
Commentationes Mathematicae Universitatis Carolinae

Jana Jurečková
Asymptotic comparison of maximum likelihood and a rank estimate in simple
linear regression model

Commentationes Mathematicae Universitatis Carolinae, Vol. 16 (1975), No. 1, 87--97

Persistent URL: http://dml.cz/dmlcz/105607

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1975

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/105607
http://project.dml.cz


COMMENTATIONES MATHEMATICAB UKIVERSITATIS CAROLINAE 

16,1 (1975) 

ASTMPTOTIC COMPARISON OP MAXIMUM LIKELIHOOD AND A RANK 

ESTIMATE IN SIMPLE LINEAR REGRESSION MODEL 

Jana JURESKOVX, Praha 

Abstract: In the simple linear regression model, two 
estimates of the regression parameter vector, a maximum 
likelihood and a robust rank one, are compared under the 
non-standard condition that the supposed distribution dif­
fers from the real one. The comparison is asymptotic for 
the number of observations increasing and is based on the 
asymptotic distribution of the difference of both estima­
tes which is determined under some regularity conditions. 

Key words: Simple linear regression model, maximum 
likelihood estimate, robust procedures, rank statistics, 
asymptotically normal distribution. 

AMS: 62G05, 62F10, 62G35 Ref. 2. 9.741 

1. Introduction. For N » 1,2,..., let X^,.. .,XJJJ-

be independent observations such that X**. has the dis­

tribution function 

(1.1) G(x.j - XM A? C..) , i = 1,..., N 
1 -Lai _3» J* 

\° • A° f A0 A0 x 

where A = v.-j_j..., ts^i is an unknown parameter and 
c.. , j = 1,..., p ; i = 1,..., N are given real numbers 
JX 

dependent on N ; the distribution function G is suppo­

sed to be unknown. 

i . _,o 
Let _Ziyj be the maximum likelihood estimate of A 
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computed under a false assumption that, instead of 
& 0 

G(x- - X .'A • c . . ) , the distribution function of X M. «*• £.a i <r J 1 «--
"̂  o 

is equal to F(x, - .5} A hj c..) , i = 1, ..., N . It 1 -̂.-a 1 9- Ji 
A 

means that £ s ^ is any solution of the following system 

of equations 

(1.2) n^X^A) - ^ Cji y(xm- J^ A£cM) =o , 

j = 1, ..., P 

where 

(1.3) ЧГ (x) = , X Є R , f (x) = ; 
Г £00 dx 

Let £^2 De "tne rank estimate of /} , suggested by 

the author in [ 3 ] , being also determined under the assump-

tion that F is the underlying distribution; i.e. &* 1S 

any solution of the minimization problem 

(1.4) S |S,(XM,A )|=min, where 
-J.B ^ «J N 

(1.5) 8 j(X N,A)- ^ c., r (F-
1 ( 3 t - „ , 

j = 1, . .., P 

with RNi- being the rank of X-^ - . S ^ A.| c ^ among 

XN1 " V § 1 A £ cjl» •••' XNN "A?i A a cjN > i#e# 
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* )) (1.6) й,,. - . ^ u(X
N І
 - X ^ - ^ ài (Cji - cjk 

where u(x) = 1 if. x 2 0 and u(x) = 0 if x «*. 0 . Fur­

ther, in (1.5), 

F~1(u) = inf { x: F(x) > u J , 0 < u ^ l . 

It is known that, if P » G , both estimators are asym­

ptotically efficient for N —> oo , Nevertheles3, the estima­

tors differ e.g. in the number of operations needed for 

their computation, in the speed in which they become asymp­

totically efficient and in their robustness with respect to 

the individual pairs F , G . It is the purpose Of the pre­

sent study to make an asymptotic comparison for N—*oo of 

the estimators with respect to their robustness. There ex­

ist the pairs F , G such that the asymptotic variance of 

£\* is infinite while the asymptotic variance of ^ « is 

always finite. On the other hand, £±^ and £±^ may beco­

me asymptotically equivalent in probability even if F ^ G . 

It is shown that the sequence of differences 

i L - **£ fys'f has **or N — y °° an asymptotically normal 

distribution, generally non-degenerate. Some special cases 

in which this distribution becomes degenerate are indicated 

(it trivially happens if F a 0 ). More general consequences 

of the form of the asymptotic covariance matrix are still 

an open problem and are a subject of study. 

2. Assumptions, the main result. We shall study the 
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asymptotic behavior of h* - L« under the following as­

sumptions, some of which mean no loss of generality while 

other mean the real restriction: 

1° Assumptions on c^ . Let C N « tc^H , j • 1, ... 

..., p and i = 1,..., N be a p x N design matrix with 

the rows c(.v and columns C * satisfying the conditions 

H 
(a) J & 4 Cj. s 0 , j s 1,..., p 

(b) c^ =- c^ • ĉ r , j » 1,..., p ; i s 1,..., N 

(c) The vectors Ĉ .v » (ĉ ,..., ctj-) , j « l p 

satisfy either 

(2.D ( e ^ - ej) (c' w - c0t)
T = o 

for all but a finite number of N , or 

(2.2) ( C ^ - cj) ( c'ci> - cj)
T > 0 

for all but a finite number of N ; further 

(2.3) ( e ^ - cj) ( C ^ - ct)T £ M for N = 1,2, ... 

and if (2.2) holds, then 

(2.4) lim / max (ct. - et)2 [ X A l*'u ' ^t)2] f = 0 ; 

1 N 

here cj « lT .Si „ ct. and M > 0 is a constant indepen-

dent of N • 

Analogous assumptions are to be satisfied for vectors 
•/ 

C C ^ * j * 1,..., p. 
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(d) It holds for a l l pairs :j, JL = 1 , . . . , p and i , k = 

= 1 , . . . , N ; N « 2 , 3 , . . . that 

(2.5) ( c ^ - cjk) (Cje
#. - c ^ ) > 0 

{ c j i - cjk ) ( c M " 0 lk } * ° 

(cjr. c^) c<£ - <£) * o . 

(e) lim C u C N « JE exist8 and is a positively defini­

te matrix. 

2° Assumptions on distributions F and G . 

(a) Let f and g be the respective densities correspon­

ding to F and G and suppose that both f and g are 

absolutely continuous and have finite Fisher's informations, 

i.e. 

<so A 

(2.7) 1(f) = J [*£*! ] -"<*> dx < 0» 
-OB 

i^-n-^rVl* *<*>«« <« 
"-OP ^ 

and moreover, that f is unimodal, i.e. (-log f(x)) is 

convex in x . 

Let us denote 

CO 

(2.8) Г ж ~ f V [ï1"1 (G(x))] g'(x) dx 
-00 

00 

(2.9) o> » - ( |- lł) g'(x) dx 

91 



and 

(2.10) (p* * J fй
 (x) g(x) dx - ( J if (x) g(x) dx)

2 

where if is given by (1.3). 

Suppose that <p2 <• oo . 

Under the assumptions 1° arid 2°, we have the following 

theorem-* 

Theorem 2 .1 . Under the assumptions 1° and 2°, for 

N —• oo , 

(2.11) -C C ž - Ž , . 

71 (© I la> —--• - of ^ r r c>(,x)ax. X 1 
— OP 

where T I ^ C G U , A ) denotes the p-dimensional normal dis­

tribution with the expectation cu and the covariance mat­

rix A . 

3. Sketch of the proof of Theorem 2.1. Here we shall 

only sketch the main idea of the proof. A more detailed 

proof together with other results will appear in a more com­

prehensive study, being now prepared. 

First of all, we may suppose without loss of generali­

ty that ctr s= 0 for all i , j , so that c.. equals to 

ct. . in view of (2.5) and the unimodality of f , we have 

Lemma 3.1. If f is unimodal, and if ctT = 0 for 

i * I f . , N and j = 1,..., p then M. (X^, A ) and 

S. (X^, /-*)> j=-l,...,p are non-increasing in A^ » 
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1 = 1 , . . . , p , with probabil i ty one. 

Otherwise, i f ct.' 4- 0 , both M. <XM,ZO and 

S. (X^,7fa) could be written down as the differences of 

two functions, non-increasing in each component. 

Asymptotic properties of S- (Xu,i) and of fa^ were 

investigated by H£jek-5id£k in Cl] and by JureSkova* in [3] 

in details. We .shall thus restrict our attention to the . 

asymptotic properties of M- (Xkl, fa) . We have the lemma 
J N 

Lemma 3.2. Put fa0 « <Q . For a fixed Z , 1 * Z £ p, 

let kji =•{A: -\ = 0 for k 4- £ ? . Then for any fixed 

fa e AJI and for N —> oo it holds that 

(3.1) <CA^(XHiis)} —^ %(-^co6u , f1^^) , 

3- * 4,..., y, • 

&^ and S'J • are elements of Si • 

The proof of Lemma 3.2 is based on the concept of con­

tiguity and on three Le Cam's lemmas (for the definition; 

of contiguity and Le Cam's lemmas see Hdjek-Siddk [13). 

The following theorem is substantial for treating the 

asymptotic behavior of fa^ , It tells that M-(X^,-&) are 

uniformly asymptotically linear in fa in the sense of the 

convergence in probability. Analogous theorems for 

S- ( X*. , fa ) were proved by the author in [21 and [31'. 

Theorem 3.1* Under the assumptions 1° and 2°, 
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(3-2) N 4 ^ ^ { U ^ ^ . C ' ^
C X ^ Z ) " ^ ( X N ' ^ + 

holds for any C > 0 , e > 0 and j = 1,..., p ; C * 

is the j-th column of Si • 

For the proof of Theorem 3.1, the non-uniform version of 

(3.2) is proved for any fixed /. by approximating y by 

a sequence of bounded functions; the uniformity is then a 

consequence of Lemma 3.1. 

Theorem 3.1 has an easy corollary which yields an appro-

ximation of A,| by a sum of independent random variables. 

Corollary 1. Let /.̂  be any sequence of random vec­

tors such that Zu - L are bounded in probability. Then 

under the assumptions 1° and 2° 

( 3-3 ) H4W?*°^H<XH>ZH) - **<**, *°> + 

+ co(2N- 6°) g^\ >. e? m 0 

holds for j = 1,..., p and any & > 0 • 

if £ 
For being able to apply the corollary to &u • L^ >we 

need the following lemma which may be proved by help of Theo­

rem 3.1: 

Lemma 3.j. Under 1° and 2°, there exist C*> 0 , ̂  > 0 

and a positive integer NQ corresponding to any fixed fc > 0, 

such that 

(3.4) P-o-f «rdm, I M ( X N | A)l < *i ? < e 
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holds for N > N Q , where M(X N,A) = (M1(XM,A ),... 

..., M pCX N, A)) . 

The lemmas and corollaries then enable to approximate 

the differences L^ - L2 by random vectors to which the 

classical central limit theorem is easily applicable. This 

completes the proof of Theorem 2.1. 

As a consequence of the proof of Theorem 2.1, we ge.t 

the following corollary 

Corollary 2. Under 1° and 2°, the estimate h^ is for 

N -> co asymptotically normal %^ ( A0, *>"*?2 %~* ) • 

*• Examples. 

4 1 

4.1. Let f(x) = — exp { - I xl \ , x € R (double exponen­

tial distribution) 

g(x) SB (1/ \/2tr ) exp • ( — — } , x c R (standard nor­

mal distribution) 
• £ _* 

Then .ft* - -fl̂  — * ** *n probability for N —* oo • 

Actually, we have 

Y_(x) = sign x 
F(x) = i - 4 - e x if x > 0 

2. 

= 1 - F(-x) if x < 0 

F"1(u) = - log (2(1 - u)) if — 6 u < 1 
2 

1 1 
= - F (1 - u) if 0 < u «< — 

2 
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so that 

o> « (1/ VTSr ) J I x I exp { - - ^ } dx « y ~ 
- 0 0 * 

y = (1/ VTtt ) J x sign (2F(x) - 1) e x p { - - | - } d x * y~ 
- 0 0 

and the factor in the asymptotic covariance matrix i s equal 

to 
00 

J [aT1 y (x) - tf-4 Y (F~X(G(x))) ] * g(x) dx » 
- 0 0 

©0 

-- (1/ \f7ir ) . | - J [sign x -
- 0 0 

- sign (2F(x) - 1) ] a exp { - | - \ dx « 0 . 

4.2. Let F(x) * § C — ) and G(x) = $ < - — ) where $ 

i s the standard normal distribution function and 6Tj , 6*2 > 0 

Then iL - B»—• V in probability for N —* co . 

Actually, o) * ffJJ* , <af a C6^ 6^ )~ and t|f(x) =-

= x l so that 

00 

J jo-1 y .-.> - •y''1 y ( F _ 1 ( G ( x ) ) ) ] a g(x) (H = 0 . 

4.3 . Let f (x) * (1/ N/TJГ ) exp { - — J , x є R1 

g(x) = 1 i f I x l é - i 

= 1/(16 x2) i f Ixl -> -1 . 
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Then t*> = jxg(x) dx =- co so that £,. has infi­

nite asymptotic variance. On the other hand, the asymptotic 

variance of h^ is always finite (see JureSkova* £3]). 
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