Commentationes Mathematicae Universitatis Carolinae

Jiří Durdil
 On the geometric characterization of differentiability. II.

Commentationes Mathematicae Universitatis Carolinae, Vol. 15 (1974), No. 4, 727--744

Persistent URL: http://dml.cz/dmlcz/105594

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
15,4 (1974)

ON THE GEOMETRIC CHARACTERIZATION OF DIFFERENTIABILITY. II.
Jirif DURDIL, Praha

Abstract

In this paper, the geometric characterization of differentiability in Banach spaces is given. It is shown that a mapping $F: X \rightarrow Y$ possesses the Frechet derivative $F^{\prime}\left(x_{0}\right)$ at a point x_{0} iff F is continuous at x_{0} and certain tangent cone to the graph of F coincides with the graph of some continuous linear mapping $\mathcal{L}: X \rightarrow Y$ (it is $F^{\prime}\left(x_{0}\right)=L$ in that case).

Key words: Banach space, Fréchet derivative, conic limit, tangent cone.

AMS: 47H99, 58C20
Ref. Z. 7.978.44

The present paper is a free continuation of [11]. Both these papers deal with geometric characterizations of differentiability in Banach spaces.

The problem of geometric characterization, especially in finitely dimensional spaces, was studied by many authors, e.g. [2] - [8],[10],[11]; the characterizations given there were based on two basic notions: tangent plane [6],[11] and tangent cone [4]. The latter notion, in fact generalizing the Pirst one, was then used in various applications, nameIy to nonlinear programing (see e.g. [1],[4],[5],[9]).

In the first part of our paper [1i], the geometric characterization of differentiability of mappings in Banach
spaces in terms of tangent flats (planes) was presented. In the second part of [11], we discussed the problem stated by T.M. Flett in [4] (see also [5]): whether the Fdifferentiability in Banach spaces can be characterized in terms of tangent cones (in the sense of Flett [4]). We showed there in an example that such characterization is not possible even under very strong restrictions (e.g. in case of a Lipschitzian mapping from the real line into a Hilbert space) and we tried to find the cause of it.

Bearing in mind our conclusions made at the end of [11], we shall now modify the notion of a tangent cone in such a manner to obtain the required characterization of differentiability. The relations between this new notion and the similar ones of other authors ([1],[4],[9]) will be stated, too.

The author would like to thank Prof. J. Kolomy for his suggestions in regard to this paper.
1° Let Z be a Banach space and $x_{0} \in Z$. A set $C \in$ c Z such that $\lambda\left(C-x_{0}\right) \subset C-x_{0}$ for every $\lambda \geq 0$ is said to be a cone with a vertex x_{0}; the cone $C=\left\{x_{0}\right\}$ is said to be degenerated. Denote $B_{\pi}:\{x \in Z:\|z\|<\pi\}$ and $S=$ $=\{x \in Z:\|x\|=1\}$.

Definition. A cone $C=Z$ with a vertex z_{0} is said to be generated by a set $M \subset Z$ iff $C=\bigcup_{\lambda \geq 0}\left(x_{0}+\lambda\left(M-x_{0}\right)\right)$. Let C be a cone with a vertex x_{0}, let $\varepsilon>0$; the cone with the vertex x_{0} generated by the $\operatorname{set}\left(C \cap\left(x_{0}+5\right)+B_{e}\right.$
is said to be the conic ε-neigbourhood of C and denoted by $u_{e}(c)$.

Let $C_{n}(m=1,2, \ldots)$ be cones in Z with a common vertex z_{0}. Then two possibilities arise: either such a set $C_{0} \subset Z$ can be chosen that there is m_{0} for every $\varepsilon>0$ such that $C_{0} \subset U_{\varepsilon}\left(C_{m}\right)$ and $C_{m} \subset U_{\varepsilon}\left(C_{0}\right)$ whenever $m \geqq m_{0}$, or no $C_{0} \in Z$ has this property. It is easy to see that if C_{0}, C_{0}^{\prime} are two sets having the property above, then $\bar{C}_{0}=$ $=\bar{C}_{0}^{\prime}$ and \bar{C}_{0} has that property, too; moreover, \bar{C}_{0} is a closed cone with a vertex at z_{0}.

Definition. Let $C_{m}(m=1,2, \ldots)$ be cones in Z with a common vertex x_{0}. The conic limit of C_{n} is defined to be the union of the set $\left\{x_{0}\right\}$ with all cones $C \subset Z$ having the property: there is n_{0} for every $\varepsilon>0$ such that $C \subset$ $\subset U_{\varepsilon}\left(C_{n}\right)$ and $C_{n} \subset U_{\varepsilon}(C)$ whenever $m \geqslant m_{0}$. We denote this limit by $C_{m \rightarrow \infty} \lim _{n}$ and call it regular if it contains more than one point. The conic limit of an uncountable system of cones is defined in a similar way.

It follows from the preceding discussion that a conic limit is always a closed cone with a vertex at \boldsymbol{z}_{0} (which is degenerated in case of irregular limit). Moreover, the following assertions hold; their proofs are straightforward and so we omit them.

Proposition 1. Let $C_{m} \quad(m=0,1,2, \ldots)$ be closed cones in Z with a common vertex z_{0}. Then C_{0} is the regular conic limit of $C_{n}(m=1,2, \ldots)$ if and only if for every $x>0$,

$$
C_{n} \cap\left(x_{0}+\bar{B}_{n}\right) \rightarrow C_{0} \cap\left(z_{0}+\bar{B}_{n}\right)
$$

in the sense of Hausdorff metric in the space of closed bounded subsets of Z.

Proposition 2. Let $C_{m} \quad(m=1,2, \ldots)$ be cones in Z with a common vertex $x_{0}, C_{m+1} \subset C_{m}$ for all m and suppose that there is the regular conic limit $C_{0}=\underset{M}{C-\lim _{n}} C_{M}$. Then $C_{0}=\bigcap_{n=1}^{\infty} \bar{C}_{n}$.
2° Now, we are prepared to define the improved notion of a tangent cone (see the end of (2.2) in [11]). Hereafter, we shall use the term "tangent cone" only in the sense of the following definition.

Definition. Let Z be a Banach space, McZ a nonempty set and $x_{0} \in \bar{M}$. Denoting
(1)

$$
\begin{aligned}
\varphi_{r}\left(\mathbb{M}, x_{0}\right) & =\{ \}: \xi=x_{0}+\lambda \frac{x-x_{0}}{\left\|x-x_{0}\right\|}, \lambda \geq 0, \\
& \left.\approx \in \mathbb{M} \backslash\left\{x_{0}\right\},\left\|x-x_{0}\right\| \leq \pi\right\}
\end{aligned}
$$

for $x>0$, the set

$$
\varphi_{0}\left(M, x_{0}\right)=C_{r \rightarrow \infty}-\lim _{n}\left(M, x_{0}\right)
$$

is said to be the tangent cone to M at the point x_{0}.
It is evident that all $\mathcal{C}_{\pi}\left(\mathbb{M}, \boldsymbol{x}_{0}\right)$ are cones in Z with the common vertex x_{0}, they are generated by the sets $M n$ $n\left(x_{0}+\bar{B}_{r}\right)$ and $\mathcal{U}_{r_{1}}\left(M, x_{0}\right) \subset \mathcal{C}_{r_{2}}\left(M, x_{0}\right)$ if $r_{1} \leqslant r_{2}$; we call $\left\{\mathcal{E}_{\pi}\left(M, x_{0}\right): n>0\right\}$ the quasi-tangent system of cones.

The tangent cone defined in this way is always a nonempty closed cone with a vertex x_{0} (that may be degenerated to $\left\{x_{0}\right\}$). It is in close connection with similar cones of some other authors ([9],[4],[1]) as will be shown in Section 3^{0} but there is a difference there which makes it possible to characterize the F-differentiability of mappings.

Now, we prove our main theorem.

Theorem 1. Let X, Y be Banach spaces, $D \subset X, X_{0}$ an interior point of D and let $F: D \longrightarrow Y$ be a mapping. Then F possesses the Fréchet derivative $F^{\prime}\left(x_{0}\right)$ at x_{0} if and only if P is continuous at x_{0} and there is a continuous linear mapping $L: X \longrightarrow Y$ so that

$$
\begin{equation*}
\varphi_{0}\left(g(F),\left(x_{0}, F\left(x_{0}\right)\right)\right)=\left(x_{0}, F\left(x_{0}\right)\right)+G(I) ; \tag{2}
\end{equation*}
$$

if it is the case, then $F^{\prime}\left(x_{0}\right)=1$.
Proof. Denote $Z=X \times Y$ and $x_{0}=\left(x_{0}, F\left(x_{0}\right)\right)$. We shall consider the maximum norm in $X \times y$, i.e. $\|(x, y)\|_{z}=$ $=\max \left(\|x\|_{X}\right.$, $\left.\|y\|_{Y}\right)$, but it is not essential - arbitrary equivalent norm in $X \times Y$ (e.g. a sum norm) can be considered. Suppose that any neighbourhoods of x_{0} or x_{0} will be anywhere dealt with, these will be sufficiently small to be contained in D or $D \times Y$, respectively.

1) Let F be F-differentiable at x_{0} and denote $F^{\prime}\left(x_{0}\right)=I$. Suppose that $\mathcal{C}_{0}\left(\bar{y}(F), x_{0}\right) \neq x_{0}+C(I)$, i.e. that the sequence $\left\{\mathcal{E}_{\pi}\left(C_{y}(F), x_{0}\right)\right\}$ does not converge in the sense of Section 1^{0} to $x_{0}+g(L)$. Then there are $\varepsilon>0$ and $r_{-}>0 \quad(n=1,2, \ldots)$ such that $r_{n} \rightarrow 0$ and
that for every $n=1,2, \ldots$,
(3) $\quad \varphi_{x}\left(g(F), x_{0}\right) \notin x_{0}+$

$$
+\left\{\oint \in Z: \xi=\mu(w+c), \mu \geq 0, w \in g(L) \cap S, c \in B_{\varepsilon}\right\}
$$

or
(4) $\left.\quad x_{0}+g(L) \notin f\right\} \in Z: \xi=x_{0}+\lambda\left(\frac{x-z_{0}}{\left\|x-x_{0}\right\|}+c\right)$, $\left.\lambda \geq 0, x \in g(F),\left\|x-x_{0}\right\| \leq r_{m}, c \in B_{\varepsilon}\right\}$
holds. Denote N_{1} and N_{2} the sets of those m for which (3) or (4) is true, respectively; at least one of these sets must be infinite.

Suppose N is infinite and denote the set on the right side of the inclusion (3) by ($\left.x_{0}+\mathbb{I}\right)$. By (3), there is $x_{n} \in \mathscr{E}_{n_{n}}\left(g(F), x_{0}\right)$ for every $n \in N_{1}$ such that $x_{n} \notin$ \& $x_{0}+\amalg$ and hence

$$
x_{0}+\lambda\left(x_{n}-x_{0}\right) \notin x_{0}+u
$$

for all $n \in N_{1}$ and $\lambda>0$ because \amalg is a cone. This means that

$$
\left\|\frac{1}{\mu}\left[\lambda\left(x_{n}-x_{0}\right)-\mu v\right]\right\| \geq \varepsilon
$$

for all $\lambda, \mu>0$ and we $\mathcal{G}(L)$ with $\|w\|=1$; particnlar1y,

$$
\begin{equation*}
\left\|x_{n}-x_{0}-\mu v\right\| \geq \mu \varepsilon \tag{5}
\end{equation*}
$$

holds for all $m \in N_{1}, \mu>0$ and $\mu \in G(I)$ with $\|\mu\|=1$ where

$$
\left\|x_{n}-x_{0}\right\| \leq r_{m}, r_{n} \rightarrow 0
$$

according to the choice of x_{m}.
By assumption, there is $\sigma>0$ such that

$$
\left\|F(x)-F\left(x_{0}\right)-I\left(x-x_{0}\right)\right\|<\varepsilon\left\|x-x_{0}\right\|
$$

whenever $\left\|x-x_{0}\right\|<\delta^{\prime}(x \in X)$. Let $\left\|x_{m}-x_{0}\right\|<\sigma^{2}$ for all $n \geq n_{0}$ and choose $x_{n} \in X$ such that $x_{n}=\left(x_{n}, F\left(x_{n}\right)\right)$. Then $\left\|x_{m}-x_{0}\right\|<\delta$ if $m \geq m_{0}$ and hence

$$
\left\|F\left(x_{m}\right)-F\left(x_{0}\right)-I\left(x_{m}-x_{0}\right)\right\|<\varepsilon\left\|x_{m}-x_{0}\right\|
$$

for all such m. In the space $X \times Y$, the relation

$$
\left\|\left(0, F\left(x_{n}\right)-F\left(x_{0}\right)-I\left(x_{n}-x_{0}\right)\right)\right\|<\varepsilon\left\|x_{n}-x_{0}\right\|
$$

follows and therefore

$$
\begin{align*}
& \left\|x_{m}-x_{0}-\left(x_{n}-x_{0}, I\left(x_{n}-x_{0}\right)\right)\right\|< \tag{6}\\
< & \varepsilon \max \left(\left\|x_{m}-x_{0}\right\|,\left\|I\left(x_{n}-x_{0}\right)\right\|\right)
\end{align*}
$$

whenever $m \geq n_{0}$. Put
$\mu_{n}=\left\|\left(x_{m}-x_{0}, I\left(x_{m}-x_{0}\right)\right)\right\|=\max \left(\left\|x_{m}-x_{0}\right\|, L\left(x_{m}-x_{0}\right) \|\right)$
and $w_{m}=\frac{1}{\mu}\left(x_{n}-x_{0}, L\left(x_{m}-x_{0}\right)\right)$. Then $\mu_{n} \geq 0, w_{n} \in g(L)$,
$\left\|w_{n}\right\|=1$ and (according to (6))

$$
\left\|x_{n}-x_{0}-\mu_{n} w_{n}\right\|<\mu_{n} \varepsilon
$$

for all $m \geq m_{0}$; but this contradicts (5) and hence, the set N_{1} cannot be infinite.

Now, suppose N_{2} to be infinite. Denoting ($x_{0}+U_{r_{n}}$) the set on the right side of (4), it follows from (4) that there are $\left\{w_{m}\right\} \subset g(L)$ such that $\mu_{m} \notin U_{\mu_{\sim}}$ for every
$n \notin N_{2}$. However, $g(I)$ is linear and $u_{r_{n}}$ are cones and so $\operatorname{nor} \notin \mathrm{U}_{x_{n}}$. holds for all ar $\in g(L)$ and $m \in \mathbb{N}_{2}$. It means, with respect to the structure of $\Psi_{n_{n}}$ and linearity of g(I) that

$$
\begin{equation*}
\left\|x-\frac{x-x_{0}}{\left\|x-x_{0}\right\|}\right\| \varepsilon \tag{7}
\end{equation*}
$$

for all ar $\in G(L), x \in G(F)$ with $\left\|x-x_{0}\right\| \leq x_{m}$ and $\pi \in$ $\in \mathrm{N}_{2}$. Now, in the same way as (6) was proved, we can prove that

$$
\left\|x-x_{0}-\left(x-x_{0}, L\left(x-x_{0}\right)\right)\right\|<\varepsilon\left\|x-x_{0}\right\| \leq \varepsilon\left\|x-x_{0}\right\|
$$

for all $x \in \mathcal{G}(F)$ sufficiently near to x_{0}, say $0<\left\|x-x_{0}\right\|<$ $<\sigma$. Choose n_{0} to be $x_{n}<\delta$ whenever $m \geq m_{0}$ and choose $x_{n} \in G(F)$ such that $0<\left\|x_{m}-x_{0}\right\|<x_{n}$ for every $n \geq$ $\geq m_{0}$. Then setting

$$
w_{m}=\frac{\left(x_{m}-x_{0}, L\left(x_{m}-x_{0}\right)\right)}{\left\|x_{m}-x_{0}\right\|},
$$

we have $w_{n} \equiv g(I)$ and

$$
\left|\frac{x_{m}-x_{0}}{\left\|x_{m}-x_{0}\right\|}-w_{n}\right|<\varepsilon
$$

for all $m \geq m_{0}$ which contradicts (7). It proves the first part of our theorem.
2) On the other hand, suppose now that there is a linear contineous mapping $L: X \rightarrow Y$ such that (2) holds but that F is not differentiable at x_{0}. In such case, there are $\varepsilon>0$ and $x_{m} \in X$ such that $x_{m} \rightarrow x_{0}, x_{n} \neq x_{0}$ and

$$
\begin{equation*}
\left\|F\left(x_{m}\right)-F\left(x_{0}\right)-I\left(x_{m}-x_{0}\right)\right\|>\varepsilon\left\|x_{m}-x_{0}\right\| \tag{8}
\end{equation*}
$$

for all $m=1,2, \ldots$; we can assume $\varepsilon<\frac{1}{2}$. Set $\varepsilon^{\prime}=$ $=\varepsilon(1-\varepsilon)(1+\|L\|)^{-1}$ if $\|L\| \leqslant \frac{1}{2}$ and $\varepsilon^{\prime}=\varepsilon(1-\varepsilon)[2\|L\|(1+\|L\|)]^{-1}$ if $\|L\|>\frac{1}{2}$; it is $0<$ $<\varepsilon^{\prime}<\varepsilon<\frac{1}{2}$ in both cases. The relation (2) implies that there is $\delta>0$ such that

$$
\begin{align*}
& \mathscr{\varphi}_{x}\left(g(F), x_{0}\right) \subset\left\{\xi \in Z: \xi=x_{0}+\mu(\mu+c),\right. \tag{9}\\
& \left.\mu \geq 0, \operatorname{N} \in \mathcal{G}(L) \cap S, C \in B_{8},\right\}
\end{align*}
$$

whenever $0<\pi \leqslant \sigma^{\sigma}$.
It follows from $x_{m} \rightarrow x_{0}$ and from continuity of F at x_{0} that there is n_{0} such that $\left\|x_{m}-x_{0}\right\|<\sigma^{\sigma}$ and $\left\|F\left(x_{n}\right)-F\left(x_{0}\right)\right\|<\sigma^{\infty}$ whenever $n \geq n_{0}$. Set $x_{m}=$ $=\left(x_{m}, F\left(x_{m}\right)\right), n=1,2, \cdots$; then $\left\|x_{m}-x_{0}\right\|<\delta$ and s $x_{m} \in \varphi_{f}\left(g(F), x_{0}\right)$ if $m \geq m_{0}$.By (9), we can choose $w_{m} \in G(L)$ with $\left\|w_{m}\right\|=1, c_{m} \in Z$ with $\left\|c_{m}\right\| \leq \varepsilon^{\prime}$ and $\mu_{m}>0$ (it is $x_{m} \neq x_{0}$) so that

$$
\begin{equation*}
z_{m}=z_{0}+\mu_{n}\left(w_{n}+c_{m}\right) \tag{10}
\end{equation*}
$$

wheraver $m \geq m_{0}$, that is

$$
\begin{equation*}
x_{m}=x_{0}+\mu_{n}\left(v_{n}+a_{m}\right), \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
F\left(x_{m}\right)=F\left(x_{0}\right)+\mu_{n}\left(L\left(m_{m}\right)+b_{n}\right) \tag{12}
\end{equation*}
$$

where $\left(a_{n}, b_{n}\right)=o_{n}$ and hence $\left\|a_{n}\right\|,\left\|b_{n}\right\| \leq \varepsilon^{\prime}$. Now, (10) implies

$$
\begin{equation*}
\left\|x_{m}-z_{0}\right\| \geq \mu_{n}\left(1-\varepsilon^{\prime}\right)>\mu_{n}(1-\varepsilon) \tag{13}
\end{equation*}
$$

It holds

$$
I\left(v_{n}\right)=\frac{1}{\mu_{n}} I\left(x_{n}-x_{0}\right)-I\left(a_{n}\right)
$$

according to (11) and on the other hand, it is

$$
L\left(v_{n}\right)=\frac{1}{\mu_{n}}\left(F\left(x_{n}\right)-F\left(x_{0}\right)\right)-b_{n}
$$

by (12). We conclude from these equalities and (13) that
(14) $\left\|F\left(x_{m}\right)-F\left(x_{0}\right)-I\left(x_{n}-x_{0}\right)\right\|=\left\|\mu_{m} L\left(a_{m}\right)-\mu_{m} b_{m}\right\| \leq$ $\leqslant \mu_{m}\|L\| \varepsilon^{\prime}+\mu_{m} \varepsilon^{\prime}<\frac{\varepsilon^{\prime}(1+\|I\|)}{1-\varepsilon}\left\|x_{m}-x_{0}\right\|$ for all $n \geq n_{0}$. Two cases are to be distinguished now. First, let $\|L\| \leqslant \frac{1}{2}$. Then $\varepsilon^{\prime}=\varepsilon(1-\varepsilon) \cdot(1+\|I\|)^{-1}$ and so (14) implies that

$$
\begin{equation*}
\left\|F\left(x_{m}\right)-F\left(x_{0}\right)-I\left(x_{n}-x_{0}\right)\right\|<\varepsilon\left\|x_{m}-x_{0}\right\| \tag{15}
\end{equation*}
$$

whenever $m \geq m_{0}$. Moreover, it holds

$$
\begin{equation*}
\left\|x_{n}-x_{0}\right\| \geq\left\|F\left(x_{m}\right)-F\left(x_{0}\right)\right\| \tag{16}
\end{equation*}
$$

in this case; in fact, if the reverse inequality were valid then (9) would imply
$\left\|F\left(x_{m}\right)-F\left(x_{0}\right)\right\|-\left\|L\left(x_{n}-x_{0}\right)\right\| \leqslant\left\|F\left(x_{n}\right)-F\left(x_{0}\right)-L\left(x_{m}-x_{0}\right)\right\|<$ $<\varepsilon\left\|x_{m}-x_{0}\right\|=\varepsilon\left\|F\left(x_{m}\right)-F\left(x_{0}\right)\right\|$
axid hence (it is $\varepsilon<\frac{1}{2}$)
$\left\|F\left(x_{m}\right)-F\left(x_{0}\right)\right\|<\frac{1}{1-\varepsilon} \cdot\|L\| \cdot\left\|x_{m}-x_{0}\right\| \leq\left\|x_{m}-x_{0}\right\|$,
which is the contradiction to our assumption. It follows now from (15) and (16) that

$$
\left\|F\left(x_{m}\right)-F\left(x_{0}\right)-L\left(x_{m}-x_{0}\right)\right\|<\varepsilon\left\|x_{m}-x_{0}\right\| ;
$$

howeỳer, it contradicts (8).
Now, consider the case $\|I\|>\frac{1}{2}$; then (14) implies
(17) $\left\|F\left(x_{m}\right)-F\left(x_{0}\right)-I\left(x_{m}-x_{0}\right)\right\|<\frac{\varepsilon}{2\|I\|}\left\|z_{m}-z_{0}\right\|<\varepsilon\left\|z_{m}-x_{0}\right\|$
for all $m \geq n_{0}$.If

$$
\left\|F\left(x_{m}\right)-F\left(x_{0}\right)\right\|>\left\|x_{m}-x_{0}\right\|
$$

were valid then (17) would imply (similarly as above)

$$
\left\|F\left(x_{m}\right)-F\left(x_{0}\right)\right\| \leq \frac{\|I\|}{1-\varepsilon}\left\|x_{m}-x_{0}\right\|<2\|I\| \cdot\left\|x_{m}-x_{0}\right\|
$$

and hence by (17),
$\left\|F\left(x_{m}\right)-F\left(x_{0}\right)-I\left(x_{n}-x_{0}\right)\right\|<\frac{\varepsilon}{2\|I\|}\left\|F\left(x_{m}\right)-F\left(x_{0}\right)\right\| \leqslant \varepsilon\left\|x_{n}-x_{0}\right\|$ for $n \geq m_{0}$. On the other hand, if

$$
\left\|F\left(x_{m}\right)-F\left(x_{0}\right)\right\| \leq\left\|x_{m}-x_{0}\right\|
$$

were valid then (17) would imply directly
$\left\|F\left(x_{m}\right)-F\left(x_{0}\right)-L\left(x_{m}-x_{0}\right)\right\|<\varepsilon\left\|x_{n}-x_{0}\right\|=\varepsilon\left\|x_{m}-x_{0}\right\|$
for $n \geq m_{0}$. Hence in both last cases, we come to the contradiction to (8), too.

Thus we have proved that F is F-differentiable at x_{0} and $F^{\prime}\left(x_{0}\right)=I$. Moreover, since I is continuous, it is the F-derivative of F at x_{0}.

The proof is completed.

Note that in the case of our example (2.2) [11], it is $\mathcal{E}_{0}(\mathcal{G}(F),(0,0))=\{(0,0)\}$ and hence F is not differentiable at (0,0) according to Theorem 1 .

In the same way as Theorem 1, with evident formal modifications only, the analogical theorem can be proved in the case that x_{0} is not an interior point of D but that the intersection of Int D with every sufficiently small neighbourhood of x_{0} is non-empty; such a situation occurs in the case of the differentiability relative to a set. [The F-derivative of $F: X \rightarrow Y$ at x_{0} relative to $M \subset X$ (denoting by $F_{m}^{\prime}\left(x_{0}\right)$) is defined to be a linear continuous mapping $L: X \rightarrow Y$ for which $\frac{1}{\left\|x-x_{0}\right\|} \cdot\left\|F(x)-F\left(x_{0}\right)-L\left(x-x_{0}\right)\right\| \longrightarrow 0$ if $x \rightarrow x_{0}, x_{0} \neq x \in M$.] Hence, the following theorem holds $(F)_{M}$ denotes the restriction of F to M, $s p M$ denotes the closed linear span of M):

Theorem 2. Let X, Y be Banach spaces, $D \in X, X_{0} \in D$, $F: D \rightarrow Y$ and let $M \subset D$ be a set with a non-empty inte-
rior. Suppose x_{0} lies on the boundary of Int M. Then F possesses the Fréchet derivative $F_{M}^{\prime}\left(x_{0}\right)$ at x_{0} relative to M if and only if F is continuous at x_{0} relative to M (i.e., $\left.F\right|_{M \cup\left\{x_{0}\right\}}$ is continuous at x_{0}) and there is a continuous linear mapping $I: X \rightarrow Y$ such that

$$
\begin{equation*}
\operatorname{Ar}\left[\varepsilon_{0}\left(G\left(\left.F\right|_{M}\right),\left(x_{0}, F\left(x_{0}\right)\right)\right)-\left(x_{0}, F\left(x_{0}\right)\right)\right]=G(I) ; \tag{18}
\end{equation*}
$$

if it is the case then $F_{M}^{\prime}\left(x_{0}\right)=I$. Moreover, the condition
$\left\{\left(x_{0}, F\left(x_{0}\right)\right)\right\} \neq \varepsilon_{0}\left(G\left(\left.F\right|_{X}\right),\left(x_{0}, F\left(x_{0}\right)\right)\right) \in\left(x_{0}, F\left(x_{0}\right)\right)+G(I)$
may be equivalently written instead of (18).

Remark that if x_{0} is an interior point of M then $F_{M}^{\prime}\left(x_{0}\right)$ is the same as $F^{\prime}\left(x_{0}\right)$ and our Theorem I is applicable.
3^{0} At the end of our paper, we look over connections between our notion of a tangent cone and similar notions of other authors. The following theorem is the direct consequence of our Proposition 2.

Theorem 3. Let Z be a Banach space, $M \in Z, x_{0} \in \bar{M}$ and let $I C\left(M, x_{0}\right)$ be the local closed cone of M at x_{0} in the sense of Varaiya [9]. If $\mathcal{C}_{0}\left(\mathbb{M}, x_{0}\right)$ is non-degenerated (i.e., if it is the regular conic limit of a quasitangent syatem of cones to M at z_{0}) then

$$
e_{0}\left(M, x_{0}\right)=x_{0}+L C\left(M, x_{0}\right)
$$

Corollary. Let Z be a finite dimensional space, $M \in Z, x_{0} \in \bar{M}$ and let $T\left(M, x_{0}\right)$ be the cone of tangents to M at x_{0} in the sense of [1]. If $\mathscr{C}_{0}\left(M, x_{0}\right)$ is nondegenerated then

$$
\varphi_{0}\left(M, x_{0}\right)=x_{0}+T\left(M, x_{0}\right):
$$

This is the immediate consequence of the preceding therem and Theorem 2.1 of [1]. Remark that
$I\left(M, x_{0}\right)=\left\{x: x=\lim \lambda_{n} \cdot\left(x_{n}-x_{0}\right), \lambda_{m}>0, x_{m} \in M, x_{n} \rightarrow x_{0}\right\}$.

Eventually, we shall discuss a connection with a tangent cone in the sense of Filet [4]; denote this cone by $\mathscr{E}\left(M, x_{0}\right)$.

Theorem 4. Let Z be a Banach space, $M \subset Z$ and $x_{0} \in \mathcal{M}$. If $\varepsilon_{0}\left(M, x_{0}\right)$ is non-degenerated then

$$
\varphi\left(M, x_{0}\right)=\varepsilon_{0}\left(M, x_{0}\right) .
$$

Proof. Suppose that $\left\{x_{0}\right\} \neq \varphi_{0}\left(M, x_{0}\right) \neq \varphi\left(M, x_{0}\right)$; then there are $x^{\prime} \in \mathscr{C}\left(M, x_{0}\right),\left\|x^{\prime}-x_{0}\right\|=1$, and $\varepsilon \in(0,1)$ such that

$$
\begin{equation*}
\left\|x^{\prime}-w\right\|>\varepsilon \tag{19}
\end{equation*}
$$

for all w $\in \mathscr{C}_{0}\left(M, x_{0}\right)$. By the definition of $\varphi\left(M, x_{0}\right)$, the re are $\lambda^{\prime}>0$ and $\left\{x_{m}\right\}=M \backslash\left\{x_{0}\right\}$ such that $x_{m} \rightarrow x_{0}$ and

$$
x^{\prime}=x_{0}+\lambda^{\prime} \mu^{\prime} \text { where } \mu^{\prime}=\lim _{m \rightarrow \infty} \frac{x_{m}-x_{0}}{\left\|x_{m}-x_{0}\right\|} .
$$

Choose $\delta>0$ to be $\mathscr{\varphi}_{x}\left(M, x_{0}\right) \in U_{\frac{1}{2} \varepsilon}\left(\varphi_{0}\left(M, x_{0}\right)\right)=U$ (see Section 1°) whenever $x \leqslant \sigma^{\sigma}$. It is easy to see that then $\overline{\varphi_{n}\left(M, x_{0}\right)} \subset$ U, too. Let m_{0} be such a number that $n \geq m_{0}$ implies $\left\|x_{m}-x_{0}\right\|<\sigma^{\prime}$; then

$$
x_{0}+\lambda \cdot \frac{x_{m}-x_{0}}{\left\|x_{m}-x_{0}\right\|} \in \epsilon_{\sigma}\left(M_{1} x_{0}\right)
$$

for all $\lambda \geq 0$ and particularly, setting $\lambda=\lambda^{\prime}$ we obtain

$$
z^{\prime} \in \overline{\bar{\varphi}_{\sigma}\left(M, x_{0}\right)} \subset U
$$

Therefore, there are $\mu^{\prime}>0, x^{\prime \prime} \in \mathcal{\varphi}_{0}\left(\mu, x_{0}\right)$ and $c^{\prime} \in$
$\in B_{\frac{1}{2}} \varepsilon$ such that

$$
\begin{equation*}
z^{\prime}=x_{0}+\mu^{\prime} \frac{x^{\prime \prime}-x_{0}}{\left\|x^{\prime \prime}-x_{0}\right\|}+\mu^{\prime} c^{\prime} \tag{20}
\end{equation*}
$$

and hence,

$$
\begin{equation*}
z^{\prime}=w^{\prime}+\mu^{\prime} c^{\prime} \tag{21}
\end{equation*}
$$

where $\quad w^{\prime}=x_{0}+\frac{\mu^{\prime}}{\left\|x^{N}-x_{0}\right\|} \cdot\left(x^{\prime \prime}-x_{0}\right) \in \varphi_{0}\left(M, x_{0}\right)$. We have

$$
\mu^{\prime} \leq \frac{\left\|x^{\prime}-x_{0}\right\|}{1-\frac{1}{2} \varepsilon}<2
$$

by (20) and it follows now from (21) that

$$
\left\|x^{\prime}-\sigma^{\prime}\right\| \leq \mu^{\prime}\left\|c^{\prime}\right\|<\varepsilon ;
$$

but it contradicts (19). The theoren is proved.

Let us remark that if $\mathcal{\varphi}_{0}\left(M, x_{0}\right)$ is degenerated then it may be $\mathscr{C}\left(M, x_{0}\right)$? $\mathcal{\varphi}_{0}\left(M, x_{0}\right)$ as our example (2.2)
[11] shows.

Theorem 5. Let Z be a Banach space, $M \in Z, x_{0} \in \bar{M}$ and let $\operatorname{dim}(\operatorname{mp} M)<\infty$. Then $\varphi_{0}\left(M, x_{0}\right)=\varphi\left(M, x_{0}\right)$.

Proof. We shall prove that there is $\delta>0$ for every $\varepsilon>0$ such that $\mathcal{Q}\left(M, x_{0}\right)=U_{\varepsilon}\left(\mathcal{U}_{k}\left(M, x_{0}\right)\right)$ and $\varphi_{n}\left(M, x_{0}\right) \subset U_{\varepsilon}\left(\dot{\varphi}\left(M, x_{0}\right)\right)$ whenever $n<\sigma^{\sigma}$, whence the assertion will follow by the definition of a conic limit because $\mathscr{C}\left(M, z_{0}\right)$ is evidently closed.

The first inclusion above is valid for every $\varepsilon, x>0$. In fact, let it be not true for some $\varepsilon_{0}>0$ and $x_{0}>0$. Then there is $x^{\prime} \in \mathcal{C}\left(M, x_{0}\right)$ such that $\left\|x^{\prime}-x_{0}\right\|=1$ and

$$
\begin{equation*}
x^{\prime} \notin u_{\varepsilon_{0}}\left(\varphi_{x_{0}}\left(M, x_{0}\right)\right) \tag{22}
\end{equation*}
$$

By definition of $\mathcal{U}\left(M, x_{0}\right), x^{\prime}$ may be written in the form

$$
x^{\prime}=x_{0}+\mu
$$

where $\mu=\lim _{n \rightarrow \infty} \frac{x_{m}-x_{0}}{\left\|x_{m}-x_{0}\right\|}, x_{m} \in M \backslash\left\{x_{0}\right\}$ and $x_{m} \rightarrow x_{0}$. Choose m_{0} so that $\left\|x_{m}-x_{0}\right\|<r_{0}$ for $m \geq n_{0}$ and set

$$
x_{m}^{\prime}=x_{0}+\frac{x_{m}-x_{0}}{\left\|x_{m}-x_{0}\right\|} ;
$$

then $x_{m}^{\prime} \rightarrow x^{\prime}$ and $x_{m}^{\prime} \in \mathcal{C}_{x_{0}}\left(M, x_{0}\right)$ for $m \geq n_{0}$. Hence, $x^{\prime} \in \overline{\varepsilon_{\mu_{0}}\left(M, x_{0}\right)} \quad$ which contradicts (22).

It remains to prove that giving $\varepsilon>0$ there is $\delta>$ >0 such that $\varepsilon_{\mu}\left(M, x_{0}\right) \subset U_{k}\left(\varepsilon\left(\mu, x_{0}\right)\right)$ for all
$r<\delta^{2}$. Suppose to the contrary that there are $\varepsilon>0$ and $r_{m} \geq 0$ such that $r_{m} \rightarrow 0$ and $\varphi_{r_{m}}\left(M, x_{0}\right) \neq u_{\varepsilon}\left(\varphi\left(M, x_{0}\right)\right)$ ($n=1,2, \ldots)$. Then there are $x_{n} \in \varphi_{r_{n}}\left(M, x_{0}\right)$ such that $\left\|x_{m}-x_{0}\right\|=1$ and

$$
\begin{equation*}
x_{m} \notin U_{e}\left(\varphi\left(M, x_{0}\right)\right) \tag{23}
\end{equation*}
$$

for all m. We can choose points $x_{n}^{\prime} \in M$ by the definition of $\varphi_{r_{n}}\left(M, z_{0}\right)$ in such manner that

$$
x_{m}=x_{0}+\frac{x_{m}^{\prime}-x_{0}}{\left\|z_{m}^{\prime}-x_{0}\right\|} .
$$

It is $\frac{x_{m}^{\prime}-x_{0}}{\left\|x_{n}^{\prime}-x_{0}\right\|} \in(S \cap$ sp $M)$ for all n and so there is a subsequence $\left\{x_{n_{h}^{\prime}}^{\prime}\right\}$ of $\left\{x_{n}^{\prime}\right\}$ such that $\left\{\frac{x_{m_{m}}^{\prime}-x_{0}}{\left\|x_{m_{h}}^{\prime}-x_{0}\right\|}\right\}$ converges. Denoting by w the limit of this sequence we can see that

$$
x_{n_{\operatorname{se}}} \longrightarrow x_{0}+w .
$$

Moreover, $\left(x_{0}+w\right) \in \mathscr{C}\left(M, x_{0}\right)$ because of $\left\|z_{m_{f}^{\prime}}^{\prime}-x_{0}\right\| \leqslant$ $\leq n_{n_{\text {de }}} \rightarrow 0$. Since $w \neq 0$, we have obtained the contradiction to (23).

Note that setting $Z=X \times Y$ and $M=g(F)$ where $F: X \rightarrow Y$, we can obtain Theorem $l(i)$ and Theorem 5 of Flett [4] as a direct consequence of our Theorem 1 and two last theorems.

References
[1] M.S. BAZARAA, J.J. GOODE, M.Z. NASHED: On the cones of tangents with applications to mathematical programming, J.Opt.Th.Appl.13(1974), 389-426.
[2] G. BOULIGAND: Introduction à la Géométire Infinitésimale Directe, Paris 1933.
[3] T.M. FLETT: Mathematical Analysis, New York 1966.
[4] T.M. FLETT: On differentiation in normed vector spaces, J.London Math.Soc.42(1967), 523-533.
[5] M.Z. NASHED: Differentiability and related properties of nonlinear operators: Some sspects of the role of differentials ..., in Nonlinear Functional Analysis and Applications (ed.by J.B. Rall),New York 1971.
[6] E.L. ROETMAN: Tangent planes and differentiation, Math. Mag. 43 (1970), 1-7.
[7] H.A. THURSTON: On the definition of a tangent line, Amer. Math. Monthly 71 (1964),1099-1103.
[8] H.A. THURSION: Tangents: an elementary survey, Math. Mag.42(1969), 1-11.
[9] P.P. VARAIYA: Nonlinear programming in Banach space, SIAM J.Appl.Math.15(1967), 284-293.
[10] A.J. WARD: On Jordan curves possessing a tangent everywhere, Fund.Math. 28(1937), 280-288.
[11] J. DURDIL: On the geometric characterization of differentiability I, Comment.Math.Univ.Carol. 15 (1974),521-540.

Matematicky. Ustav
Karlova universita
Sokolovaká 83,18600 Praha 8
Ceskoslovensko
(Oblatum 26.6.1974)

