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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

16,1 (1975) 

SIMPLY (CO)REFLECTIVE SUBCATEGORIES OF THE CATEGORIES 

DETERMINED BY POSET-VALUED FUNCTORS 

Jan MENU, Antwerpen, and Ales' PULTR, Praha 

Abstract: By the criteria in C31 and C4l one sees easi­
ly that simply reflective and simply coreflective subcatego-
riee (i.e., auch (co)reflective eubcategoriee that the (co)-
reflections are carried by identities) of the semi-lattice 
fiberings Ctp (see 1.3 below, cf. C21) are again of the 

form C^Q. for a suitable G . In this note we study the re­
lation of this functor G to the original F • We show that 
in the reflection case (Theorem 3.4) there is a transforma­
tion e : F—* G and a subtransformation (eee 1.4) p such 
that €>p = 1 , so that G can be considered as a nice fac-
torfunctor of F . In the coreflection case (Theorem 3.7) 
there is a subtranaformation e, and a tranaformation X : 
:G—» f such that eA » 1 . (The ep , X , resp., are natu­
rally connected with the embedding of C&* into t%- .) 

Key words: Simply (co)reflective, generalized lattice 
fiberings, subtranaformation. 

AMS: 18B99 Ref. 2.: 2.726 

§ 1. Subtransformations 

1.1. The category of all sets and mappings is denoted 

by Set , the category of partially ordered sets and order 

preserving mappings is denoted by Poset . «D deeignatea 

the category of partially ordered sets in which every non-

void subset has an infimum and of the supreme preserving 

mappings, CSL id its complete subcategory generated by the 
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complete lattices* 

The symbol 

£ 

is used as a variable with values Poset, «0 , CSL. I.e., 

the appearance of X in a definition or in a statement in­

dicates its applicability for any of the mentioned catego­

ries* 

-»•--*• Convention: The partial orderings will be always 

denoted by the symbol £ , Furthermore, if A, B are par­

tially ordered sets and f, g: A — • B mappings, we write 

f £ g 

if f(a) si g(a) for every a e A . 

1.3. Let F: Set — • X be a functor* In accordance 

with [2] we denote by 

aF 

the category the objects of which are couples (X,a) with 

X a set and a € F(X) , the morphisms from (X,a) into 

(Y,b) being all the triples (a,f,b) with f: X — * X such 

that F(f)(a) £ b • 

Cte will be considered as a concrete category endowed 

by the forgetful functor sending (a,f,b) to f . 

1.4. Let F , G: S e t — • X be functors. A subtrans-

formation 

T : F -£-** G 

is a collection of morphisms X » ( X x F(X) • °̂ x ĵfcobiSet 
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such that for every f: X — • Y 

G(f) . *eX <£ ^ y . F(f) . 

Subtransformations K : F -S-* G and i£: G -&+> H compose 

in an obvious way. The obtained illegitimate category will 

be denoted by 

subtr [Set, 9£ 1 . 

1.5. Consider the categories OCf with F: Set—* £ 

and the functors $ 5 Cfcp — • CIQ such that V • $ » U , 

where U, V are the natural forgetful functors (see 1.3). 

The obtained illegitimate category will be denoted by 

<*„ . 
1.6. Let t : F < » G be a subtransformation. Define 

[ * ] : C/tp—#ClG by [ t l (X,a) * (X, <tx (a)) and 
(1) 

Er l (a , f ,b) =- ( T* (a),f , t Y (b)) for f: X—* X . 

(The definition i s correct: G(f) T X (a) « t y F( f ) (a)^ r y ( b ) . ) 

Further, l e t us observe that the category Ctp determines 

the functor F , since F(X) «<a | (X,a) c obj 0tFJ a n d 

F(f)(a) » min«tb | (a,f ,b) c morph OL?\ . For a functor $ : 

: OLp — • OLQ such that V • $ » U define 

(2) < <$ > ; F - ^ G by (X, <§>X (a)) = $ (X,a) . 

(It is a subtransformation: J? * (a,f,F(f)(a)) is a morphism, 

hence § (? ) =* (<$>X (a) ,f, <§ >
y F(f )(a)) is a morphism, 
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so that G(f)<$>* (a) -* <$>yF(f)(a) .) 

After an easy checking the equations 

[ i d ] = id , <id> = i d f C i : i M » c « 3 - i : ^ j , < 5 , i r > » 

«<$>.m, <L*:2>str and t<§>! « $ 

we obtain 

Statement: The formulas (1) and (2) establish an iso­

morphism between C£„ and *subtr [Set, X 1 • 

1«7* Remark: As a consequence of 1.6 we obtain that 

OCf and OCg. are equally carried (i.e. there is an iso-

functor $s aF~-*&Q. with V. § = U , cf. 0.2 in C4]) 

iff F is naturally equivalent to G • (The only point to 

be checked is that an invertible subtransformation is a 

transformation and hence a natural equivalence: But if 

T • <"# • we have for f: X—*Y 

<r v F( f ) = t : Y F ( f ) i * x t . x £ t Y < # Y G ( f ) - r * = Q{f)t* . ) 

§ 2. Concretely ad.ioint functors 

2.1. Let (&,U) , (!JS,V) be concrete categories, 

L: Q,—• ft , R: & — » &, functors such that V « L = U and 

U -> R = V . L ( R reap.) is said to be a concretely left 

(right, reap.) adjoint of R (of L , resp.) if there is a 

natural equivalence 

*e*"*: &(L(x)),y) 9L &(x,R(y)) 

such that U( *&*'*'{$>)) = V(y ) for every cp : L ( x ) — * y . 
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Remark: The condition of U( 9e (9 )) « V(y) for every 

g? : L ( x ) — * y is equivalent to a formally weaker one, 

iKfe* * (1L(X)> = l|j(x) for every x . 

Really, we have for f j x — * x' , gp : y'—• y and OG : 

: L(x') — » y ' 

9e,**( 9 • oc • L(OJT)) = R(y) .*e*V(.*) • f 1 % 

so that for if = 1 , y ' = L(x) and 00 = IjTx) > 

W * ( y ) = R ( c p ) . **l(*\iUx)) . 

2 .3* Proposit ion: L: Otp —>• Ctg. i s a concrete ly l e f t 

adjoint of R: OL^—• Cfcp i f f 

< L > » < R > 6 1 and < R > . < L > * > 1 . 

Proof: Put A = < L > , ̂  = < R > . Let L be a conc­

retely left adjoint of R . Since 1R,X a) » (.p * (a),lx, <p\a)) 

is a morphism, geT^ (lR(X a)) = ( &
X ^ X (a),lx,a) is a morph-

ism, and hence &* p " (a) £ a . Similarly, using 1L,X b) , 

b * f>XaX (b) . 

On the other hand, l e t X j> £ 1 and 1 £. £> A • Take an f: 

: X ~ > Y . I f G(f) ft* (a) 6 b , we have F ( f ) ( a ) 4 

-£ F(f) £>* A* (a) £ p y G(f) 9tX ( a ) ^ y ( b ) ; i f F ( f ) ( a ) £ 

£ fy ( b ) , we have G(f) AX (a) & A y F(f ) (a ) £ Ayj>y(b) £ b . 

Thus, f carr ies a morphism L(X,a) — y (Y,b) i f f i t carr ies 

a morphism (X,a) —> R(Y,b) . 
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^•3. Remark: Let us have collections of morphisms 

: G(X) 

that always 

( A X : G ( X ) — * F(X))X and (j|>X : F ( X ) — > G(X))X such 

X* f>* * 1 and $>* AX 2 1 . 

X X 
Then 1) If ( X ) is a transformation, then ( f ) is 
a subtransformation, 

X X 

2) If ( p ) is a transformation and ( X ) is a 

subtransformation, then ( X ) is a transformation. 

Really, in the first case we have 

P(f) jo* 4 fY X Y F(f)§DX * jDYG(f) X* p X^p YG(f) , 

in the second one, 

a,Y F(f)* JlY F(f) ç>*X* = A y j D Y 0(f) A X £ G(f) A,X 

2.4. Following Cllt a subcategory fo of a concrete 

category (&,U) is said to be simply reflective (coreflec-

tive, resp.) if the embedding ( tfj ,U I & ) c (&,U) has a 

concretely left (right, resp.) adjoint. (In other words, if 

it is (co)reflective and the (co)reflection morphisms are 

identity carried.) 

2*5. Lemma: Every coretraction in OL g is a full em­

bedding. 

Proof: Let V • $ « U , U • Y = V and !"$ * 1 . 

Let y : $ (a) • $ (*>) D« a morphism. We have Y r Y ($£»)! 

: a — • b and Y J Y ( 9 ) « U * ( y ) « V(y) . Since the 
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forgetful functors are faithful, ft (y) « cp . 

2.6. By 2*5 and 1.6 we obtain immediately: 

Corollary: Let ft : Ot^—• Otp be such that V» ft « 

= U . If there is a subtransformation X ( p , reap.) such 

that A»< ft > = 1 and < ft > A > 1 ( $ • < ft > = 1 and 

<$>•£>.£ 1, re8p.) then ft is an isomorphism onto a simp­

ly reflective (coreflective, reap.) subcategory of Cfcp , 

equally carried with Ct& • 

§ 3. Simply (co)reflective subcategories of OUp . 

3.1. In this paragraph we will show that there are no 

other simply (co)reflective subcategories of an Ctf but 

those embedded as in 2.6. First, let us make a few observa­

tions, actually trivial restatements of the definitions com­

bined with an introduction of a notation which will be used 

in the sequel. 

Let % be a simply reflective subcategory of OLc • 

Then, for every a c F(X) we have an ¥ 6 F(X) such that 

1) a 4 a , 

2) (X,-a") 6 obj % } 

3) If (Y,b)c obj& and if F)f)(a)4 b , then 

F(f)(a) 4 b . 

Similarly, if & is a concretely coreflective subcatego­

ry of Cfc-» , then for every a c F(X) we have an ja e F(X) 

such that 

lc a. 4 a , 
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2C) (X,a) * obj % , 

3C) If (Y,b) e obj & and if F(f)(b)_6 a , then 

F(f)(b) * a, . 

3.2. By an easy reasoning we obtain 

Lemma: a) a" = min -Cb | (X,b) 6 obj & & a 4 b J . In 

particular, a" * a for (X,a) € obj & . 

b) a * b — > a" £ ¥ . 

c) F(f)(a)* F(f)(a) = F(f)(a) . 

3.3. Let Su be simply reflective. Put G(X) = 

= i a \ (X,a) 6 obj & J . 

We obtain easily 

Lemma: a) If a^ (i € J) are in G(X) and if there is 

an infimum a of ia^} in F(X) , then a e G(X) . 

b) If a is a supremum of ^a^} in F(X) , then a" 

is a supremum of { a-1 in G(X) • 

3*4. Theorem: Let % be a simply reflective subcate­

gory of OLp , F: Set —*• 96 . Then there is a functor G: 

: Set — * 96 , a transformation X : F — * G and a subtrang-

formation & i G — * F such that 

(i) & = OIQ, and Cp] = ( & c ttp ) , 

(ii) %g> = 1 and f X > 1 . 

Proof: Put 

(* ) G(X) = <a ţ (X,a) € obj & ? , G(f)(a) = F(fMa) . 
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We have 

a 4 b «.-.> G( f )(a) ± G(f)(b) 

by 3.2 b ) . By 3.2 a ) , G ( l ) ( a ) « a « a . By 3.2 c) we have 

G(g)G(f)(a) * F ( g ) ( P ( f ) ( a ) ) * F ( g ) F ( f ) ( a ) = - F ( g f ) ( a ) = G(gf)(a) 

Thus, the formulas ( # ) define a functor G: S e t — « • Poset . 

Now, l e t X = S> or X = CSL . Then obviously, by 3 .3 a ) , 

every G(X) i s in obj S> or obj CSL . In any case, every 

subset with an upper bound has a supremum. Now, l e t a be a 

8upremum of < a i > in G(X) . Thus, -i a^} has a supremum b 

in F(X) and we have by 3.3 b) and 3 .2 c ) , and by 3.3 b) 

again, 

G( f )(a) = F( fMb) = в u p p ^ F í f M a ^ ) = s u p ^ t f Ma^) 

» вupö /xjG(f^(a^) . 

We have 

F(f) f* (a) = P(f ) (a) £ F(f ) (a) « G(f Ma) = fY G(f Ma) , 

G(t) AX (a) « G(f)(a) = F ( fMI) = F ( f ) ( a ) = A,V P ( f ) ( a ) , 

and 

:AX f* (a) = a (by 3.2 a ) ) , j>X AX (a) = a 2 a . 

I f y = ( a , f , b ) i s a morphism in Ctg. , we have 

G(f)(a) £ b . Hence, F ( f ) ( a ) £ P ( f ) ( a ) * b , so that <p i s 

in (tp • Thus, Cfc$ i s a subcategory of C/Cp . Since obviou­

s l y obj Cfcg.. = obj &, and s i n c e , by 2 . 5 , L p ] i s a f u l l 
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embedding, we obtain 01 ̂  » & • 

3.5. For the â  (see 3.1) we obtain easily 

Lemma: a) a. -* max <b 1 (X,b) e obj & & b * a } . In 

particular, a. « a for (X,a) e obj &• • 

b) a £ b ===> a A b . 

c) F(f)(a.) £ F(f)(a) . 

3.6. Let & be simply coreflective. Put G(X) « 

* 4a | (X,a) t obj ̂  } . 

We obtain easily 

Lemma: a) If a^ (i e J) are in G(X) , and if there 

is a s up rem urn a of C a ^ in F(X) (in G(X) , resp.), then 

a e G(X) (then a is also a supremum of -la.} in F(X), 

resp.). 

b) If a is an infimum of < a* f in F(X) , then â  is 

an infimum of "Ca^l in G(X) . 

3.7. Theorem: Let $l> be a simply coreflective subcate­

gory of OLf , F: Set—* X . Then there is a functor G: 

: Set — * 36 , a subtransformation jo : F • G and a trans­

formation X : G — • F such that 

(i) $,mOLG and U 3 » ( ^ c a F ) , 

(ii) A p ^ 1 and $>A * 1 . 

Proof: Since F(f)(a) £ F(f)(a) , we have by 3.5 c) for 

(X,a) c obj tu F(f)(a) £ F(f)(a) , and hence (using also 

lc) from 3.1), 
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for (X,a) e obj & and any f: X — > T , 

(T,F(f)(a)) e obj fc . 

Thus, we may define a functor 0: Set—*» Poset putting 

(*) G(X) * ia \ (X,a) e obj & ? , G(f )(a) » F(f )(a) . 

Now, let 3£ » Q) or 9E « CSL . Then, by 3.6 b), every 0(X) 

is in obj % by 3.6 a) every 0(f) preserves supreme. , 

Thus, G may be regarded as a functor Set—*>% • 

Define ^ : F - •. > G and X i G — * F putting 
X X 

<p (a) « a. and A- (a) =- a . (We have, by 3.5 c ) , 

0 ( f ) £>X(a) - 0 ( f ) ( a ) « F(f ) (a) 4 F ( f ) (a ) * $e>yF(f)(a) , 

and obviously F(f ) AX (a) * F ( f ) (a ) • & y G ( f ) ( a ) ) . We h a v e , 

by 3.5 a ) , y>XA.*(a) » X* (a) • a and X* fX (a) « a 4 a . 

If 9 = ( a , f , b ) i s a morphism in OLQ. , we have 

F ( f ) (a) s G(f ) (a) .£ b • Thus, ClG i s a subcategory of 0l¥ • 

Since obviously obj 0£Q, * obj & and s i n c e , by 2 . 5 t 1X1 

i s a f u l l embedding, we obtain C&Q » & • 

3*8. Remark: By 2 . 6 , 3.4 and 3.7 we see that whenever 

for subtransformations ff> , X holds X$> * 1 and pX £ 1 

(or, Xp £1 and pX » 1 ) , then & i s a transformation. 

This, of course, fo l lows e a s i l y d i r e c t l y : in the f i r s t case 

we have ?ty F(f) £ Xy .F(f)f>* X* A A y fy G(f) X% « 

= <3f(f)ax , in the second one, Ay G(f) » A y 0 ( f ) p * A* .^ 

£ A,y $t>y F(f)&X £ F(f) A * . 
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