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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

16,4 (1975)

TRANSFORMATIONS DETERMINING UNIQUELY A MONOID IV
WEAK DETERMINANCY

Marie MUNZOVA-DEMLOVA, Praha
Dedicated to Prof. §. Schwarz to his 60th-birthday

Abstract: This paper is a direct continuation of the
paper .

Key wordsg: Algebraic monoid, Caleye’s representation,
left Translation, right translatiop, algebraic isomorphism,

AMS: 20M20 Ref., %.: 2,721.4

In this paper we shall use all conventions, notions
and results given in [7].

First we are going to give an answer to the guestion
of the form of a connected weakly determining translation
with a bijective kernel,

Theorem 1. A connected translation f£: X —>» X with
a bijective kernel is weakly determining if and only if one
of the following conditions holds:

1) £ 4is a determining translation;

2) £ 1is a bijective translation;

3) 1if Qp# 25 , then lX\QfléZ and for all xeQ, it
1 | H(x)le 2

4) for lZfl =p, e being a top element, u(e) = 1 and
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the following three conditions are fulfilled:

a) for all xeZ, 1t is 12 x) e 2 5

b) there are no elements x, yeA , ze€K such that
(d(x) - d(y) = d(2)) = mod p ;

¢) for all xeA there exists an integer r(x) rela-
tively prime to p and a set 4 XyseeesXpic A udie} such
that the system
44 (d(xi)r"' + d(x)(r(x)"a'l + r(x)'e"2 4 ees + 1))mod p.%:o/ ’2’"’?1,{1'"’;,l
forms the decomposition of the set {d(y)|yehou fe3l.

Remark. If Condition 3) or 4) is fulfilled for
eeX , then it is fulfilled for all x¢ A . In this case
Audel 1is the set of all top elements of f .

Proof: Evidently if £ is a bijection, then £ 1is a
weakly determining translation. Consider £ for which
u(e)=z1 , Using constructions in {5] and [6) and the fact gi-
ven in [1] and [3) that every connected translation with a
bijective kernel is a left tramslation of commutative monoid,
we get the following assertions:

(A) 1If either Qf*¢ and u(e)z2 or Qp =@ , them ¢
is a weakly determining translation if and only if £ is a
determining one.

(B) If £ 1is a weakly determining translation end uf(e) =
=1 then for all xeX it 418 |£71(x)142 and there are
no elements x, y, z, u€hude} with d_(y) = d’(n) .

Assume f 1is a translation with Qe+ # and u(e) =1
for which (B) holds. It is easy to show that in this case
rpr a given top element e there is exactly one Cayley’s
T-monoid (X,L(M)) for which e 4is an exact source.

How let Qp = Z, . For an isomorphism ¢ between M,
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and Mx s Mg s Mx being the only monoids containing £ es
a left translation and having e , x as the identity ele-
ment, resp., we have ¢ (e) = x . Designate f(e) =a ,
¢(a) = beZp o (It holds that ¢ 1is an isomorphism, thus
9(Zf) = Zi, and therefore b=2a% in M, for some 8>0 o)
Hence b = f (x) and further for all nzO , b® 4n
M, is equal to £7%(x) , where for simplicity we write r
n ar nr+de (x)
instead of 8 ~ dg(x) . So g’(a);f)(f)sf ) (e) &
¥)+
Take ye A , then it holds a.y = (e) (in M) ,
(de(y)+1)r+d (x)
thus b o @ (y) = (e) and also by the de-
finition of M_ it 18 b e @ (y) = £ (g (y)) =
e, ) * 4 ¢

Hence dg(¢ (y)) = ((de(y)r + d,(x)) mod p . (x)
If (%) holds for all yeA, ¢ is a homomorphism between M,
and M_ ., As M, and M_ are finite (see 4)b)) and of the
same cardinality, it is sufficient for ¢ to be an isomorph-
ism to have |g@ (Mg)| =1M_| . And it is fulfilled iff r is
relatively prime to p and f satisfies Condition 4) for e
and x .

Take £ with 2, =0 , Qe¥ @ , u(e) =1 . I2 £ ful-
f£ils Condition 3) then either £ is a determining transla-
tion or A =4{x} . Designate again f(e) = a and define @ 3

: Me—-> Mx as follows:

do (x)-n+l
@(x) =e, gle) =x, g(an)=fe'x * (e)n Qe

dg, (x)=-n+l
and @(y) = £ e (e)an for yeQ, with ay = a .

Such ¢ is an algebraic homomorphism, moreover it is a bi-
Jection, thus it is an isomorphism,

Suppose Condition 3) does not hold. Let e, x be two
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distinct top elements, ¢ an isomorphism between M, and
¥, , f(e) = a . As the left translation of a is connected,
so is the left translation of ¢ (a) in M_ . But there are
only two elements of Mx with connected left translation:

b=£(x) and o= £2(8(x))NQ, .

de(x)+l
Pirst consider ¢(a) =b . As b =a (in M, )

de(x)+1 dg (x)+1
we have ¢(b) =1b in M_ . Further b =

d, ( 1 24, ( 1
te %)+ (x) =¢ © x)+ (e) + On the other hand, ¢ (x) =

=24Q (¢ isa bijection), thus do(z) = 2d,(x) and we
have dg(x) = d,(z) , a contradiction with (B).

Similarly it can be shown that if ¢(a) = ¢ , the condi~
tions from (B) do not hold for e ,¢(u), x, u , where ue
€eT\{x,e3.

Thus Theorem 1 has been proved,

Theorem 2, Let f be a connected non-surjective trans-

lation with an increasing kernel, Then £ is weakly determi-
ning if and only if £ is determining,

Proof: Evidently if f is a determining translation,
thus it is also weakly determining.

Let f be a weakly determining translation. Using con-
structions in [6] and Construction 1, we get that either £
is a determining translation or £ has more than one top
element and satisfies Conditions (ii) - (vi) from Theorem 3
in (6],

Suppose f has two distinct top elements e1s €5

u(el)(

4 (e2) contradicts Condition (iv),

u(e,)
2"(e )e T, .n Q. contradicts Condition (vi) from
276 T3 2N Qg



Theorem 3 given in [6]., Therefore £ has exactly one top
element, i.e. £ 1is a determining translation.

Now we shall deal with a connected surjective transla-
tion which has an increasing kernel.

To formulate the necessary and sufficient conditions
for £ to be a weakly determining translation we introduce
other notions. For a given xeX, N, = £71(x) \Pf(e) , de=
fine N ={xeX; | Nx|>13 .

Let x, yeX , define an equivalence A, as follows:

x~y iff ﬁ’vx is isomorphic to &

By [2z] we shall mean the set

y .

(2l ={yeX; ycNf(z) and y~z3.
To simplify the proof of the following theorem we give

two assertions.

Lemmg 11. Given x€ N, x~y and g» & translat-
ions with (3). Then there exist bijections %, from Nx on-

to Ny and ¢, from Ngl(x) onto Ngz(y) satisfying the

following properties: 8291 = 928y » (9)
9i(z)~z s, 1=1,2, for all g2 (10)

if and only if for every 2ze€ Nx it holds

1fuelzl; g(Wag(2)3l =14uelzl ; gy(u)nmg(2)3],

where EtNy and T~ 2 .

The proof is obvious.

Convention 1, Given x&N , g translation having Pro-
perty (3). Denote by Bf » 1 =1,2,3, subsets of N, as
follows

for all ueB] there is no seN,(p) with g(lud)ec(zd;

x .

for all ueBj there is zcng(x) with g(fu)) = {z);
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for all ueB§ there is ze N

x x
Denote by Cy = g(Bi) .

2(x) with g((ul)§ (2] .

Lemma 12, Given xeN, x~y and &;,» &, translations
with (3). Let there exist bijections &,» ¢, from Lemma
11. Denote by EY , CI the sets defined relative to g,

'B'{, _{ the sets defined relative to g,. Let B, be a sub-
set of B} having the following property:

for all ueBy, veBY, vaou it is VeBj

set C, = C3I\ g (B)) .

Then for every bijections ¢ from BJuB, into 'Bg v
B and ¢ from cJuc, into TJUT) satisfying (10) the-
re exists exactly one bijection w from N, v Ngl(x) onto

Nyun satisfying (10) and such that
EY = ¥8

g>(y)
v|BjuB, = ¢, ¥lcfuc, =9 .
The proof is obv_ious.

Theorem 3. Given a connected surjective tramnslation £
with an increasing kernel, Then f 1s a weakly determining
tranglation if and only if there is e€T ( T being the set
of all top elements of f ), g having (3) for which the fol-
lowing holds:

1) J¢(£)| T is a transitive group.

2) PFor all xeX and yeN [yl is a finite set.

3) PFor all xeN , Y19¥o€N, 4 y1%y, such that
g(y;)~e(y,) 1t holds: for all g) with (3) and k being
an integer

g5((y,))~ el (8(3,)) «
4) Por all xeN, yeN, such that there is g, with (3)
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and g'l(gl(y)) = @ it holds: 1f =z efly) then for all g
with (3) and 1 = 1,2,... it is
si(u)'vg;‘(y) .
5) For no xe€N, ¥3se.0,¥p6 Ny with yiobyj .
g)%8()) for 143, 3 =ly.en -1 and Ly eobed-

dable into Eﬁg (yi+

embedded into £

for {=1,0.en-1, &£ cannot be
1) Yn

S(yl) * v
6) For all x€N and ye€N, such that g'l(y) =g
-1 -1
it holds if y,, y,& Lyn Tm,n , then | £ (yl)l =1|f (yn)l .
7) For all To,n”N* ¢, n20, it 18 Nn To,n+1 =f .
8) Let xeNn(X\H)), yeN_ with g >(y) = ¢, let
m be the smallest integer with g'l(fm(X))+¢ 3 then
Let g ™))\ Ble) | = 1,
9) PFor all xe Tm.l' m>1 such that %,
ded into L£_ it s g L(x)+ P .

10) If for some elements x %e, i = 1,2,3 it holds
-1 -1
g (Xi) =h (xi) = ¢ » xie Tmi'ni’ i= 1'2’3 and for

can be embed-

nl-]. ml "

n,> mlf(x3) =h £ “(x;) , for n,£m, f(x3) =

m, n :
=g % 2(.1.’(::1)) , then only some of the following possibili-
ties may hold:
a) Xy = X3y 1% Xy and ny =n, =m, ,
b) Xy = X3y X %X, imply =n, = m » nyZn; and f(xB) =

mp B2

= £(g %k “(£(x3))

Proof of Theorem 3: In the first part of the proof we
show that every weakly determining translation satisfies Con-~
ditions 1 - 10 ,

Denote by g, h, k the trangslations having Properties

(3) and (4) for a top element e ,
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For the proof of necessity of Conditions 1 - 8 one can
uge Lemma 3; arsuming the contrary of any of these condit-
ions we get two quadruples eys 849 hi’ ki’ i=1,2 satis-
f£ying (3) and (4) for which a bijection

@: X=X, gleg) = ey, 98 =89 » b = g,
9k = k@
does not exist.

(11)

The necessity of Condition 9 follows from Construction
3.

The necessity of Condition 10b) follows from Construct-
ion 5. The only fact which is not evident is the following:

if Condition 10a) or b) is not fulfilled, then the assump-
tions of Construction 4 hold for some 'z'i s 1 =1,2,3,

Suppose Xy = X3 then for n,>my it must be m, =
= nl =1 , See my = 0 implies ny = O and it contradicts

x+e . Assume n,< my then xBGT , hense from

Wy ~hptmy
Xy = X3 we have my = n, =ny . Thus if x, = x5 and x; 4
+ Tl,l ’ then x) = x, = X3 . In all cases we can set ':'Ei =
=x ,1=1,2,3.

The second part of the proof is to show that the condi-
tions of Theorem 3 are also sufficient, i.e. that every £
satisfying Conditions 1 - 10 is weaxly determining. First we
show that for every e1s 8 hl, kl fulfilling Conditions
\(3) end (4) and such that hy(e) = k,(e) , there exists a
bijection ¢ e € (£) with (11).

Using Lemma 3 from this it follows that all monoids gi-
ven by Construction 2 are isomorphiec.

Let us prove that there exists exactly one & (and thue
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¥ = k ) such that e, g, h, kX satisfy (2) and (4) and
h(e) = k(e) + Using the induction on n, x being an ele-
ment of Tm,n ,» and Condition 7 for m = 0 and Condition
8 for m>0 , we get K(x) = hkf(x) for g (x) = # . Thus
for given e, g, h there is exactly one k with (4).

Obviously from Condition 6 we have for e, g and hye
e € (g, fhy = 1y a bijection e & (f,g) such that

v(e)=e,and ¥h =hy .

Now we prove that if Conditions 2 - 5 hold, then fcr
one fixed e, g end arbitrary & with (3) there is a bi-
jection e ¢(f) with <(e) =e and @g =g . The
proof of this assertion is divided into two steps: Zirst we
show that there are isomorphisms ¢ : ¥ —> %, 9:;;‘

: %ml—-’ * »m = 0,1,... such that g o, = o7& .

m+l
This is proved by induction on k , x being an ele-
ment of Tm,k » Snppose we have defined Py forall xe
€. Y% Tp,i 0 ¥, for all x €% ns1,1 80d moreover
x~ g (x) , @ (g(x))~g(x) for all x . Evidently
gp(E(e)) = £7(e) q'm(fm"'l(e)) = £™1(e) have
the required property. Let us construct ig—'m for elements
of Ty s @’y for elements of Ty .y i »
Take I‘Tm,'k-l ; if x¢N 1t can be easily shown that
’
there is only one extending of @y ©On Nx »y @ OB Ng(x)

(use N ~ Ny ) with the required properties.

g(x)

b) Let xeN . By Lemma 11 it is sufficient to show
that for every ye N, the following holds: if Je qu(x) ’
y~y , then ’

1§z ¢ Lyl ; g(z)rvg(yi}l = |26 [¥]; g (z2)ra(y)l.
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Assume the contrary; we shall construct a sequence {yilc":o
with the following properties: yielN, , 35% Yy

g(yy )% elyy) »

ﬁCyi embeddable into “'Cg(yi+1

lyeee o and
I{z ely;] ; g(z)~g(yy)3l > 142 €lF;); gy (z)~elyd)il,
where iiengm(x)’ '§1~ Yy o By the assumption we know that

) 0 i%+j, 1,J = 0,

there is an element y with the required properties, put
Yo =7 o Use an induction, let "yi:“-'ub be oonstructed and
construct Y o For V-1 it holds

Hzetyk_ll H 8(2)~8(yk_1)§l >l4{ze [-y_k_ll H

81(2)~ E(Yk_l)}l ’ ?k—lﬁnqm(x)’ ik-l'vyk-l .
By Condition 2 there exists 2z, ;e ly, ;] such that
I‘( zZe¢ (yk_ll H g(z)'v gl(zk*_l)}l < l {ze€ [?k"lj H

8 (2)nvgy(z 53 |

and moreover we can suppose that for this Zyy it is
g(z_q) g(yy) for 1<k -1 (use ¥y,ese,y, fulfil Con-
dition 5). Using Condition 2 and the induction assumption
we get that there is y, such that & (¥ ) ~gy (2 ;) end

1$zely ;s gz)~ey)3>142 € [T 1 5 g (2)~e(y )3l ,
Ve qu(x)’.ikN ¥y eand ayk_ embeddable into zg(yk) .
Assuming that Ve vy for some 1<k we get that
Viepreeeo¥y do not satisfy Condition 5. Hence we have con-
structed the sequence -‘.yi'lf'o .

Now define g, as follows:

4
for zeX\ ., Lyi put g,(z) = g(z),
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gyy) °
Evidently g, has (3) and g'z'l(s(yo)) = ¢ . By Condition

8-l L is an embedding of & into &
27yy A

4 it is g(y°)~gl(y1) , a contradiction.

Thus we have shown that bijections «, , @y can be
extended to Nz s X6 N

Now let us construct a bijection ¢ : X—>X with the
required properties.

The bijection will be constructed if we have a sequen-

© R+1 Se41
ce of bijections {szkw . ‘szgo Hy —> HO Hy such that

¥l =fy, and g ¥ = ¥&
and moreover for all xe¢ X there is an integer lcx such

that for all k>k, it 18 1, (x) = ¥y, (x) .
x

We shall construct a sequence 4y k!‘;w by an induct-
ion on k . Teke Y. =Y, v @’ . Suppose we have 1y for
all i<k ; the sequence &qriikk has the following pro-
perty:

ir 1’1(2) +1u‘i+1(z) s 26 Tr,s , then there is u e
[ Tr,q“N , g<8 such that

gl(ly3)$ Lv] for any v, yeN .

Let us define w‘i‘ by an induction on n , x being an ele-
ment of Ti,n s 16k + 1,

Agsume ¥, 1s defined for all x‘Ti,j y 16k + 1, 32

o+ v
€n, define ¥, | Jo Ty ;1 . Take xeT, ., if x¢¥,
then evidently there is only one possibility of extending
¥ to Nz with the required properties.
Assume xelN , divide Nx into three parts Bf ’ B; ’

X X
B3 (see Convention 1) as in Lemma 12, Take Y1) By
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7 (x)
'q"k-llBg and <« a bijection from c{ onto T'E such

that for all zeC’{ it is8 2z ~ @ (z) . Using Lemma 12 we
X X X X
get ¥, IN_ such that v | BuB3 = ¥y ;| B3uB3y and
Yelol=o .
Moreover, it holds:

-r
for all ue Bf there is an integer =r, such thet g “(y)+

-(ru+1) x
*P and g (y) = @ for all yeBy , g(u)~g(y) o This

u

agsertion follows from Condition 4. Denote r = max (ru)
“ € B:

(evidently g (x)%# ). Put z = g"l(x), Bz , 1 =1,2,3,
As Condition 4 holds we have g 1(BY)c BZUBS . Thus there
is exactly one extending of ¥ | B: , 'qu_ll Bg v

u(Bg\ g'l(B’f)) to ¥, | N, (use Lemma 12). The proof goes

by the induction up to N _, .
g (x)

Given xe Tm,n » suppose vs(x) * -¢-9+1(x) for some
8 o By construction of ., 1t means that there is ye N n

AT q<n and there are u; ,use ge"'z"m([xj), uy*ny .

s+l,q9 *
As [x] 1s a finite set (use Condition 2) so 48 NAT

for q<n , hence there is only a finite number of s p;v:th
qrs(x) + '4'54.1(‘) . Now k, = max ¢ has the required pro-
perty.

Hence the existence of a bijection ¢ with (11) has
been shown,

Let e;, 8, by, k; satisfy Conditions (3) and (4) and
h,(ey) = ky(ey) . From Condition 1 the existence of a bijec-
tion <, € € (f) with ¢&,(e;) = e follows, Denote g’ =
= ¢ 97t b = 99Tt , k' = @k ¢} . Translations
g’y b, k/ with e have the property (3) and (4); thus we
have a bijection @, & € (£) such that ¢,(e) = e and
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8" = g9, . Put b= 92h’9§1 , k= 92k'g"2'1 . Also
e, g, h, k£ satisfy (3) and (4) and hence there is a bijec-
tion~¢33 € € (£,g) for which @s(e) = e, q;ﬁ =hy, .
Put k = <93Tc' 9;1 « Define ¢ = ¢ 9,9 , ¢ is a bi-
Jection with (11). But we have proved that %=k (there
is only one k with the property (4)), hence we have a bi-
Jection @ for whick we can use Lemma 3.

Let now M’ be an arbitrary monoid with fe L(M’), e’
its identity element., In [2] it has bzen proved that there
exist g’, ke R(M’), h’e L(M’) such that e/, g” satiafy
(3), h’= Kg’= 1, , and K(e’) = K(e’) . Further in [2] it
has been shown that there exists k” such that k”(e’) =
= h’(e’) and e’, g’, h’, k” satisfy (4). So as we have
shown in the previous part of the proof, there exists a bi-
Jection ¢ with (11), Therefore £ fulfils Conditions 1 -
10 for e’, g’, h’, So it holds mz1l , k’(T;,l)c n':-1,1
(the sets T;;,n are defined relative to e’ ). Assume the
contrary, i.e. there is xéTx;,l and k’(x) = £%2(e) s hen-
ce the translation 8y is injective, but this is not possi-
ble because of Condition 9 . Thus also e’, g’, h’, k’ have
the properties (4) and so k“ = k” . The bijection ¥ indu-
ces an isomorphism ¢ of M’ onto M such thet £, h &

6 L(X), g, keR(M) . Denote by M the monoid given by Con-
struction 2 and containing e, £, g, h, k . The proof will
be finished if we show that M = M ,

We show even more, we give the proof of the following

asgertion: let e, £, g, h, k be translations as above, then

for every algebraic monoid M with £, he L(¥), g, ke R(M)
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and e identity element of M , it holds Fx = £, where

fx are translations given in Construction 2 .

Define an ordering £ as follows: (m,n)= (m’,n”) if
m<m’ orm=m and n<n’, Bvidently =2 is a well-order-
ing. We shall use an induction on (m,n) with the ordering
X , xeTm’n . Evidently To,o =4iet and f, =1y =f, .

Suppose f, = f, for all uel, ., (m”,n’)3 (m,n) .
Take xe€ Tp.n ¢ Consider three cases:

’
1) Let x = h(y) , then yeT

m,n-1 * and f_ = hfy =

= hfy = fx s use fx(e) = hfy(e) and e is an exact sour-

ce of L(M) .
2) Let =x

g(y) ,_then y‘Tm-l,n » and f_ = fyf =
fyf = £ ; use fx(e) = fyf(e) and e 1is an exact source
of L(M) .

3) Consider g"l(x) =hnx) = 9 . For the proof that
for such x it holds fx(t) = £.(t) we shall nezed an in-
duction on (p,q) , t+ being an element of '.l‘p g Evident-

k]
1y f£_(e) = £_(e) . Assume for all ueT. ., (p’,97)= (p,q),

X X P,a
it is fx(u) = £ () ; take teT . Again we have three
possibilities:

a) Consider t = h(v) , then fx(t) = hkff(x)(v) =
hkff(x)(‘l) = fx(t) s use fx(h(e)) = fk(x)(e) " k(x) =
hkf(x) and the induction assumption.

PyQ

b) Consider  t = g(v) , then 'fx(s(v)) = 3'fx(v) =

gfx(v) = fx(t) , as "‘Tp-],,q .

c¢) Consider g'l(t) =h"}(t) = ¢ . Let us suppose
T,(t) = 2z . We know that £ T (%) = Tp( (8] = £, (%),
hence T (t)e £ (f,,y(t)) . 12 h™1(z)# 9 then it is

z = fx(t) , for ff(x)(t) = gpkq(f(x)) , use the property
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of k . Further kE_(t) = khkEp  )(£(8)) = khkfp .y (£(t)) =
= k£ (t) . Hence if g (z)%@ , then z = £ (t) .

Therefore the only possibility of z = T (t) to be
z#f (t) is =z with g"l(z) = b1(z) = § . Consider there
are three elements x, t, z with g 1(a) = nla) =9, a-=
= x,6,2 and €L N (£ppy(8)) . As E(x)eTy [y, -120
(use g 1(x) = # ), we have for g>m , zef T(hP-1£2(%)) for
g<m , zef'l(gpkqf(x)) . Uging Condition 10 we know that
there may be only two possibilities:

%) x*t ,t =2 and n=p =g ; in this case we have te
€ £ (g%Pr(t)), thus m = p and te £ 1(gPkPe(t)) means
that Condition 10 is not fulfilled for Xy = t,1=1,2,3.,
Congider x%t and x =2 , Assume g>m , then x e
£~ (n*" 1% (¢)) implies xeT ; therefore gq =m ,

P,g-m+n
contradiction, So gem and xe f'l(gpkqf(x)) , .. p =

L}

[+

g .
Suppose :‘.‘-x(t) = x , then 'fxft(t) = 'ff (t)(t) = 'fx(t) =
- x
x , thus £,(t) 4 £,(¢) . From this it follows ¢ =m = p

u

and p>n (use the induction assumption and ?t-l-ft ). Take
Z=¢£°(t) , bZ0 auch that Fp(t)#fz(t) and Tpzy = £55).
(Such element Z exists because £P(t) = £P(e),) Suppose
ft(t) = v , then fi(t) - f° -ft(t) = £%(v) . Purther g'l('i)g
= h"1(Z) = # (use the induction assumption and f‘z’ * £ .
Moreover, g'l(-f-z-(t)) = h'l(fi(t)) = @ , the proof is exact-
ly the same as the proof that g'l(z) =h ) =p.
Therefore either fb(v)*'z' and Z, t, fb(v) do not
fulfil Condition 10b) or 7z = fb(v) and Z =t and again
Z, t, £2(v) do not fulfil Condition 10, (Z st and % =
= £%(v) implies £(3) = gPkPE(3)).
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We shall now deal with disconnected translations.

Theorem 4. A translation f: X—» X 18 weakly deter-
mining if and only if there is a top element e for which
the following holds:

1) £ E'f(e) is a weakly determining translation;

2) Y has at most one element and | Eg(e)l>1Y/[ or
£1Y is a disconnected permutation with YcZ, , r(x) does
not divide r(y) for any x, yeY , x¢Ey(y) .

3) If q#1 is a common division of all r(x), xeY
then there exists ‘xoe Y such that for all p relatively

2 (x -
prime to —’-"—-c-'>-‘-‘-’-2 the expression —-—"—,g——-qz— is not an
')
integer.

Proof: Let e, e’ be two top elements of £ ; from
Condition 2 it follows that e’e Ef(e) « Suppose feL(M) ,
M being an algebraic monoid. It can be seen that for f sa-
tisfying Conditions 2 and 3 it holds £ (y) = x for all xe€
€Y, yeX ., Moreover if Condition 2 or 3 does not hold then
there are two non-isomorphic monoids (see constructions in
[6] and Construction 2).

Let M,, M, be two monoids with fe L(My) , e &
eEr(ea) » ey identity element of M, , i = 1,2, and the
left translations of Mi corresponding to elements of Y
be constants, then for every bijection & : Er(el) —_

— Ef(el)' such that @4’1‘:(3) = efa(x)(i(y)) s Xy Y €
€ Ey(e) , "'fxe L(M;) ,the mapping @ define by

@(x) = $(x) for xe€Ep(e;) and

@(x) = x for =xe¥
is an algebraic isomorphism bet_ween Ml and M2 . On the
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other hand, if there is an isomorphism ¢ between Ml and

M, , then @|E,(e;) is an isomorphism between monoids gi-
ven by L(ﬁl) = {4fxl Ep(eq) o erf(el)} and L(ﬁz) =
2 .
= ‘q. fx l Ef(el) H erf(el); .
Thus the proof has been finished.

[1)

(2]

£31

(41

(51

6]

L7

Zl

P'

P,

P,

M.

M.

M.
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