Commentationes Mathematicae Universitatis Caroline

Barry J. Gardner
Epimorphisms of regular rings

Commentationes Mathematicae Universitatis Carolinae, Vol. 16 (1975), No. 1, 151--160

Persistent URL: http://dml.cz/dmlcz/105613

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1975

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

$$
16,1 \text { (1975) }
$$

EPIMORPHISMS OF REGULAR RINGS

B.J. GARDNER, Hobart

```
Abstract: It is proved that a ring epimorphism \(f\) : \(: A \rightarrow B\), where \(A\) is (von Neumann) regular but does not necessarily have an identity, is surjective.
Key words: Epimorphism, von Neumann regular ring. AMS: 16A30, 18A20 Ref. Z.: 2.723 .2
```

Introduction. In this paper an epimorphism is a map h such that $f h=g h$ implies $f=g$. (See [l] for background.) We shall work in two categories: (i) \mathcal{R}, the category of (associative) rings and ring homomorphisms and (ii) $\hat{\Re}$, the category of (associative) rings with identities and identity-preserving ring homomorphisms.

In both \mathcal{H} and $\hat{\mathcal{R}}$ if f is an epimorphism, it has a factorization

where v is surjective, u is injective and both are epimorphisms. Thus in investigating the epimorphisms from a homomorphically closed class of rings, we are essentially
interested only in the injective ones. Moreover, we clearly lose no generality by further specializing to the case where the map is an inclusion. If $f: A \longrightarrow B$ is such a map, we call B an epimorphic extension of A.

We shall prove that all epimorphisms (in $\{$) from (von Neumann) regular rings are surjective by showing that if A is a regular ring, B an epimorphic extension of A, then $A=B$. The analogous result in $\hat{\mathfrak{H}}$, which is actually a special case of out theorem, is known, and we give a short proof of this below. The generalization makes use of the Fuchs-Halperin theorem [3] concerning the embedding of a regular ring in a regular ring with identity.

Epimorphisms of rings have generally been discussed in $\widehat{\Re}$. The non-unital versions of some standard results are given, in a somewhat condensed fashion, in Isbell's paper [4], to which we refer in the next section, though we have been a little more explicit on occasion in the interest of a more or less complete account.

1. Preliminaries. Let $R \subseteq S$ be rings. The R-dominion of R in S is the set of elements d of R for which $f(d)=g(d)$ whenever f, g are homomorphisms from S such that $f(a)=g(a)$ for all a $\in R$. We shall denote this by $\operatorname{dom}(R, S)$. If $A \subseteq B$ are rings with (the same) identity, $\operatorname{dom}_{1}(A, B)$ denotes the $\hat{\Re}$-dominion of A in B (defined analogously).

Theorem 1.1. Let B be a ring with identity, A a subring with the same identity, de B. The following conditions
are equivalent.
(i) $d \in \operatorname{dom}_{1}(A, B)$.

$$
\begin{equation*}
1 \otimes_{A} d=d \otimes_{A} l \text { in } B \otimes_{A} B . \tag{ii}
\end{equation*}
$$

(iii) $d=X P Y$, where X is a $l \times m$ matrix over B, P is an $m \times n$ matrix over A and Y is an $n \times 1$ matrix over B such that $X P$ and $P Y$ are matrices over A.

Proof. (i) \Rightarrow (ii) is proved by a simple modification of a part of the proof of Proposition 1.1 in [6].
(ii) \Rightarrow (iii) is a special case of the lemma in [5].
(iii) \Longrightarrow (i) can be obtained by a routine calculation when XPY is written in terms of the entries in X, P and Y.

For a ring R, let R^{l} denote the ring obtained by adjoining an identity to R in the standard way.

Proposition 1.2. Let $R \subseteq S$ be rings. Then

$$
\operatorname{dom}_{1}\left(R^{1}, S^{l}\right)=\operatorname{dom}(R, S)^{1} \text {. }
$$

Proof. Let $f, g: S^{1} \rightarrow K$ be homomorphisms in $\hat{\Re}$ which coincide on R^{l}, and let \check{f}, \check{g} be their restrictions to S. If $d \in \operatorname{dom}(R, S)$, then

$$
f(d)=\check{f}(d)=\check{g}(d)=g(d)
$$

since \hat{f} and \check{g} coincide on R. Hence $\operatorname{dom}(R, S)^{l} \subseteq$ $\subseteq \operatorname{dom}_{1}\left(R^{l}, S^{l}\right)$. Conversely, if $(a, m) \in \operatorname{dom}_{1}\left(R^{l}, S^{l}\right)$ and $h, k: S \rightarrow A$ are Ω-homomorphisms which agree on R, define $\hat{h}, \hat{k}: S^{l} \longrightarrow A^{l}$ by $\hat{h}(s, n)=(h(s), n)$ and $\hat{k}(s, n)=$
$=(k(s), n)$. Then \hat{h}, \hat{k} agree on R^{l} so

$$
(h(a), m)=\hat{h}(a, m)=\hat{k}(a, m)=(k(a), m)
$$

whence $a \in \operatorname{dom}(R, S)$ and so $\operatorname{dom}_{i}\left(R^{1}, S^{l}\right) \leq \operatorname{dom}(R, S)^{1}$.

Corollary 1.3. Let $R \subseteq S$ be rings. Then S is an epimorphic extension of R in Ω if and only if S^{l} is an epimorphic extension of R^{1} in $\hat{\Omega}$.

Theorem 1.4. Let $R \subseteq S$ be rings, $d \in S$. Then $d \in$ e $\operatorname{dom}(R, S)$ if and only if it has a representation of the form

$$
d=a+X P Y
$$

where $a \in R, X$ is a $l \times m$ matrix over S, P is an $m \times n$ matrix over R^{l} and Y is an $n \times 1$ matrix over S such that $X P$ and $P Y$ are matrices over R.

For the proof of this result see § 1 of [4].

Proposition 1.5. Let R be a ring with identity, S an epimorphic extension of R in \mathbb{R}. Then
(i) S has an identity (namely the identity of R) and
(ii) S is an epimorphic extension of R in $\widehat{\Omega}$.

Proof. By Theorem 1.4, any $s \in S$ has the form $r+$ $+\sum_{i=1}^{m} \sum_{j=1}^{m} S_{i} r_{i j} u_{j}$, where $s_{i}, u_{j} \in S, r_{i j} \in R^{1}$ and $r, \sum_{i=1}^{m} s_{i} r_{i j}, \sum_{j=1}^{m} r_{i j} u_{j} \in R$ for all i, j. Let e
be the identity of R. Then
$e s=e r+\sum_{j=1}^{m} e\left(\sum_{i=1}^{m} s_{i} r_{i j}\right) u_{j}=r+\sum_{i=1}^{m}\left(\sum_{i=1}^{m} s_{i} r_{i j}\right) u_{j}=s$. Similarly se $=8$. This proves (i); (ii) is straightforward.

The following result is referred to obliquely by several authors (e.g.[7]). We give a simple proof in which modu-le-theoretic concepts do not intrude.

Theorem 1.6. Let A be a regular ring with identity, B an epimorphic extension in $\hat{\mathbb{B}}$. Then $A=B$.

5100f. Any element b of B has the form XPY, where the notation is as in (iii) of Theorem l.l. By putting in zero rows and columns, we can arrange things so that P is a square matrix ($n \times n$, say) . The ring of such matrices is regular, so $P=P T P$ for a suitable matrix T over A. But then $b=X P Y=(X P) T(P Y)$, where $X P$ and $P Y$ are matrices over A, whence $b \in A$.

Corollary 1.7. If A is a regular ring with identity, it has no proper epimorphic extensions in Ω.
2. The results. Henceforth we shall work entirely in Ω, and "epimorphism" will always mean "epimorphism in R " . We shall call rings divisible, torsion, etc. if their additive groups have these properties. For a ring A, A_{t}, $A_{p}, d_{p}(A)$ are, respectively, the maximal torsion, p-primary and p-divisible ideals (where p is a prime). Ideals gene-
rally will be indicated by the symbol Δ. The construction involved in the following result will be used several times.

Lemma 2.1. Let K be a commutative ring with identity, A a unital algebra over K. Let A_{K} be the ring defined on $A \oplus K$ (group direct sum) by

$$
(a, k)\left(a^{\prime}, k^{\prime}\right)=\left(a a^{\prime}+k a^{\prime}+k^{\prime} a, k k^{\prime}\right) .
$$

Then $A \cong\{(a, 0) \mid a \in A\}=1 \Delta A_{K}$ and $A_{K} / I \cong K$.
(When $K=Z, A_{K}=A^{l}$, of course.)

We have first to prove two special cases of our main result. We begin with divisible (or, equivalently, torsionfree) regular rings (see [2], § l24).

Proposition 2.2. Let A be a divisible regular ring, B an epimorphic extension of A. Then $A=B$.

Proof. By Theorem 1.4, any element b of. B satisfies an equation

$$
\mathrm{b}=\mathrm{a}+\sum_{i=1}^{m} \mathrm{~b}_{i} \mathrm{a}_{i}
$$

where $a, a_{i} \in A, b_{i} \in B$ for $i=1, \ldots, m$. For any positive integer n, there exist elements $a^{\prime \prime}, a_{1}^{\prime \prime}, \ldots, a_{m}^{\prime \prime} \in$ E A such that $n a^{\prime \prime}=a, n a_{1}^{\prime \prime}=a_{1}, \ldots, n a_{m}^{\prime \prime}=a_{m}$. Hence $b=n\left(a^{\prime \prime}+\sum_{i=1}^{m} b_{i} a_{i}^{n}\right)$ and B is divisible.

Now let $\bar{B}=B / B_{t}, \bar{A}=\left(A+B_{t}\right) / B_{t} \cong A /\left(A \cap B_{t}\right)=$ $=A / A_{t} \approx A$. In the diagram

induced by the natural map $B \longrightarrow \bar{B}$, all maps are epimorphisms. Moreover, \bar{A} and \bar{B} are algebras over the field Q of rational numbers. If now f, g are homomorphism from \bar{B}_{Q} which agree on \bar{A}_{Q}, their restrictions \check{Y}, \check{B} to \bar{B} agree on \bar{A}, so $X^{X}=\check{g}$, i.e. f and g agree on \bar{B}. But f and g also agree on the copy of Q in \bar{B}_{Q}, so that $f=g$ and \bar{B}_{Q} is therefore an epimorphic extension of \bar{A}_{Q}. By Corollary 1.7, $\bar{A}_{Q}=\bar{B}_{Q}$ and hence $\bar{A}=\bar{B}$. Thus $A+B_{t}=B$.

If $a \in A$ and $b \in B_{t}$, let b have order n. Then $a=n a^{\circ}$ for some $a^{\prime} \in A$, so $a b=\left(n a^{\circ}\right) b=a^{\prime}(n b)=0$ and $b a=b\left(n a^{\prime}\right)=n\left(b a^{\circ}\right)=(n b) a^{\prime}=0$. Since also $A \cap B_{t}=0$, we have $B=A \oplus B_{t}$ (ring direct sum). But B is an epimorphic extension of A, and the zero map and the natural projection from B to B_{t} agree on A. Hence $B_{t}=0$ and $A=B$ as required.

We next consider p-primary regular rings. These must be p-elementary ([2], § 124) .

Proposision 2.3. Let A be a p-primary regular ring, B an epimorphic extension of A. Then $A=B$.

Proof. From Theorem 1.4 it's easily seen that $p B=0$. Thus A and B are algebras over the field $F(p)$ with p elements. Arguing as in the previous proof, one now shows that $B_{F(p)}$ is an epimorphic extension of the regular ring
$A_{F(p)}$ with identity, whence $A_{F(p)}=B_{F(p)}$ and $A=B$. The proof in the general case runs along similar lines, the essential problem being to describe the additive groups of epimorphic extensions of regular tings. Throughout the proofs of the following propositions, A always denotes a regular ring, B an epimorphic extension of A.

We note firatly that $A=A_{p} \oplus d_{p}(A)$ (ring direct sum) and $d_{p}(A)=p A \quad($ see $[2], 8124)$.

Proposition 2.4.

$$
B=A_{p}+p B
$$

Proof. In the diagram

all maps (which are the obvious ones) are epimorphisms. Since A_{p} is a regular p-ring, we have $(A+p B) / p B=B / p B$. The result follows.

Proposition 2.5. $\quad \operatorname{dom}(\mathrm{pA}, \mathrm{B})=\mathrm{pB}$.

Proof. If b E B , then by Theorem 1.4

$$
b=a^{\prime}+a^{\prime \prime}+\sum_{i, j} b_{i}\left(a_{i j}^{\prime}+a_{i j}^{n}+n_{i j}\right) c_{j}
$$

where $a^{\prime}, a_{i j}^{\prime} A_{p}, a^{\prime \prime}, a_{i j}^{\prime \prime} \in p^{A}, n_{i j} \in Z, b_{i}, c_{j} \in B$. Hence $p b=p a "+\sum_{i, f} b_{i}\left(p a_{i j}^{\prime \prime}+p n_{i j}\right) c_{j}$. Using the other conditions of Theorem 1.4 (assumed to be satisfied by the
given representation of b), it is straightforward to show that $\mathrm{pb} \in \operatorname{dom}(\mathrm{pA}, \mathrm{B})$. On the other hand, it follows directly from Theorem 1.4 that $\operatorname{dom}(\mathrm{pA}, \mathrm{B}) £ \mathrm{pB}$.

Proposition 2.6. $\quad p B=d_{p}(B)$.
Proof. Let I be the ideal of B generated by $p A$. Then $p B=\operatorname{dom}(p A, B) \subseteq I \subseteq p B$. Thus $I=p B$. But $I=$ $=\mathrm{pA}+\mathrm{pAB}+\mathrm{pBA}+\mathrm{pBAB}$ is p -divisible, since pA is. Thus pB is p -divisible, so we have $\mathrm{pB} \subseteq \mathrm{d}_{\mathrm{p}}(\mathrm{B}) £ \mathrm{pB}$.

Proposition 2.7. $B=A_{p} \oplus d_{p}(B) \quad$ (ring direct sum).
Proof. By Propositions 2.4 and 2.6, $B=A_{p}+d_{p}(B)$. But $A_{p} d_{p}(B)=0=d_{p}(B) A_{p}$ (cf. the proof of Proposition 2.2). In particular, $A_{p} \cap d_{p}(B)$ is a nilpotent ideal of A_{p}. Hence $A_{p} \cap d_{p}(B)=0$.

Proposition 2.8. $\quad d_{p}(B)$ has no p-component.
Proof. Using Proposition 2.7, it's straightforward to show that $d_{p}(B)=p B$ is an epimorphic extension of $d_{p}(A)=$
 in previous similar situations, $(\mathrm{pB}) /(\mathrm{pB})_{\mathrm{T}}$ is an epimorphic extension of $\left((p A)+(p B)_{T}\right) /(p B)_{T} \cong(p A) /(p A)_{T}$. But the latter is torsion-free and regular, so by Proposition 2.2, so is $(p B) /(p B)_{T}$. This proves the proposition.

Corollary 2.2. $A_{p}=B_{p}$ and $B=B_{p} \oplus d_{p}(B)$ (ring direct sum).

We can now proceed as in §§ 124 and 125 of [2] to show
that B is an algebra over the regular ring M of [3]. An argument like that in Proposition 2.2 shows that B_{M} is an epimorphic extension of A_{M}, whence $A=B$.

Thus we have proved

Theorem 2.10. All epimorphisms from regular rings are surjective.

References
[1] P. FREYD: Abelian Categories, Harper and Row, New York, Evanston and London,1964,
[2] L. FUCHS: Infinite Abelian Groups, Vol.II, Academic Press,New York and London,1973.
[3] L. FUCHS and I. HALPERIN: On the imbedding of a regular ring in a regular ring with identity, Fund. Math.54(1964), 285-290.
[4] J.R. ISBELL: Epimorphisms and dominions.IV, J.London Math.Soc.(2)1(1969), 265-273.
[5] P. MAZET: Caractérisation des épimorphismes par relations et générateurs, Exposé 2. Séminaire Samuel (Les épimorphismes d'anneaux). Secrétariat mathématique, Paris,1968.
[6] L. SILVER: Noncommutative localizations and applications, J.Algebra 7(1967),44-76.
[7] H.H. STORRER: Epimorphic extensions of non-commutative rings, Comment.Math.Helv.48(1973),72-86.

Mathematics Department
University of Tasmania
GPO Box 252C Hobart, Tasmania 7001
Australia
(Oblatum 3.12.1974)

