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ON 'CATEGORIES DETERMINED BY POSET~ AND SET-VALUED FUNCTORS

Jan MENU, Antwerpen, and AleS PULTR, Praha

Abstract: The present note is closely connected with
the Mdnes characterization of lattice fiberings in [3).
On the one hand, in § 1 we give a characterization of a
slightly more general case, namely that where the values of
the inducing functor do not necessarily possess suprema of
all subsets. On the other hand, § 2 deals with characteriz-
ing of two 1mportant particular cases of lattice flberlngs,
the categories (F) (see below). The argument in § 1 is
very close to that of Manes. What we show is that one can
dispense of the assumption that the forgetful functor is
(also) colimit preserving. In § 2, roughly speaking, the ob-
vious necessary conditions are sho'n to be also sufficient.

Key word : Concrete’ category, lattlce fiberings and
their generallzatlon, categories )

AMS: 18B99 Ref. Z.

§ 0. Preliminaries

0.1. The category of all sets and mappings is denoted
by Set , the category of partially ordered sets and or-
der-preserving mappings is denoted by Poset . We use the

symbol
2

for the category of partially ordered sets such that every
non-void subset has an infimum, and of the suprema preserv-

ing mappings.
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0.2. A concrete category (Ra, u) is a category
together with a faithful functor U : & —» Set (called
the forgetful functor). Concrete categories (4, U) and
(£,V) are said to be equally carried if there is an iso-
functor d: BR—> & such that Ve @ = U .

A concrete category (R , ) is said to have the pro-
perty of transfer (shortly,(T))if for every a €ofji & and
every invertible mapping £sU(a)—> X there is an iso-
morphism @ : oo —> & with U(p) = £ (cf. [1) and
[4l).

0.3. Given a concrete category (& ,U) and a set X,
we denote by
Aux
the class of all a € o & with U(a) = X ,preordered

by the relation

@& fr iff there is a g:a —» & such thatU(gd=1y.

Obviously, the transfer property implies that RUX and
RUY with equally large X and Y are equivalent .

O.4. Let H be a functor from Set into Fosel
or into & . In ac.cordance with the notation of [2] (where
the symbol is vsed for the functors terminating in CSL ,
the full subcategory of & generated by the complete latti-

ces) we denote by

xy

the concrete category the objects of which are couples
(x ,@) with @ €eH(X), the morphisms (X,@) into
(Y, &) are triples (@,f, &) with £:X—>Y such that
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H(£)(a) £ & , the forgetful functor sending (a,£,.4)
to

0.5. Let I be a covariant (contravariant, resp.)
functor from Set  into itself. The concrete category
S(F)

is defined as follows: The objects are couples (X,a) with
a cFPX) ,
triples (a,f, &) with £:X—>Y such that F(f)(alc
c & (F(£)(&)c o , resp.); the forgetful functor sends
(a,f,8) to £ .

the morphisms from (X,a) into (Y, &) are

The categories S(F) play a role in questions concer-
ning description of morphisms. It was, e.g., proved in [1]
that every reasonable concrete category is a full concrete
subcategory of a suitable S(F) .

The categories S(F) may be considered as a particu-
lar case of (L, defining H(X) = (epF(X),c) and
H)a)=F(£)(a) in the covariant, H(X)= (expF(X), 2)
and H(£)(a) =F(£) () in the contravariant case.

0.6. The following trivial lemma will be of use in the
both following paragraphs:

Lemma. Let R be complete (cocomplete, resp.), let
(&,U) have (T) and let 1 preserve limits (colimits,
resp.). Let D:X—> & bve a diagram, let
(£g: 2 —> uD(h)‘)“#K be a limit ((fh:UD(ﬂbJ«—-)Z)h“qK
a colimit, resp.) of UeD , Then there is a limit (colimit,

resp.) (9‘.’)*"@“( of D such that U(gy) = £, .

Proof: Take a limit (q;:z'———VD(JW)‘b of D . Hence,
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(Ulpg ) g is a limit of UD , so that there is an
invertible g with U(gy leg= £y + By (T) we have an
isomorphism o7 z—» 2z’ such that U(y) = g -

Put @p = Gp° 7 -

§ 1. Ihe categories O, with H termingting in &
or Poset .

l.l1. We introduce two further conditions on concrete

categories:
(D) : Every AUX is in oD .

(inf) : Let there be @ : &—> a.a-_,»v'» eJ4 £ , such that
U(@;) =£ and let imfa, exist. Then there is a
@t r—> imfa,; Wwith U(p)=+<£ .

l.2. Remark. These conditions are not artificial. Ob-
viously, they are satisfied in every complete concrete
(&,U) such that U is a both-sided adjoint and every
RUX is a set (in that case, RUX  are complete lat-
tices). Moreover, it is easy to show that they hold in re-
flective subcategories of such (& ,U) if e.g. the reflec-.

tion morphisms are extremal epimorph.sms.

1.3. Theorem. Let (& ,U) be a complete cocomplete
concrete category with a limit preserving U ., Let the
condition (D) be satisfied. Then the following three sta-
tements are equivalent: ‘

(1) (&,U) has (T) , and (inf) and for every £ :
tU(e)—> Y there isa @:a — £& with Ulg) = £,
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(ii) (&,U) is equally carried with an O, with
H:Set— 9D .

(iii) C(R,U) is equally carried with an oy, with
H: Sat—> TPoret ,

l.4. Remark. For example of a category satisfying all
the properties and such that AUX have no non-trivial
suprema consider the following one: The objects are couples
(X,A) with AcX &and cewdA &4 , the morphisms
(X,A)—> (Y,B) are the £:X—3Y with £(A)cB.

1.5. Proof of 1.3:

(i) =» (ii): For a set X put H(X) = RUX , for a
mapping £:X—>Y and an @ e RUX put H(£)(a) =
= InfFiL|3gia—l, UCp)=£} (which exists by (D)
and the last condition in (i)). By (inf), we have a
.@1.a —> H(£)(a) such that U(g®)=£ . Obviously,

o & & implies H(£)(a) & H(£)(R) .,

Let £: X—Y , g1 Y— 2 be mappings. For an
a e H(X) we have a ¢: a —> H(£)(a) anda
4: H(£)(a) —> H(@Q)H(£)(a) such that U(g) = £ and
UCy) = @ . Thus, U(y@p) = ¢gf and hence
H(qgf)(a) £ H(g)H(£) () .

Tike the L :H(gf)(a)—> H(g)H(£)(a) with U(L)=1;

and the g:a —>H(gf)(a) with U(x)=qgf, Since U is
faithful, we have

Lol.‘l’"?.
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By 0.6 there is a pullback
Hi£)a) —Y . H(g) H(£)(a)
c —L> H(g£)(a)
such that U(V’) = 4), . Hence, we have a A  with
VA =9 and ¥A=7.

By the @efinition of H(£)(a) , = 14¢e)(ay - Thus,
ba‘qr'g % , and hence, by the definition of H(g)H(£)(a),

t =41 , Thus,
K(qf) = H(gIH($)

Now, we are going to show that H (£) preserves suprema.

Let @ be the supremum of {a }; ¢35 in RUX . Put

&, = H(€)(a,) , &=H(E)a) .
Thus? we have morphisms
Vi, @t L —> & with 11(»4).—.4)(,11(@‘) = 4y ,
gt A, Pra—& with U(g,)=Ulg)=< .

By (@), any set with an upper bound has a supremum. Thus,

there is a supremum ¢ of £ &;l and we have
%t y—>c¢  with U(p,) = 4y s
@:e—>L  with UW(w) = 4, .
Hence, (hy = @ 73
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Consider the colimit (w{:a;—>a’); ¢y of the diagram
consisting of all the a; and all the identity carried

morrhism between them. If U(E) =4y for a §:ay;—>ay,
we have U(v; =4 = U(»,) so that »; § = »; . Simi-

larly, 7o 95§ = 92 ®; . Thus, there are morphisms
wta—>a with e‘»;_= Y,

ypra—>c with y») =219, .

/
/ o

1,

Consider the diagram

We have
wy =g
(really, wywi= @oiPi= @ 9i = PV, = Px P
and
H(lLa ) (') = @
(really, let us have a f:a’—s & with U(B) = Ulex)
we have U (f) = UCx)U(»]) = U(wy) = 4 so that
Z aupay =a) .
Consequently,
HU(yXa) a H(U () U(y)) ()= HU(PIU(x)) (@) = H(f)(a) = &

so that, since :a’—>c ,& & c , and hence F =c .

Thus, H is a functor from S&t into & .
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Now, define functors

Q:k——»ULH, Y:au—bk
putting

2(a) = (Ula),a) and §(9)=(a,U(g), &) for gia— &,

- ¥(X,a) = a and ¥(a,f,4)=qg:a—sL such that U(g)=f.

(The last definition is correct: there is at most one such
@ by the faithfulness of U , and there exists one sin-
ce there is a y:a —» H(£)(a) with U(y) =€ and
we have H(£)(a) & & .)

Obviously, Ve & w Ul for the natural forgetful functor
V of Uy . :

Immediately by the definitions we see that ¥ (yp) = @
and $¥(a,f,¥)=(a,r, o) , 80 that &, ¥ are iso-
functors. Thus, (ii) is proved.

(ii)==>(iii): trivially.

(iii)===>(i): The property (T) is obvious. If (a,f,&)
are morphisms, we have H(£)(a) & % for all + ,
and hence H(£)(a) & imf &, , .80 that (a,$£,inf 2;)
is a morphism.'rinally; (a,£,H(£)(a)) is always a mor-

phism.

§ 2. The categories S(F).

2.1. Let us recall some well-known definitions and
facts., If &£ is a lattice and o its least (e its lar-
gest, resp.) element, an element o € & is said to be an

atom (a coatom, resp.) of & if
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e % O and (‘sf\x;‘ za.aoa-i,,x,vaa.)

(o =% e and(/‘j\x&éaﬁai,xiﬁw, resp.) .

The set of all atoms (coatoms, resp.) of & will be deno-
ted by

A(L) (€(&L), resp.) «
In a Boolean algebra, the atoms coincide with the minimal

elements, i.e. with the o such that

oo ad(xXea&kXfo=pxwa).,

A lattice & is said to be atomic (coatomic, resp.) if

Vxe & x=Viala £x&asl(L)}
(Vx s & xsNalazx&ae€(L)} , resp.).

If & 1is a Boolean algebra, then @ is an atom iff \a
is a coatom.
A Boolean algebra is atomic iff it is coatomic.

' For ‘am stomic Boolean algebra & , the formula
LX) x {alaex&ael(®)}

defines an isomorphism of &  onto chf»a.(g), c) .

2.2. ThHeorem. 4 concrete category (&,U) is equal-
ly carried-with an S(F) with a covariant P iff the
following conditions are satisfied:

(ij R is cocomplete and U  preserves colimits.

(ii) (&,UY has (T) . v

(iii) Every RUX is a set and an atomic Boolean

algebra.
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(iv) Denote by oy  the zero of RUX

£: X—Y there is a g@: o —> 0y

« For every
with U(gp) =¢£.

(v) If there is a %: o —» 0y then o = ey

(vi) For every £: X— Y and for every

ael(RUX) thereis a 9: a—>&
and e Q(RUY) .

with U (?) =f

Remark. Obviously, by (iv), U is a right adjoint.

(Moreover, it has a left adjoint L such that UeL = 1g, .)

Proof: For an SC(F) , the conditions (i) - (vi) are

obviously satisfied. Now, let the conditions hold. First,
we will prove the following statement:

If ael(RUX), e (RUY) and ifgia-—Lr

is a morphism then
o 4

————
X %y

P,

o —2

(x)

with U(y)=Ulg) , U(L) = ¢ and U(L’) = 1y is a
pushout,
KReally,

11(11:) = U,(qp)

4,:1[((.’)
Ule)

X
l 4x=11(l..)
X

Me—

e

is a pushout and hence by (i), (ii) and 0.6 there is a push-
out

- 674 -



¥
PR
%

?’

—

P58
O
< S

with U(L")=4y and U(g’)= U(g) . Thus, there is a
%: c—> & such that gL’ = .’ , Hence, U(ee) =4 and
therefore ¢ £ & . Thus, either e¢ = &, V = ” and ¢'=
=9, 0r ¢ =0, .The second alternative is, however, ex-
cluded by (v).

Now, define

P: Set —» Set
putting F(X)= ACARUX) and, for £: X—>»Y and
aeQ(RUX) , F(£)(a)= 2re A (RUY) such that the-
re is a @: a,—>‘2r with U(g)= £ . Such a & exists by
(vi) and it is uniquely determined by (x ). Obviously, F

is a covariant functor.
For an x € oj R put n(xX)=4alaePl(x) &ka £« % }
and define
g : R —> S5(F) and ¥: S(F)— &

by .

F(x) = (U, n(x)), §(@)=(n(x), Ulg), n(4))
for @: x~—>a ,

Y(X,x)=Vialaernt, ¥ir,£»=q:¥(Xx)—>¥,»)
such that U(g) == .
The definitions are correct: If a € x (x) ,we have a A :

ta—»Xx with W) =4u(x) . By (%) we have the pushout
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?I

ey ™™ Uy

l L lu’
4
[ 5 - PU(g) (a)

wvith U(g’) =U(p”) = U(p) , and we have a 2¢:0) ,—> %

with U(se)= 4 ,Since U is faithful, we have ngzg oL .
Thus, there is a s¢” with 'L’ = 9¢ , and hence

Fute)(a) € 4 , i.e. FU(@)(a) € x (g) . There is at
most one ¢ satisfying the formula for ¥ (x,£,») so that
it suffices to prove its existence. It is, however, easy to
check (using 0.6) that ¥ (X, x) is a colimit of the diagram
consisting of the ¢y , all the o ® x , and all the
Liox—>a with UCL) =1 ,from which the existence of @
immediately i_‘olloivs.

Now, since RUX are atomic, we have ¥ @d(x)=x and
¥¢(p) = ¢ . Since it is a Boolean algebra, F¥(X,x) =
= (X,x) and hence obviously $W(x,f,») = (x,£,») . Thus
® and ¥ are isofunctors and obviously Ve d = U whe-
re V¥ is the forgetful functor of S(F) .

2.3. By a quite analogous reasoning one obtains the

following

Theorem. A concrete category (& ,1) is equally car-
ried with an S (PF) with a contravariant F iff the fol-
lowing conditions are satisfied:

(i) & is complete and \l preserves limits.

(1i) (&,U) has (T) .

(iii) Every RUX is a set and an atomic Boolean
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algebra.
(iv’) Denote by ey the unit of RUX . For every
£1X—> Y there is a gre,—>e, with u(@?=*% .
(v") If there is a y:ey—> @ then @ = eycq) °

(vi’) For every £t X—>Y and for every
2 e €(RUY) there is 4 ¢@: a —> £ with U(y) = £ and
e e €(RUX) .

2.4, Remarks. The first four conditions from 2.2 are,
of course, satisfied also in the contravariant case 2.3,
and vice versa.
The remaining two conditions, however, are characteristic
for the variance. In fact, the only case when the both col-
lections are satisfied is the one of S(F) with F a con-
stant (and hence both co- and contravariant) functor.

Really, suppose that an S (F) with a covariant F
satisfies (i°) - (vi’). Since the coatoms are the objects
(X, P(X)N4$ul) with 4 € F(X) , we obtain by (vi®)
that - for every £: X—>Y and every " € F(Y) there is
a 4 eF(X) such that F(EI(F(X)IN{ud) e (YN {r} .
Consequently,

every F(£) is one-to-one.
Denote by oy the unique mapping X—»P where P is
a fixed one-point set. If X is non-void, we have a a"x
with oy dy = 4p , and hence P('{x) is onto. Since al-
so P(yg) isonto by (v’), we see that

every P(%yy) is invertible.
Put A=F(P) and consider the constant functor C, de-
fined by CA(f) = 4A , Put et "F(?X) . Since we have,

»
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for any £: X—Y , q’ygf =% 1 e obtain

e e F(£)=Flg f) = e¥=e¥o C,(2) .

Thus, € is a natural equivalence F & C, .
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