore c s£ *Cr . Thus, ei ther e • i r , 1/ » 1," and 9 ' * 

* 9 , or e as try . The second alternative i s , however, ex

cluded by (v) . 

Now, define 
P j g«* » £** 

putting PCX) = a ( AUX) and, for £s X — * / and 

a e a C A U X ) , PC£) (a,) « *r e a C &Uy) such that the

re i s a 9 s a,—•ir with UC9)--- f . Such a Jtr exists by 

(vi) and i t i s uniquely determined by (# . . Obviously, P 

i s a covariant functor. 

For an x c e*#» & put x<x) **<<*, I cucFUCx) & a 6 x J 

and define 

I : ft, — • S C F > and T C : S C P ) — * & 

by 

$Cx) s C U C x ^ / t f * ) ) , §C9>-0 tCdc ) ,UC9) f ^C^ ) ) 

f o r 9 : x —>*• /y. > 

fcx,*) s v u i d 6 x i , yc^f,^)-.9:Ycx,A)->Ycy,/&) 
such that UC9) s i r » 

The definitions are correct: If O ^ C A ( X ) , we have a A, : 

1 Ov—*X with UC&) - ^ n , . By C# ) we have the pushout 
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9' 
°lí(x) •" °Ufv) 

L V w 9 
a — « » PUCyXa) 

with UCy') .= UCy") = UCg?) , and we have a ̂ ^/^—*• %-

with EC*e)» i .Since U is faithful, we have aey'* g?t- . 

Thus, there is a *e' with ae't/ « ae , and henee 

?U(<ap)(cu) £ %> , i*e. F U C y K a ) 6 K (<y,) .There is at 

most one 9 satisfying the formula for HfC/t ,£,/&) so that 

it suffices to prove its existence. It is, however, easy to 

check (using 0.6) that !fCX,-te) is a colimit of the diagram 

consisting of the <rx , all the a m K , and all the 

t: 0 ^ — • a with UCt,)t»'l ,from which the existence of 9 

immediately follows. 

Now, since %XLX are atomic, we have *if $ Cx) *• .y and 

3f§Cgp) m cp . Since it is a Boolean algebra, f tfCX,^) « 

m(X9M>) and hence obviously ^^rC^,^,^) m Cx,£,^») . Thus 

$ and **£ are isofunctors and obviously V » § • U whe

re 7 is the forgetful functor of £CF) . 

2.3. By a quite analogous reasoning one obtains the 

following 

Theorem. A concrete category C & , U ) is equally car

ried with an S C F ) with a contravariant F iff the fol

lowing conditions are satisfied: 

(i*) & is complete and U preserves limits. 

Cii) C & , U ) has CT) . 

( i i i ) Every fuHX i s a set and an atomic Boolean 
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algebra. 

(iv') Denote by ex the unit of JtUJC . f°r e v e r y 

£ i X — * y there is a 9: ex — * e y with U<9° * f • 

(•*) If there is a ifri^—> a, then GL, -» ê fo,) • 

(vi*) For every ft X — * Y and for every 

fre<e(hvr) there is a 9 s a, — > > with U(g>) - £ and 

a e ̂ C & B X ) . 

2-'4« Remarks* The first four conditions from 2.2 are, 

of course, satisfied also in the contravariant case 2.3, 

and vice versa. 

The remaining two conditions, however, are characteristic 

for the variance. In fact, the only case when the both col

lections are satisfied is the one of SCF) with P a con-

stant (and hence both co- and contravariant) functor. 

Really, suppose that an SCF) with a covariaat P 

satisfies (i*) - (vi'). Since the coatoms are the objects 

lX aFCX) >»{*!) with >u,cFCX) , we obtain by (vi') 

that for every f 1 X — > Y and every *r * T (.Y ) there is 

a J U C F C X ) such that PCf)CPCX)\«{^!) c PCy)N«C/w} . 

Consequently, 

every P(£) is one-to-one. 

leraote by tf^ the unique mapping X — > T where F is 

a fixed one-point set., If X is non-void, we have a cTx 

with /ft cfj( = 4p , and hence FC^fy) is onto. Since al

so Ti^g) is onto by (v'), we see that 

every PCff^) is invertible. 

Put A-»F(F) and consider the constant functor C^ de

fined by C*(f) m 4A . Put e,* * F (Yx ) . Since we have, 
» «... 
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for any £ i X—+Y , <fy « £ - TK , w e obtain 

ey.F(£)»F(a* £) »e xse^C A(£) 

Thus, & is a natural equivalence F S* CA . 
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